Java Workshop
Day 1
Introduction

The goal for this day is to set up a project, create an applet with some interactivity, and introduce the basic structures of java.
Creating a “Hello World” project and applet.
Create the project
Once you start NetBeans, you will see three windows in the IDE (Integrated Development Environment). The top left window has three tabs: Projects, Files, and Runtime. The lower left window is the Navigator window. This window will be useful to scroll through all available classes and objects on your applet that you will create. The right window is the Welcome window. You can close this at any time by clicking on the “x” next to “Welcome”. Across the bottom, you will see an Output window. Compile time, run-time, and debugging information will be displayed here.
· Create a new project by choosing File/New Project. You will have several options. If you are creating an applet from scratch (i.e. not importing existing code from another applet), you will choose the default “General” category and the “Java Class Library” project. Click the “Next” button.

· Give your project a name. For the purposes of this workshop, I’m going to call our first project “HelloWorldProject.”
· Choose a Project Location. You will want to choose a folder that will keep track of all of your java projects, so you should browse and find/create such a folder. Mine is named “Java Projects.”

· If you want the project folder to be named something besides the default, now is a good time to do this. I’m going to accept the default of “HelloWorldProject.”

· Click the “Finish” button.

You should see your project created in the Projects window (upper left corner). It contains a few default items. Here’s a screen shot.

· Add a package to your project. A package is a convenient way of organizing your files. Java’s suggested naming convention is use the reverse order (in lower case) of the url where the applet will be deployed. For example, if I’m going to deploy the Hello World applet in a folder with the name “helloworld” at www.jimrolf.com, I will create the package com.jimrolf.helloworld. If you are going to deploy this applet (and folder) at www.usafa.edu, you might choose the package name edu.usafa.helloworld. This will create three nested folders: edu, usafa, and helloworld. All source files for this applet will be located in helloworld. This nomenclature is not so important if you are writing a single applet with one file. However, as you start to build tools that you want to re-use in several applets, this convention is particularly helpful. So I would advise using it right from the start.
· Right-click on “Source Packages” and choose New/Java Package and type in the name of the package that you want. For this workshop, I’m going to use edu.usafa.helloworld. You may also perform this operation by highlighting “Source Packages” and choosing from the menu bar File/New File/Java GUI Form/New Package.

Create the applet
· Add a JApplet form to your project. This form is what will allow you to drag-and-drop items onto a canvas and quickly build GUIs without having to create all of the underlying code (a very tedious process).
· Highlight edu.usafa.helloworld and choose File/New File/Java GUI Form/JApplet Form. I gave mine the name “HelloWorldApplet.” Convention dictates that all Java classes should begin with a capital letter. Lots of things should pop up when you click the “Finish” button, including a Design pad. You can grab the corners of the applet to make it the size that you want. For now, the default size should suffice.
· Set the layout manager. The layout manager controls the placement of different objects when the applet is re-sized by a browser. The default layout is “Free Design” which is a very nice layout manager. However, I use “Null Layout.” This gives me the most control over where objects wind up on the applet. It also takes a bit more time to finely control their placement. Right click on the applet form and choose “Set Layout/Null Layout.”
· Add a JPanel to your applet. The JApplet is primarily used as a container for other objects. So we will add a JPanel to our applet. This will allow us fine control over properties such as the background color, the foreground color, the default font size and type, etc.
· Choose JPanel from the “Palette” menu. You can grab this object and drag it onto the designer pad.

· Change the background color. The properties panel on the lower right hand side of the IDE gives you the ability to change the background color, size, etc. Click on “background” and change it to whatever color you like. I’m going to change mine to white.
· Change the size of the JPanel to match the width and height of the underlying applet container. If you haven’t changed the original applet size, the default is 400x300. To check, click on the applet form. Go to the properties panel (lower right corner) and click on “Code.” The Designer Size will tell you the size of the applet. Go back and change the Layout dimensions to a Width of 400 and a Height of 300. Additionally, you will most likely want X to be 0 and Y to be 0. This is the location of the upper left corner of the JPanel. Note: The x axis is positive as you move to the right. The y axis is positive as you move down. The origin is assumed to be in the upper left corner.
· Change the name of the JPanel. Right-click on the JPanel and choose “Change variable name.” The default name is jPanel1. I’m going to change the name to “backgroundPanel.”
· Change the layout manager to “null.” Note: This is not absolutely necessary and is a personal preference.
· Add a JLabel to backgroundPanel.
· Drag and drop the JLabel component from the Palette panel.

· Resize as you wish. You can use the mouse to grab a corner or utilize the Properties panel to do this.

· Double click inside the label. Replace “jLabel1” with “Hello World.” Note: You can accomplish the same thing by changing the “text” property in the Properties panel.
· Change another property or two. For example, you might trying changing the font, background color, and/or foreground color.
· Change the name of the label to “helloWorldLabel.”
· Build and Run the applet.

· From the menu bar, choose Build/Build Main Project. You may get asked to designate your main project. Go ahead and designate HelloWorldProject as the main project. The Output window will contain any error messages. If everything compiles successfully, you will see BUILD SUCCESSFUL.
· In the Project panel, right click on HelloWorld.java and choose “Run file.”

· If everything is working properly, a window should pop up containing your applet!
Examine the code: the basic structure of an applet.
You will want to get an idea of what code is generated by NetBeans so that you can add functionality to your applet. Go to the window that contains the design pad that you used to construct your applet. At the top of the design pad is a menu bar. Click on the “Source” button to see the generated code.
· General comments. You will notice that several lines are grayed out. Most of these are comments that are not executed by the compiler. Comments are formed in two ways.
· Using /* and */ to enclose comments. Example:

/*
Second line of comments

Third line of comments

Fourth line of comments
*/
· Using // on a single line. Everything that follows is a comment. Example:
//First line of comments

//Second line of comments

//Third line of comments

Much of the code that you see is contained in a blue background. This is automatically generated by NetBeans and cannot be altered by the user.
· Package details. The first meaningful line in this code is
package edu.usafa.helloworld;
This contains the details of the location of this file, and perhaps others. You should not alter this unless you have a really good reason to do so. When using multiple packages and files, you may need to tell the java compiler where things are located. If so, you will add a line after the package declaration that may look like:
import com.jimrolf.calcTool.CalcTool1;
This line says “look in the package com.jimrolf.calcTool and import the CalcTool1.class file for use in this program.” For today’s workshop, this is unnecessary.
· The class structure. Every java program must contain at least one class. A class is a collection of methods (i.e. subroutines) and objects (variables, buttons, panels, labels, text fields etc.) that work together to provide functionality. The class structure is what makes java object-oriented and easily extensible. Consequently, we will try to take advantage of this structure.

Our class statement is
public class HelloWorldApplet extends javax.swing.JApplet {

//code goes here

}

The “public” attribute describes who can have access to things in the class. “public” allows other classes to access members of this class. “private” access allows no other classes to access members of the class, while “protected” allows members of the same package to access class members.
HelloWorldApplet is an extension of javax.swing.JApplet. As such, it inherits all the properties, methods (i.e. subroutines) and objects of a JApplet. There are other kinds of applets, namely of the java.awt.Applet variety. I recommend using swing components (i.e. javax.swing.JApplet, javax.swing.JPanel, etc.) because they have a more consistent look-and-feel across different platforms. These objects also typically have more properties which gives the programmer more control over how they operate.
Also, you should note the opening and closing braces, {} which are required to contain the methods and objects for this class.

Typically, one class is declared in a file of the same name. You can search in the src folder of your project and you will find the file HelloWorldApplet.java that contains this code.

· Variable declarations.
Scroll down to the bottom of the page and you will see some variables declared in a blue background (i.e. you can’t change these).
private javax.swing.JPanel backgroundPanel;

private javax.swing.JLabel helloWorldLabel;

Note that each line ends in a semicolon. Most lines in java will utilize this convention.

The variable name for the first variable is backgroundPanel, its type is javax.swing.JPanel (or JPanel for short) and its scope is “private.”

In general, variable declarations will be of the form

scope type variableName;

scope defines the visibility of the variable as well as how long it lives in the program’s memory. The “private” designation is the most restrictive. It means that nothing outside of the HelloWorldApplet class can access these kinds of variables. “Protected” means that other classes in the same package can access the variable, as well as subclasses of the current class . “Public” means that any other classes can access the variable. It is good programming practice to choose the most restrictive scope for variables unless you have a good reason not to. This means that the “private” designation is probably the one you will use most often. Finally if no scope is given , the scope defaults to the current class and other classes within the package.
type refers to the type of object the variable will contain. Other types include int (integers), double (double precision real numbers), boolean (variable with true/false values), and String (strings of text). There are several other primitive types defined by java, as well as a myriad of user-defined types. Check out Appendix for some other types.
· The init method. Every applet must have an init method (i.e. subroutine).
public class HelloWorldApplet extends javax.swing.JApplet {

 public void init() {

 try {

 java.awt.EventQueue.invokeAndWait(new Runnable() {

 public void run() {

 initComponents();

 }

 });

 } catch (Exception ex) {

 ex.printStackTrace();

 }
 //your code goes here

 }
}
This method is the first method executed after the applet is loaded into the browser, so it is used to initialize things you want started up at the beginning. Of course you want to visualize the objects such as buttons, labels, etc. that you’ve place on the object, so these are the kinds of things that are initialized here.
NetBeans uses a try/catch statement and the initComponents() method to initialize NetBeans-generated objects. If you want some additional things to be initialize, you should place your code at the end of the init method in place of the comment //your code goes here.
The initComponents() method. If you scroll down, you should see the definition of the initComponents() method contained in a blue background.
 private void initComponents() {

 backgroundPanel = new javax.swing.JPanel();

 helloWorldLabel = new javax.swing.JLabel();

 getContentPane().setLayout(null);

 backgroundPanel.setLayout(null);

 backgroundPanel.setBackground(java.awt.Color.white);

 helloWorldLabel.setText("Hello World");

 backgroundPanel.add(helloWorldLabel);

 helloWorldLabel.setBounds(130, 90, 100, 20);

 getContentPane().add(backgroundPanel);

 backgroundPanel.setBounds(0, 0, 400, 300);

 }

Here is where each object is instantiated (i.e. created) and where specific information regarding the size, etc. of each object is declared.
Adding Interactivity to your applet: adding a button
Let’s add a button to your applet and give it some functionality. So go back to the design pad. You should see the Hello World label that you created previously.
· Drag/drop a JButton from the Palette onto your design pad.
· Change the text on the button simply by double-clicking the button. I’m going to change the test to “Go”.

· Change the name of the button if you like. I’m going to use the name “goButton”.
· Add and event to goButton. An event is an activity that occurs when the user interacts with the object in question. We will add a mouse-click event to the goButton. But other possible events can happen when we move the mouse over the button, when we type a particular key on the keyboard, use the scroll wheel, etc.
· Right-click goButton and choose “Events/Mouse/mouseClicked”. You will see several categories of events to choose from many options. The two relevant options are “Action/actionPerformed” and “Mouse/mouseClicked.”. Either of these will accomplish our purposes, but we’ll use the “mouseClicked” event.

NetBeans automatically generates a mouse listener and the goButtonMouseClicked method to handle any mouse click.
private void goButtonMouseClicked(java.awt.event.MouseEvent evt) {

// TODO add your handling code here:

}

This is where we’re going to add code that will be executed when the event is fired.
· Declare the string variable labelString in the goButtonMouseClicked method. The variable type is String with name is labelString. Most statements in java will end in a semi-colon, so don’t forget to conclude in this fashion. You should have something like

String labelString;

· Initialize labelString to “Goodbye World”. Use the equals sign to set labelString equal to this snippet of text. You must use quotes around the text. Don’t forget the semi-colon! You should now have

String labelString;

labelString=”GoodBye World”;
It’s also possible (and good programming practice) to declare and initialize variables at the same time. You may simply combine the previous two statements into one line.

String labelString=”Goodbye World”;
· Set the text from labelString into the helloWorldLabel object. We will use the setText(String) method to do this. Java dictates that methods associated with a particular object should be reference according to the general convention

object.method();

Note the period between the object and method—this is important! For us, “object” is helloWorldLabel and the “method” is the setText method. Its argument must be a String variable. Thus, you should type
helloWorldLabel.setText(labelString);

If you wish to append other text to the labelString, you may do so using the + sign. For example

helloWorldLabel.setText(labelString+” Leaders”);

will result in the following output.

Goodbye World Leaders

· Build and run your applet. Click on the button to see your creation in action!

Adding Interactivity to Your Applet: adding a text field
· Drag/drop a JTextField onto your designer pad. The default text is jTextField1. You may wish to remove this by simply double-clicking on the text field and deleting the text.
· Rename it inputTextField.

· Edit the goButtonMouseClicked method to take input from the inputTextField and set it into the helloWorldLabel. You will need to use the getText() method. See if you can figure out how to do this. Hint: the getText() method returns a String value. If you need to peek, the code is below.
labelString=inputTextField.getText();

helloWorldLabel.setText(labelString);

This could also be accomplished in one step by the following.

helloWorldLabel.setText(inputTextField.getText());

· Build and run your applet. Note: if you did not resize inputTextField, it may show up on your applet too narrow to be of much use. Simply go back to the design pad and resize the text field to a size to your liking and it will now show up as expected.
Deploy the applet
You will no doubt want to package and deploy your applet so that others can use it. You will need two things for this—a .jar file and a .htm (or .html) file. The .htm file is something you must create.

· Find .jar file. The .jar file is an archive that contains all necessary code to run the applet. NetBeans has automatically created it for you. Navigate to the HelloWorldProject on your hard drive. It will contain the folder dist. Inside this you will find HelloWorldProject.jar. Copy (or move) this file to the folder that will contain your .htm file.

· Create helloWorld.html. I recommend using my helloWorld.html file as a template. Right-click to download this file here and place is same folder as your .jar file. Open with Notepad, WordPad, Word, etc. to change the settings to suit your project. If you’ve used all of the naming conventions that I’ve suggested, you should not have to change anything. But if you do, the key line to alter follows.

<applet code="edu.usafa.helloworld.HelloWorldApplet" archive="HelloWorldProject.jar" width="400" height="300"></applet>

Let’s look at each piece of this line

· <applet> </applet> These are the tags that indicate that an applet will be placed here.

· code="edu.usafa.helloworld.HelloWorldApplet" The code attribute describes where the java class can be found. Note that the first part of the attribute- edu.usafa.helloworld- is the package that you created when setting up your project. The last part of the attribute-HelloWorldApplet- corresponds to the java class that is created when compiling your project. In fact, you can replace this with HelloWorldApplet.class if you wish.

· width="400" describes the width of your applet.

· height="300" describes the height of your applet.

· archive="HelloWorldProject.jar" is the name of your .jar file.
If any of these are not correct, the applet may not run in your browser.

· Click on helloWorld.html to run applet in browser.

Homework for Day 1

Do the following a day or two before coming to the second part of the workshop. This should serve to refresh your memory of concepts we’ve talked about today, as well as give us a little bit of a head start on Day 2.
· Create a new project named Day2Project. Add a package named edu.usafa.day2 and a JApplet named Day2Applet. Place a JPanel on the applet. On top of this, put two labels and a button. Name one of the labels loopLabel and the other methodLabel. Name the button computeButton. s This exercise should refresh your memory concerning things we did last time. We’ll utilize this applet on Day 2 of this workshop.

· If you didn’t get a chance to deploy the applet you created last time, go ahead and do this. The instructions for this are on your handout and on the web page for Day 1.

Appendix 1

Declaring Variables and Converting Data Types

Each time you use a variable in Java, you must declare what type it is. These types could include primitive types, which are default types in Java, or they could include user defined types of your own construction. There are the 6 primitive types of variable.

Primitive Data Types

	Data Type
	Content
	Default Value
	Min Value
	Max Value

	byte
	Integer
	0
	-128
	127

	short
	Integer
	0
	-32768
	32727

	int
	Integer
	0
	-2147483648
	2147483647

	long
	Integer
	0
	-9223372032654775808
	9223372032654775808

	float
	Real
	0.0
	-3.40282347E+38
	3.40282347E+38

	double
	Real
	0.0
	-1.79769343486231570E+308
	1.79769343486231570E+308

	char
	Character
	N/A
	N/A
	N/A

	Boolean
	Logical
	N/A
	false
	true

char variables only represent single characters. These characters include most of the keyboard strokes on your keyboard, plus some with the escape prefix:

\b
backspace

\t
tab

\n
new line

\f
new page (form feed)

\r
return to the start of the line

Strings.

We would like to string together several different characters to represent words and sentences. So at least two classes have been defined to help us do this:

String

StringBuffer

Please note the use of the capital letter “S” when declaring these variables.

For example we can call and initialize a String with the name firstname via:

String firstname=new String(“Jim”);//firstname is defined as Jim
In general, we instantiate a class (that is call it into existence) via the new command. In the case of the String class, we can also use one of the following shortcuts

String firstname; //Declaration and then initialization

firstname=”Jim”;

or

String firstname=”Jim”; //Both declaration and initialization
Please note the use of double quotation marks, “, instead of single quotation marks, ‘, when initializing strings. Single quotes are for character typed variables. Double quotes are for string typed variables.

String Buffers.

StringBuffer is an object used primarily for buffered input and output. It is particularly useful for outputting multiple lines of information.

Example Let’s suppose we want to ouput list of numbers from 1 to 10 in a column. In order to output multiple lines of information, you will not be able to use a Label object. One helpful object is a TextArea object.

1. Drag and drop a TextArea object onto your designer pad. It will probably be named textArea1.

2. Instantiate a StringBuffer object. Inside of a button_ActionPerformed() method, instantiate a StringBuffer object with the new command. For example, if you name it myStringBuffer, your code will be as follows.

StringBuffer myStringBuffer=new StringBuffer();
3. Append the numbers 1 thru 10 to myStringBuffer. Set up a for loop and use the append() method. You should notice that when you type the period after myStringBuffer that a menu will pop up with all available methods. Choose the append method with a String argument (or just type the word append). Append the counter used in the for method and a carriage return, “\n”. Here’s an example.

for (int i=1; i<=10; i++){

myStringBuffer.append(""+i+"\n");

}

4. Output the information to the textArea object. You will want to use the setText() method. Since this method expects a string, you need to convert myStringBuffer from a StringBuffer object to a String object. This is done using the toString() method. Here’s an example.

textArea1.setText(myStringBuffer.toString());

PAGE
10

