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Introduction

This book is written for undergraduate students who have studied some complex
analysis and want to explore some research topics in the field. We envision this book
could be used as:

• a supplement for a standard undergraduate complex analysis course allowing
students as a group or as individuals to explore a research topic;
• a guide for undergraduate research projects for an advanced student or a small

group of students; or
• a resource for senior capstone courses.

The nature of this book is quite different from other mathematics texts. Rather
than having a straightforward linear and highly structured introduction to the material,
this book is designed to regularly involve the student in a very hands-on way. This
book focuses on discovery, self-driven investigation, and creative problem posing. Some
of the ideas are part of the standard fare learned in a course which focuses solely on
the topic, while others may be new to the field. We want to inspire the reader to
investigate, explore, conjecture, and pursue mathematical ideas. Students are taken
on a guided tour of the topics and are given many opportunities to stray from the text
to pursue their own investigations.

Interlaced in the reading for each chapter are exercises, explorations using computer
applets, and projects. These activities are an essential part of the students’ learning
of the topic. For this reason, most of these activities end with the phrase Try it out!
to remind the student that the activity needs to be done before going on with the
reading. The types of activities are as follows:

• Examples - The reader should be sure that she/he can follow the arguments
and provide small details when needed.
• Exercises - These have a well-defined goal and should be done by the reader

before going on to the next paragraph in the text. Skipping these would
result in you missing an important skill or idea that will be fundamental to
your understanding.
• Explorations - These also should be done before going on in the text. Gen-

erally, these do not have a well-defined problem that you are trying to “solve”.
Some may include undirected investigating or “playing” with applets. There
is no specific outcome expected, but much will be gained by this activity. Such
activities are at the heart of what this book is about since it is getting you to
explore on your own and see what you can come up with.
• Small Projects - These are more involved activities than those listed above

and are optional. It may take up to a few weeks to complete a Small Project.
• Large Projects - These are similar to a Small Project, but on a larger scale.

A Large Project could be a semester long project, a capstone project, or an
honors thesis.
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• Additional Exercises - Additional exercises may include any of the previous
activities. However, these appear at the end of the chapter and are optional.

While working on these activities, it is a good habit to consider such questions as “Why
was this problem posed?” “Why is it interesting?” “What if I changed the problem
slightly, does it make it easier? harder? impossible?” “What does such a problem
say about the general theory?” Thinking about such questions is what it means to do
mathematics research and investigating the unknown. Pausing to constantly ask new
questions, investigate these questions, and mathematically describe these questions can
make for very slow reading. The reader should measure progress, not by the number
of pages read, but by the amount of independent thought given to the material. If the
student reads just a few pages of a chapter and then becomes motivated to work on
a problem or set of problems she/he devised on their own, the authors of this book
would be delighted.

“It is not so very important for a person to learn facts. For that he
does not really need a college. He can learn them from books. The
value of an education in a liberal arts college is not learning of many
facts but the training of the mind to think something that cannot be
learned from textbooks.”–Albert Einstein (in Einstein: His Life and
Times by Frank)

The book contains six research topics. Each topic is presented in a self-contained
chapter that contains necessary background material, presentation of new material,
exercises, explorations, and problems suitable for student projects, and several com-
puter applets that allow the student to explore the topic. Also, each topic is a fairly
recent area of research, and there are a lot of new questions to investigate. Here is a
brief description of each of the chapters in this book:

(1) Complex Dynamics: This chapter investigates chaos and fractals as they
relate to dynamical systems which come from iterating complex valued functions, i.e.,
given an initial value z0 we consider the values z1 = f(z0), z2 = f(z1) = f(f(z0)),
z3 = f(z2) = f(f(f(z0))), . . . , and ask what kind of behavior we can have in this
sequence zn. Iteration in this sense arises in Newton’s method for approximating roots
of complicated functions, and so our chapter begins by asking such questions as: Which
initial values will “work” for Newton’s method (i.e., converge to a root)? If I change
my initial value z0 slightly, will I get similar or drastically different behavior? Often
these questions are pursued computationally, visually, and experimentally with the aid
of computer applets. We then extend our discussion by considering the iteration of
any complex analytic map, which leads to a pursuit of the mathematics behind the
famous Mandelbrot set, and much more.

(2) Minimal Surfaces: Minimal surfaces in R3 are beautiful geometric objects
that minimize surface area locally. Visually, they can be thought of as saddle surfaces–
at each point, the surface bends upward in one direction in the same amount as it
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bends downward in its perpendicular direction. Minimal surfaces are related to soap
films that result when a wire frame is dipped in soap solution. In this chapter, we
present the necessary background from differential geometry, a field of mathematics in
which the ideas and techniques of calculus are applied to geometric shapes, to give an
introduction to minimal surfaces. Then we use ideas from complex analysis to present
a nice way to describe minimal surfaces and to relate the geometry of the surface with
this description. This allows us to begin investigating some of the interesting properties
that can be studied with the help of the applets.

(3) Applications to Flow Problems: Two dimensional vector fields are used to
model and study a wide range of phenomena. Of particular interest are vector fields
that are both irrotational and incompressible. Such fields can be used to model the
velocity of an ideal fluid flowing in a region or the electric field in a region free of
charges. Modelling two dimensional fluid flow is a standard application of the theory
of conformal mappings in complex variables. This chapter takes a geometric and visual
approach to explore this standard body of work and then extends it to several more
applications. Fields of interest typically include various sources or sinks that generate
or remove fluid from the flow. Throughout the chapter, examples, theory, and exercises
are used to develop methods that allow fields to be modelled that are generated by
all types of sources and sinks in a variety of regions. Also, we have provided the
applet, FlowTool, that readily displays the streamlines for a field with various sources
and sinks. The applet permits real-time dynamical experimentation with the field.
Students with an interest in using technology to visualize mathematical objects will
find many opportunities to explore their ideas, though these are not explicit exercises.

(4) Harmonic Univalent Mappings: Complex-valued analytic functions have
many very nice properties that are not necessarily true for real-valued functions. For
example, if you can differentiate the complex-valued function one time, then you can
differentiate it infinitely many times. In addition, complex-valued analytic functions
can always be represented as a Taylor series, and they are conformal (that is, they
preserve angles) at points where f ′ 6= 0. Why does an analytic function have these
properties? If f = u + iv is an analytic function, then its real part, u(x, y) and its
imaginary part, v(x, y), satisfy Laplace’s equation and thus are both harmonic. Also, u
and v satisfy the Cauchy-Riemann equations and are therefore harmonic conjugates of
each other. In this chapter we discuss some ideas and problems related to a collection
of univalent (i.e., 1 − 1) complex-valued functions, f = u + iv, where u and v satisfy
Laplace’s equation but not necessarily the Cauchy-Riemann equations. This collection
of functions are known as harmonic univalent functions or mappings, and contain the
collection of analytic univalent functions as a subset.

(5) Mappings to Polygonal Domains: A rich source of problems in analysis
is determining when, and how, one can create a univalent (one-to-one) function from
one region to another. In this chapter, we present two different ways of solving this
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problem for polygonal domains. The first gives an analytic function, while the second
diverges from analytic function theory and gives a harmonic function to do the job.
First, we examine the Schwarz-Christoffel formula, which always provides a univalent
mapping from D to any simply-connected polygonal domain in C. This formula leads
to some very rich mathematics, the study of special functions. The bulk of this chapter
is the study of how to use the Poisson Integral Formula to create a harmonic function
from D to a polygonal domain. The formulation of the harmonic function is relatively
straightforward, but there is often no guarantee that the function will be univalent. The
study of when univalence is guaranteed is the focus of this portion of the chapter. We
will solve the problem completely for a particular boundary correspondence between
the unit disk and regular stars, and lead the student to investigate further polygonal
shapes.

(6) Circle Packing: Circle packings are configurations of circles with prescribed
patterns of tangency. They exist in quite amazing and often visually stunning variety,
but what are they doing in a book on complex analysis? Well, the fact is that complex
analysis is at its heart a geometric topic. You will see this in the global geometry
on display throughout Chapters 1–5, but the foundation lies down at the local level
where, as the saying goes, “analytic functions map infinitesimal circles to infinitesimal
circles.” In Chapter 6 you will see this geometry come to life in the theory of discrete
analytic functions based on circle packing. Using the Java application CirclePack,
we will create, manipulate, and display maps between circle packings which are the
discrete analogues of familiar functions, including some of those encountered earlier in
the book. Direct access to the underlying geometry gives new insight into fundamental
topics like harmonic measure, extremal length, and branching. Moreover, we will see
that our discrete functions not only mimic their classical counterparts, but actually
converge to them under refinement. In short, Chapter 6 is about quantum complex
analysis.
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A note on using Java applets

Essential to the exposition in this text is the use of Java applets to explore the
nature of complex functions. One applet, ComplexTool, will be demonstrated here.
Many of the features of ComplexTool are also used in other applets, and ComplexTool
is used in most of the chapters in this text.

We can graph the image of most any domain set under most any function using
ComplexTool. Let’s begin by examining how the image of the the unit disk D under
the function f(z) = (1 + z)2 is drawn. First, open ComplexTool (see Figure 0.1).

Figure 0.1. The applet ComplexTool

In the middle section near the top there is a box that has f(z)= before it. In this
box, enter (1+z)∧ 2. Below this, there is a window that reads No grid. Click on
the down arrow H and choose the option Circular grid; an image of a circular grid
should appear on the left to show the domain being graphed. Next, click on the button
Graph which is in the middle section below the function you entered earlier. The image
of the circular grid under the action of the function should appear on the right. To
reduce the size of the image window, click on the down arrow H above the image and
chose a different size, such as Re: [-3,3] Im: [-3,3]. You can also zoom in and
out by left- or right-clicking on your mouse, by dragging the slider in the bottom left of
the center panel, or by turning the scroll wheel on the mouse. Also, you can move the
axes so that the image is centered by positioning the cursor over the image, clicking on
the mouse button, and dragging the image to the left (see Figure 0.2). If you want to
change the domain that is being graphed, you can do so manually by changing Center,
Interior circles, Rays, the theta range, and the Outer Radius. (You will have
to push the Graph button to regraph after you make changes.) Alternatively, you can
position the cursor over the domain and “drag” it around while watching the range
dynamically change–this will not change the size of the domain, but will change its
center.

To figure out exactly which points in the domain correspond to points on the
range, you can check the box in front of Sketch. Then you can “scribble” in the
domain window and see its image appear in the range. Note that when the Sketch
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Figure 0.2. The image of the unit disk under the map f(z) = (1 + z)2.

function is turned on, you can not dynamically move the domain, as a mouse-click in
the domain window is interpreted as sketching instead.

Exploration 0.1. Use ComplexTool to graph several familiar functions. Some
functions you might want to try are listed below.

(a) Graph the image of D under the function f(z) = z
1−z .

(b) Consider the two analytic functions f1(z) = 2z2 − z and f2(z) = 1
2
z2 − z each

defined on D. One of these functions is one-to-one while the other is not.
Graph the image of D under the function f1(z) and under f2(z). Determine
how you can tell by looking at the applet which the function is one-to-one.

(c) Determine the smallest set of values that you can use for theta in a circular
wedge domain to get an image of a complete disk under f(z) = z3.

(d) For the function f(z) = ez, plot the images of vertical and horizontal lines.
Explain your result mathematically.

(e) Determine if there exists a domain D so that the image of D under f(z) =
log(z) covers the plane.

(f) Demonstrate the periodicity of sin(z) using ComplexTool. [Hint: Find a region
to graph (either circular or rectangular), and drag it horizontally to watch its
image change.]

Try it out!
In addition to the action of the applet, you can use the menus across the top to

change various settings. Perhaps most helpful is the option to export screen shots
of the applet. The Export Settings menu allows you to choose which file type to
export, and then you can choose to export the domain, range, or the whole screen. As
you do the exercises and explorations in this text, you will find it helpful to document
the work that you have done by taking careful hand-written or electronic notes.
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CHAPTER 1

Complex Dynamics: Chaos, Fractals, the Mandelbrot Set,
and More

Rich Stankewitz (text and applet design), Jim Rolf (applet coding and design)

1.1. Introduction

This chapter introduces complex dynamics, an area of mathematics that continues
to inspire much ongoing research and experimentation. The goal of this chapter is not
to give a comprehensive or step-by-step approach to this topic, but rather to get the
reader engaged with the general notions, questions, and techniques of the area – but
even more so, to encourage the reader to actively pose as well as pursue their own
questions. To better understand the nature and purpose of this text, the reader should
be sure to read the Introduction before proceeding.

Dynamics, in general, is the study of mathematical “systems” that change over
time, i.e., dynamical systems. For example, consider a particular Newtonian model
for the motion of the planets in our solar system. Here the mathematical “system”
is a collection of variables corresponding to the location and velocity of each of the
planets relative to the sun, and this system changes over time according to Newton’s
laws of motion. Thus, as it turns out, one can describe the process by which the system
evolves (i.e., the rules of how the system changes over time) by differential equations
relating all the system variables to each other and to Newton’s laws of motion.

Many dynamical systems can be described similarly. Such examples include the
population of bacteria in a petri dish, the weather in Muncie, IN (temperature, pres-
sure, and wind velocity, to be more precise), the global temperature of the earth, and
the flight of a paper airplane that you might toss across the room. The models for such
dynamical systems all have a set of system variables, and some rule or set of equations
that describes the process of how these variables change over time. The values of such
variables at any particular moment in time t is called the state of the system at time
t.

Knowing the initial state of the system (the state of the system today), e.g., today’s
location and velocity of each planet, we often wish to analyze the equations which de-
scribe how the system variables change over time in order to the answer such questions
as: What will the state of the system be tomorrow? next week? next year? 100 years
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from now? Will the system in the long run settle into some sort of equilibrium? Will
small changes or errors in our knowledge of the initial state only lead to small changes
or errors in the system at some future time or will such a small initial error lead to huge
errors in the future? Such natural questions about one’s ability to predict future states
of a dynamical system have led to some very useful results of practical importance –
and some very beautiful mathematics.

The famous physicist Richard P. Feynman has a quote regarding a common attitude
towards the important question of a dynamical system’s predictability, or lack thereof
(p. 9, [15]): “Physicists like to think that all you have to do is say, these are the
conditions, now what happens next?” Unfortunately (or fortunately, depending on
your perspective) there are many systems which we cannot adequately “solve” for the
purposes of making useful predictions, and so “what happens next?”, a question taken
to mean asking what happens well into the future, is simply a question that we cannot
answer. Frequently this is due to an inability to find the right pattern, or to “solve”
some differential equation. For these systems there is hope that someone in the future
(maybe you!) will come along and find a clever way to solve such problems. With such
solutions one can then predict the future of these systems and apply their predictions
to the real world. But for a large class of systems there is no hope of ever being
able to predict, with any useful accuracy, what such a system will behave like in the
future. What’s astounding is that, for these systems, it is not a matter of finding the
right clever “solution”. In fact, we sometimes even have what we thought was a great
solution, a formula even, but there is a problem with applying this formula to the real
world.

The heart of this problem is that we have only solved a model, an approximation to
the real world, and as an approximation we have to accept the fact that there will be
some (hopefully small) error built into the setup of our model. The problem creeps in
because of two issues that may arise in certain systems: (1) we can never pinpoint the
initial conditions exactly, and (2) any approximation (or error) to the initial conditions
leads to errors in our long term predictions so large that we cannot have any confidence
at all in our application of our prediction to the real world. Such systems are called
chaotic, a term you will explore and even be asked to mathematically define further
into this text. Even though such systems do not allow for precise answers to some of
the questions scientist like to ask, much can be gained from studying them.

In this chapter we will study certain so-called “simple” chaotic systems that can be
analyzed using the tools of complex analysis. We do this because such systems are of
interest in their own right, but also because it will lead to understanding fundamental
principles of incredibly complicated systems, like those mentioned above. The dynam-
ical systems we focus on are discrete iterative systems, which are in some sense the
easiest kind of dynamical systems. For these, time is represented by a natural number
n, and there is no need to solve a differential equation to determine the system’s state
down the road - one simply needs to repeatedly apply a function. Furthermore, the
states of our systems are described not by a large number of variables (as are needed to
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represent all the positions and velocities of the all the planets), but just a single com-
plex variable. The system is then called iterative because the state zn of the system at
time n will evolve according to the rule zn+1 = f(zn) where f is a complex valued func-
tion. Thus, given an initial state, computing the future state zn is just a simple matter
of computing the values z1 = f(z0), z2 = f(z1) = f(f(z0)), z3 = f(z2) = f(f(f(z0))),
and so on. But don’t be fooled, predicting the behavior of the sequence of states zn
(e.g., deciding if this sequence zn converges or not), an altogether different problem, is
by no means simple!

In this chapter we investigate several types of discrete iterative systems which make
use of tools from complex function theory, including Newton’s method, polynomial
iteration, exponential iteration, and trigonometric iteration. We also consider what
happens when such systems are perturbed by changing a parameter, thus leading us
into what is called bifurcation theory. There are, however, many ways to perturb a
system and in the concluding section we describe two such ways: perturbation with
a pole and random dynamics. We begin, however, with perhaps the most familiar
discrete dynamical system, Newton’s method.

Although we are not studying the above mentioned “real world” dynamical systems
directly, we should keep in mind that these systems exhibit many of the same behaviors
as the systems we do study. In fact, much of the same phenomena we encounter here
have direct analogs in flavor, if not in a strict mathematical sense, in the millions of
dynamical systems you may encounter everyday.

How to use this chapter

The sections of this chapter can, of course, be worked through in the order pre-
sented. However, one wishing to proceed to Section 1.3 more quickly may do so by
skipping all of Section 1.2 with the exceptions of Sections 1.2.3 and 1.2.6. Also, Sec-
tion 1.6 may be skipped by anyone not wishing to investigate the dynamics of tran-
scendental entire maps. Reading the entire chapter and working on several additional
exercises as well as large/small projects would suit a 3 credit hour 15 week semester
reading course. However, one looking for a 2-3 week group or individual project for
the end of the semester in the undergraduate complex variables course could assign
either A) Section 1.2 or B) Sections 1.2.3 and 1.2.6, together with Section 1.3.

Appendix A contains a notation page, as well as a brief exposition of results from
a standard undergraduate complex variables course. The reader should use it for
reference as needed. Appendix B contains a review, and perhaps, a brief introduction
to a few new concepts related to the Riemann sphere. These concepts are very necessary
for this chapter, and so the reader should expect to work through all of Appendix B;
however, it is not necessary that it be completed in full before beginning this chapter.

When directed to use the applets for this chapter, please go to
http://www.bsu.edu/web/rstankewitz/DynamicsApplets.htm. Some of the
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applets are still “under construction”, so please see the notes left on the
above web page.

1. Real Newton Method Applet - is used to visualize the real-valued Newton’s
method.

2. Complex Newton Method Applet - is used to visualize the complex-valued New-
ton’s method.

3. Real Function Iterator Applet - is used for iterating any real function, and seeing
the orbit displayed as a numerical list and as points plotted on a number line.

4. Complex Function Iterator Applet - is used for iterating any complex function,
and seeing the orbit displayed as a numerical list and as points plotted in the complex
plane.

5. Cubic Polynomial Complex Newton Method Applet - is used for exploring the
attracting basins for Newton’s method applied to the family of cubic polynomials
pρ(z) = z(z − 1)(z − ρ).

6. Global Complex Iteration Applet for Polynomials - is used to draw the basin of
infinity for any polynomial.

7. Mandelbrot Set Builder Applet - is used to construct the Mandelbrot set.
8. Parameter Plane and Julia Set Applet - is used for investigating both the pa-

rameter plane and dynamic plane pictures for the families of functions z2 + c, zd +
c, cez, c sin(z), c cos(z), and zd + c/zm.

1.2. Newton’s Method

Solving equations, finding solutions to ordinary differential equations, finding eigen-
values of a matrix - all of these are very important mathematical procedures. However,
each of these can be done exactly1 only in very restrictive cases. When we come across
a situation that is not one of these special cases, often the solution must be approxi-
mated via a numerical method, instead of computed exactly. And often, the numerical
method is iterative in nature.

For example, consider the problem of finding a root of a complex valued function
f(z), i.e., a value α such that f(α) = 0. If the function is the quadratic f(z) =
az2 + bz + c where a 6= 0, then there are two roots given by the quadratic formula
α± = (−b ±

√
b2 − 4ac)/2a. If the function is a cubic or quartic polynomial, then

there also exists formulas (or, more precisely, procedures) for exactly finding the roots.
However, if f(z) is a quintic polynomial f(z) = az5 +bz4 +cz3 +dz2 +ez+h, then there
is not, in general, a procedure that will exactly find any of its roots.2 The same is true
for many so-called transcendental functions such as h(z) = cos z−z and g(z) = ez−4z.

1By computing a value exactly we usually mean being able to express the value in terms of standard
mathematical operations and functions, e.g.,

√
cos(π/12).

2Note that any polynomial p(z) of degree n has, by the Fundamental Theorem of Algebra, n roots in
the complex plane. However, this theorem does not help us to actually find them.
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In such cases, one often must give up on finding exact roots and resort to approximation
methods.

When considering real valued functions of a real variable k(x), there are approxi-
mation methods for root finding based on the Intermediate Value Theorem, such as the
bisection method. When considering a complex valued function f(z), one can some-
times approximate a root of f using Rouche’s Theorem (see [1], p. 294). Specifically, if
f and g are analytic on and inside a simple closed curve C with |f | > |g| on C, then f
and f + g have the same number of zeroes (counting multiplicities) inside C. Hence, if
g can be chosen such that f+g has a known root inside of C, then so must f . However,
even if f is a nice function (e.g., a polynomial), this can often be a difficult method
to implement (and still hope to find good estimates). So we look for a better method.
One of the best methods to apply in either (real or complex) situation is Newton’s
method. Often it allows one to approximate roots with extreme accuracy and extreme
speed, if we have access to a computer. In this section we examine Newton’s method
for both real valued and complex valued functions, with the goal of understanding
when it will succeed and when it will fail.

1.2.1. Real Newton’s Method. If one seeks to find a root α of a differentiable
real valued function f(x) defined for a real variable x, then one can apply Newton’s
method as follows. We start with an initial guess x0 close to α and define x1 =

x0 − f(x0)
f ′(x0)

, x2 = x1 − f(x1)
f ′(x1)

, x3 = x2 − f(x2)
f ′(x2)

, and, in general, xn+1 = xn − f(xn)
f ′(xn)

.

The geometric reasoning behind Newton’s method, as illustrated in Figure 1.1, is
as follows: Given an approximation x0 to the root α, one considers a linear function
f̃(x) which approximates the function f(x) near x0. The best linear approximation in

this case will be given by the first order approximation f̃(x) = f(x0) + f ′(x0)(x− x0)
whose graph is the tangent line L to the graph of f(x) at the point x0. The root of

the approximating function f̃(x), i.e., the x-intercept of L, is then the definition of x1.

Exercise 1.1. Before going on, compute f̃(x) for f(x) = x3 − 2x and x0 = 2 as

in Figure 1.1. Then use f̃(x) to find the equation of the tangent line L and also check
that x1, given by the above formula, is the x-intercept of L. Try it out!

Exercise 1.2. Verify that for general f(x) the formula given for f̃(x) has a root
at x1 as defined above. Try it out!

In general (as illustrated in Figure 1.1), we expect that this root x1 of f̃(x) will be
a better approximation to α, the sought after root of f(x), than the initial guess x0.
This process is repeated now using x1 as the initial guess to generate a new, hopefully
improved, approximation x2. We then iterate this process, i.e., apply this procedure
over and over again, to generate successive approximations xn, for n = 0, 1, 2, . . . . For
various reasons it will be useful for us to express this process in terms of iteration of
the following function.

Definition 1.3. The function F (x) = x− f(x)
f ′(x)

is called the Newton Map for f .
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Figure 1.1. An illustration of the first step in Newton’s method where
f(x) = x3 − 2x and x0 = 2.

Thus, the sequence of iterates F (x0), F (F (x0)), F (F (F (x0))), ... is the same as the
sequence xn generated above, and it will be proven that xn converges to the sought after
root α whenever our original guess x0 is “close enough” to α (see Proposition 1.21).
Of course, this issue of what does it mean to be “close enough” is very important. We
will come back to this later (see Remark 1.24), but we first explore this method with
some examples.

Example 1.4. Consider f(x) = x2 − 3x + 2 = (x − 1)(x − 2), which clearly has
roots at 1 and at 2. Let’s apply Newton’s method to see how it works. We first
compute the Newton Map for f which is F (x) = x − x2−3x+2

2x−3
= x2−2

2x−3
. If we make

an initial guess x0 = 0.5, then using your calculator (do this now) you can compute
x1 = F (x0) = 0.875, x2 = F (F (x0)) = F (x1) = 0.9875, and x3 = F (F (F (x0))) =
F (x2) = 0.99984756. Since using the calculator is drudgery and computers are so
efficient at such tasks, we have created a Real Newton Method Applet for you to use.
Use this now to confirm the calculations above and then, by taking many iterates of
the Newton map using this applet, convince yourself that with the initial value (a term
we use interchangeably with the terms seed value and starting point) x0 = 0.5, we have
xn → 1. Try it out!

Now use the Real Newton Method Applet to determine the behavior using an initial
guess x0 = 3. Try it out!

What you learned above is that some initial guesses for x0 find the root 1 (i.e.,
have the corresponding xn limit to 1) while other initial guesses find the root 2. This
begs the question: Given an initial guess x0, how do we know which root it will find?

Exploration 1.5. Make an intelligent prediction about which seed values for x0

in Example 1.4 will find the root 1 and which will find the root 2. Are there any seed
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values for which Newton’s method fails to find either root? Experiment with the Real
Newton Method Applet to test your prediction. Try it out!

Exploration 1.6. Using the function f(x) = x(x−1)(x+1) determine the Newton
Map for f and then analyze Newton’s method using different initial guesses for x0 in
the Real Newton Method Applet. Describe (as best as you can) the set of seed values
for x0 which find the root -1, and then do the same for for the roots 0, and 1. Try it
out!

1.2.2. Global Picture of Real Newton Method Dynamics. Identifying how
the orbits of all seed values behave, as you attempted in Explorations 1.5 and 1.6,
is what we mean by looking at the global dynamics of Newton’s method. In some
cases, this can be done without too much work, but in other cases, it turns out to be
very complicated. In order to help with one labor intensive approach to this problem,
use the Graph basins of attraction feature in the Real Newton Method Applet to
display by using different colors which initial guesses will “find” which roots of f(x)
when Newton’s method is applied.

Exercise 1.7. For each of Explorations 1.5 and 1.6, use the Real Newton Method
Applet to get a one picture snapshot of what the dynamics of Newton’s method are
for all starting values. Try it out!

What you see when using the Real Newton Method Applet with f(x) = (x−1)(x−2)
is, perhaps, what one might expect. The initial values which are closer to the root at
1 will find 1, and the initial values which are closer to the root at 2 will find 2. One
should also check that Newton’s method fails when the initial value x0 = 1.5 is used.
Analytically we see this in the formula because f ′(1.5) = 0 leads to a zero in the
denominator when one attempts to calculate x1. Geometrically we see this by noting
that the tangent line at x0 = 1.5 becomes horizontal, never crosses the x-axis, and thus
leaves x1 undefined. We can also understand this dynamically, at least in a heuristic
way. The point 1.5 separates those points which are pulled or attracted to 1 and those
points which are attracted to 2, and so by an informal use of symmetry, it would seem
that something must fail to work out at exactly x0 = 1.5.

Though this reasoning is informal, it does seem to capture an important idea at
play here. As a rule, we encourage the reader to often make use of and even create
your own heuristic ideas to explain or describe mathematics. Sometimes it’s hard
to be formal with all of your mathematical ideas. But don’t let that stop you from
thinking of and sharing great mathematical thoughts, even if you can’t make them
precise or formal. Some of the best mathematics, if not all mathematics, starts off as
raw unformed ideas with no foundation whatsoever in formalism. Later, one can (and
should) try to be formal with their ideas.

The case when f(x) = x(x− 1)(x+ 1) is much different from the quadratic case. It
is not simply the case that a seed for Newton’s method will find the root it is nearest
to. For example, x0 = 0.55 will find the root at -1, even though it is closer to both
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the roots at 0 and 1. Indeed, in this case the set of initial guesses on the real line is
divided into intricate regions of points that find the various roots. In fact, if you zoom
in near the point x = 0.4472135951871958 you will see a cascade of ever shrinking and
alternating colored intervals of blue and turquoise (see Figure 1.2). It turns out, in
fact, that this pattern goes on forever (see Small Project 1.8). Use the Zoom feature
of the Real Newton Method Applet to observe this.

Figure 1.2. On the left is a cascade of Intervals in the global picture
of Newton method dynamics for f(x) = x(x−1)(x+1), and on the right
is a magnification centered at x = 0.4472135951871958.

Small Project 1.8. Prove the existence of the infinite cascade of ever shrinking
and alternating colored intervals of blue and turquoise found in Figure 1.2. Hint: First
use the applet to understand what each of these colored intervals means dynamically,
and then try to give a proof for what you witness in the applet.

So we see that Newton’s method gets really complicated to understand globally
when we switch from a quadratic to a cubic, specifically from f(x) = (x− 1)(x− 2) to
f(x) = x(x− 1)(x+ 1). This begs the questions: Why? How? Is there a way to know
when a system will necessarily be simple or complicated ahead of time?

Answers will come from taking the advice of Jacques Hadamard who once said,
“The shortest path between two truths in the real domain passes through the complex
domain.” So let’s look at Newton’s method applied to complex valued functions of a
complex variable. There are many wonderful theorems and structures at our disposal
when we consider complex analytic maps instead of mere real valued differentiable
maps. Let’s take advantage of some of these.

Before we investigate Newton’s method applied to complex valued functions, how-
ever, we first take some time to develop some important concepts that we’ll need, not
just to understand Newton’s method, but also any kind of iterative dynamics.
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1.2.3. Orbits, Examples, and Fixed Points. The general questions we con-
sider in iterative dynamical systems concern describing and predicting what we shall
call orbits. Let g be a function mapping its domain set domain(g) into itself3, which
we take to be a subset of the Riemann sphere C.4 We then denote the nth iterate of
g by gn. Thus gn(z) = (g ◦ · · · ◦ g)(z) where the function g is applied n times, e.g.,
g3(z) = g(g(g(z))). Note that in this chapter g3(z) does NOT denote the value g(z)
raised to the third power, which would instead be denoted [g(z)]3. We also define g0

to be the identity map, i.e., g0(z) = z. Furthermore, for any starting (seed) value
z0 ∈ domain(g), the sequence of points zn = gn(z0), for n = 1, 2, 3 . . . , is called the
orbit of z0 (under the map g).

When trying to predict the behavior of the evolution of a seed value, we inquire
about such things as: Does the orbit converge, fall into a repeating pattern, show no
signs of following any pattern at all? What happens for different starting points z0?
Do we get the same (or even similar) behavior if we choose starting points near z0?
We keep these questions in mind as we consider the following examples.

Example 1.9. Say f(x) = ex for all x ∈ R. Thus the iterates are f 0(x) = x,

f 1(x) = ex, f 2(x) = ee
x
, f 3(x) = ee

ex

, and so on. Experiment with this on the Real
Function Iterator Applet to convince yourself that fn(x)→ +∞ no matter what x ∈ R
we start with. Additional Exercise 1.158 asks for a formal proof.

Example 1.10. Let f(x) = sinx where x ∈ R is given in radians. Experiment
with this on the Real Function Iterator Applet to convince yourself that fn(x)→ 0 for
any real number x. Additional Exercise 1.159 asks for a formal proof.

Example 1.11. Let f(x) = cos x where x ∈ R is given in radians. Experiment with
this on the Real Function Iterator Applet to convince yourself that fn(x)→ 0.739085....
for any real number x. Additional Exercise 1.160 asks for a formal proof.

Example 1.12. Let f(x) = x2 − 1 and x0 = 0.9. Use the Real Function Iterator
Applet to convince yourself that the tail end of the orbit xn = fn(0.9) appears to
oscillate back and forth between 0 and 1.

Example 1.13. Let f(x) = 4x(1−x) and x0 = 0.2. Use the Real Function Iterator
Applet to see that the orbit xn = fn(0.2) appears to have no patten to it at all, even
after the first 25,000 orbit points are plotted. Zoom in on the orbit points to see how
it appears that they are dense in the interval [0, 1], that is, for ever open interval (a, b)
which meets [0, 1], there is some orbit point xn ∈ (a, b).

Though many types of behavior can be exhibited in orbits, we wish to focus on one
special type for the moment. In each of Examples 1.9, 1.10 and 1.11, we see that there
is a point which “attracts” the orbits of many points in the domain of the function.

3The domain set of a function g is the set of possible inputs and is denoted domain(g).
4The Riemann sphere C is the natural setting for the functions in this chapter, and so the reader
needs to be familiar with all the material in Appendix B.
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This is a fundamental notion (and is at the heart of what we witnessed in the Newton’s
method examples) and so we provide the following definition.

Definition 1.14. (Attracting Basin) Let w ∈ C. For any complex valued
function g mapping its domain set into itself, we define the attracting basin of w (also
called basin of attraction) under the function g, to be the set Ag(w) of all seed values
whose orbit limits to the point w, i.e., Ag(w) = {z ∈ domain(g) : gn(z)→ w}.

Note that the point w in the above definition does not necessarily have to lie
domain(g) (as in Example 1.9). However, if w ∈ domain(g) and g is continuous (as in
Examples 1.10 and 1.11), then the following result shows that w must necessarily be a
fixed point of g, i.e., g(w) = w, whenever Ag(w) is non-empty.

Theorem 1.15. Let f : domain(f) → domain(f) be a continuous map where
domain(f) ⊂ C. Suppose a and x0 are both in domain(f) and fn(x0) → a. Then
f(a) = a.

Proof. Since the sequence fn(x0) → a and f is continuous at a, we must have
f(a) = f(limn→∞ f

n(x0)) = limn→∞ f(fn(x0)) = limn→∞ f
n+1(x0) = a. �

Fixed points play a major role in dynamical systems and so we will be careful to pay
special attention to them whenever they arise. In particular, we note from our previous
examples that roots of f always appear to be fixed points of the corresponding Newton
map F (z), a fact we formally prove in Proposition 1.21. Additional Exercise 1.162 will
shed some light on the extent to which the converse holds.

We call the fixed points in Examples 1.10 and 1.11 attracting fixed points because
seed values near the the respective fixed points will iterate toward the respective fixed
points. In order to be more precise we give a formal definition, but before we do,
we remind the reader of a key relationship between the Euclidean metric on C and
spherical metric σ on C, which is stated in Proposition B.7 in Appendix B. Namely,
for points z, w ∈ C, we have |z| > |w| if and only if σ(z,∞) < σ(w,∞).

Definition 1.16. (Attracting Fixed Point) Let f be a map from its domain
set Ω ⊂ C into itself (note that Ω could be a subset of R).

(a) We call a (finite) fixed point a ∈ C an attracting fixed point of f if there exists a
neighborhood U of a such that for any point z ∈ Ω∩U \{a}, we have |f(z)−a| < |z−a|,
i.e., the action of f is to move each point in Ω ∩ U \ {a} closer to a.

(b) Suppose f(∞) = ∞. We call ∞ an attracting fixed point of f if there exists
a neighborhood U ⊂ C of ∞ such that for any point z ∈ Ω ∩ U \ {∞}, we have
|f(z)| > |z|, i.e., the action of f is to move each point in Ω∩U \ {∞} closer to ∞ (as
measured by the spherical metric).

In Definition 1.16(a) we used the Euclidean metric to describe when the action of f
moves points closer to a, but we could have equivalently used the spherical metric for
this purpose by writing σ(f(z), a) < σ(z, a). The reader should become comfortable
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with understanding when the particular metric used in a definition or result could
equivalently be changed to another standard metric. We will often make use of the
simplest metric at our disposal, relying on the reader to know when another metric
could also be used. A good way to try to become comfortable with this concept is
to frequently consider how sets appear when visualized in the flat plane C and in the
sphere C. The reader will find an exposition of this material in Appendix B.

If a is an attracting fixed point of a continuous map f , then there necessarily exists
some neighborhood U of a such that U ⊂ Af (a). The proof of this does not require that
f be (real or complex) differentiable at a, but without such a differentiability condition
the proof is more technical. Since we are only interested in specific differentiable
functions in this chapter, we provide the proof only for the case that |f ′(a)| < 1 (see
Theorem 1.18 below).

Remark 1.17. It is worth noting the curious fact that it may be the case that f
has a fixed point a′ such that Af (a

′) contains a whole neighborhood of a′ without a′

being attracting according to Definition 1.16 (see Example 1.49).

Theorem 1.18. Suppose Ω ⊂ R or Ω ⊂ C. Let f : Ω → Ω be such that f(a) = a
and |f ′(a)| < 1. Then a is an attracting fixed point of f . Furthermore, there exists
some ε > 0 such that 4(a, ε) ∩ Ω ⊂ Af (a).

Note that the proof given below applies equally well to both cases Ω ⊂ R or Ω ⊂ C,
where f ′ denotes, respectively, the real or complex derivative.

Proof. Since |f ′(a)| < 1 we may select some β such that |f ′(a)| < β < 1. Since,

by definition, f ′(a) = limz→a
f(z)−f(a)

z−a , there exists ε > 0 such that for any z ∈ Ω \ {a}
for which |z − a| < ε, we have∣∣∣∣f(z)− a

z − a

∣∣∣∣ =

∣∣∣∣f(z)− f(a)

z − a

∣∣∣∣ < β.

Hence for z ∈ Ω with |z − a| < ε, we know that |f(z) − a| ≤ β|z − a| < ε. This says
that for points z near a (within a distance of ε), the function f moves z closer to a by
a factor of at least β < 1. Hence a is an attracting fixed point by Definition 1.16. If we
then iterate the map f at z, generating the orbit of z, we know that each application
of f takes the corresponding orbit point a step closer to a (by a factor of β). Hence
we may use induction to show that |fn(z)− a| ≤ βn|z− a| ≤ βnε→ 0 whenever z ∈ Ω
with |z − a| < ε. Hence 4(a, ε) ∩ Ω ⊂ Af (a). �

Remark 1.19. Note that the smaller the value of |f ′(a)| (and hence the smaller
the value of β may be chosen) in the above theorem, the faster the convergence is. In
particular, if f(a) = a and f ′(a) = 0, then the β in the above proof can be taken to
be extremely small leading to very fast convergence. Hence, in such a case the fixed
point a is called super attracting.
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Example 1.20. Use the Real Function Iterator Applet to compare the rates of
convergence given by the following maps. For f(x) = sinx consider the rate at which
fn(1

2
) converges to 0. For g(x) = x2 consider the rate at which gn(1

2
) converges to 0. For

h(x) = 1
2
x consider the rate at which hn(1

2
) converges to 0. Now compare the absolute

value of the derivative at each function’s fixed point and note the correspondence with
Remark 1.19. Try it out!

By Theorem 1.18, in order to check if a fixed point is attracting, one can simply
check the absolute value (or modulus) of the derivative at the fixed point. Note that
in Example 1.11 one has |f ′(0.739085....)| < 1 which proves that this fixed point is
indeed attracting. When considering the Newton’s method dynamics, it appears, in
each of the cases we explored experimentally, that the roots of f are attracting fixed
points for the Newton map F . In fact, this is exactly the case, and we will prove this
in Proposition 1.21 by showing that |F ′| < 1 at each root of f . But before we do, we
give a word of caution.

We must be a bit careful with the use of Theorem 1.18 since it is not, in general,
an if and only if statement. Consider the fixed point a = 0 for the map f(x) = sinx
in Example 1.10. Here f ′(0) = 1, but this function as a real map, defined only for all
real numbers x, does have a genuine attracting fixed point at a = 0 (see Additional
Exercise 1.159). However, if we consider the complex map g(z) = sin z, defined for all
complex numbers z, the fixed point a = 0 is no longer attracting. Indeed, gn(±iε)→∞
for any ε > 0. The reader is asked to prove this formally in Additional Exercise 1.161.
However, the reader can see this illustrated by using the Complex Function Iterator
Applet. Try it out!

1.2.4. Complex Newton’s Method. We now return to our investigation of the
dynamics of Newton’s method when we allow our variables and output values to be
complex valued. As we saw with many earlier examples, our experimentation with the
applets suggest that the Newton map always has an attracting fixed point at each root
of f . We can now carefully state and prove this fact in both the real and complex
cases.

Proposition 1.21. (Attracting Property of Newton’s Method) Given any
non-constant real analytic5 or complex analytic function f with a root at α ∈ C, the
point α is an attracting fixed point of the Newton map F and thus there exists r > 0
such that all points within a distance r of α are necessarily in the set AF (α). Put
another way, for all initial values z0 that are close enough to α (specifically, within
a distance r) the successive approximations F n(z0) converge to α, i.e., starting from

such a z0 and defining zn+1 = zn − f(zn)
f ′(zn)

, we must have zn → α.

5A real valued function of a real variable is said to be real analytic if it possesses derivatives of all
orders and agrees with its Taylor series in a neighborhood of every point in its domain set.

12



Proof. We consider the case that f(z) is complex analytic, noting that the same
proof applies when f is real analytic. In light of Theorem 1.18, it suffices to show that

for F (z) = z − f(z)
f ′(z)

, we have |F ′(α)| < 1. We first note that F ′(z) = f ′′(z)f(z)
(f ′(z))2

.

If f ′(α) 6= 0, then clearly F ′(α) = 0 (since f(α) = 0). However, if f ′(α) = 0, that
is, α is a multiple root of f , then more care must be taken. Suppose this is the case
and express f(z) = (z − α)kh(z) where h(α) 6= 0, and k ∈ N is the multiplicity of

the root of f at α (see Lemma A.21). Since f ′(α) = 0, the quotient f(z)
f ′(z)

appearing

in the definition of F (z) is not formally defined at α. However, we can overcome this

difficulty by showing that f(z)
f ′(z)

has a removable singularity at α. Indeed, note that

f(z)

f ′(z)
=

(z − α)kh(z)

k(z − α)k−1h(z) + (z − α)kh′(z)
=

(z − α)h(z)

kh(z) + (z − α)h′(z)

which equals 0 for z = α. This lets us define F (α) = α even in the case that f ′(α) = 0.
We leave it to the reader to use the ideas from above to show that F ′(z) also has a

removable singularity at α which, in particular, allows us to define F ′(α) = k−1
k

. Since
|F ′(α)| < 1 we have completed the proof. �

Exercise 1.22. Provide the details in the above proof that F ′(α) = k−1
k

when f
has a root of order k. Also note that α is a super attracting fixed point of the Newton
map F if and only if k = 1, i.e., α is a simple root6 of f . Try it out!

Exploration 1.23. Convergence rates for Newton’s method. Let f(z) and g(z) be

analytic, and consider the corresponding Newton Maps Ff (z) = z − f(z)
f ′(z)

and Fg(z) =

z− g(z)
g′(z)

. Suppose f has a root at α of order k and g has a root at α of order m, where

k < m. The rate of convergence of F n
f near α is faster than the rate of convergence

of F n
g near β since |F ′f (α)| = k−1

k
< m−1

m
= |F ′g(α)| (recall Remark 1.19 which relates

the rate of convergence to the derivative of the attracting fixed point). Let’s explore
this in the real variable case with the functions f(x) = xk and g(x) = xm. Use the
Real Newton Method Applet to visualize how the degree of the root of f (respectively,
g) influences the tangent lines used in Newton’s method. In particular, note the effect
the degree of the root has on the curvature of the graph near the root and how this
provides a visual way to understand the relative rates of convergence of F n

f and F n
g

near α. Try it out!

Remark 1.24. We see that the value r in Proposition 1.21 gives us a lower bound
on how close an initial guess z0 must be to an actual root α for Newton’s method to be
guaranteed to find α. Because of this, we call any such r a radius of convergence
(for F and α) and the corresponding circle C(α, r) = {z : |z−α| = r} is called a circle
of convergence. In practice, it is very useful to gauge r so that we can guarantee the

6It is interesting to note that the Newton map of f(z)/f ′(z) (as opposed to the Newton map of f(z))
always has super attracting fixed points at the roots of f regardless of the order of the root of f (see
Additional Exercise 1.163).
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success of Newton’s method. There is no universal estimate for r that always works
since it very much depends on the particular map f being used (see Exercise 1.164).
However, for certain classes of maps f we can provide useable estimates for r (see
Exercise 1.165 and Small Projects 1.166 and 1.167).

Let us now explore some specific examples using complex functions.

Example 1.25. For constants α, β ∈ C, consider the map f(z) = (z − α)(z − β)

which has roots at α and β. The Newton Map for f is then F (z) = z2−αβ
2z−(α+β)

.

Exploration 1.26. Set α = 0 and β = 1 + i in Example 1.25 and consider the
iterates of the Newton Map F with starting values z0 = 2, z0 = −3−2i, and z0 = i+1,
which you can compute using the Complex Newton Method Applet. As expected we
see that different starting values for z0 find different roots of f(z). Can you make a
guess as to which seed values will find which root? Try to determine if there are there
any seed values z0 for which Newton’s method fails to find either root? Experiment
with the Complex Newton Method Applet to test your predictions. Try it out!

Exploration 1.27. Using the function f(z) = z3−1, determine F (z) the Newton
Map for f and then analyze Newton’s method using different initial guesses for z0 in
the Complex Newton Method Applet. Describe (as best as you can) which seed values
z0 will find which of the roots 1, e2πi/3, and e−2πi/3. Thus we are asking you to describe
(as best as you can) the attracting basins AF (1), AF (e2πi/3), and AF (e−2πi/3). Try it
out!

1.2.5. Global Picture of Complex Newton Method Dynamics. As with
the real valued maps, we wish to achieve an understanding of the global dynamics of
Newton’s method, i.e., an understanding of how the orbits behave for all seed values.
Thus we employ the Graph basins of attraction feature of the Complex Newton
Method Applet, which uses different colors to display which initial guesses will “find”
which roots, and so gives us a one picture snapshot of the dynamics of Newton’s
method.

Exercise 1.28. Use the Complex Newton Method Applet to view the basins of
attraction for the Newton maps in Explorations 1.26 and 1.27. Try it out!

Looking carefully at the picture of the two attracting basins corresponding to Ex-
ploration 1.26, it appears that the boundary between these regions is a straight line;
points on one side look closer to the root of f on that side than to the other root.
That is, this boundary appears to be the perpendicular bisector (denoted below by L)
of the line segment from α to β. This notion suggested by the picture is actually true
(pictures, however, can sometimes be misleading) and we can prove it using a very
useful technique of global conjugation.

1.2.6. Global Conjugation. One learns in Linear Algebra that a change of basis
can be used to, among other things, greatly facilitate certain calculations, procedures,
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and overall give you a better understanding of the field. In particular, the notion of
similarity of matrices plays a key role (recall, matrices A and B are called similar when
there is an invertible matrix P such that A = PBP−1). A direct analog of this idea
often used in dynamics is a type of change of coordinates provided by what we call
conjugation.

Definition 1.29. Let φ be a Möbius7 map. We say that rational 8 maps f and g
are globally conjugate (by the map φ) if g = φ ◦ f ◦ φ−1.

Often the point of conjugating a map f to a map g is that g is easier to work with
than f . And, as we will see, the information we usually want from f can be quickly
obtained by studying the simpler map g. In particular, we note that the iterates are
related as such gn = (φ◦f ◦φ−1)◦(φ◦f ◦φ−1)◦· · ·◦(φ◦f ◦φ−1)◦(φ◦f ◦φ−1) = φ◦fn◦φ−1.
Hence φ in this way transfers information between the iterates of f and the iterates of
g. In particular, fixed points and their corresponding derivatives are transferred in the
following way.

Exercise 1.30. Suppose maps f and g are globally conjugate by the Möbius map
φ, i.e., g = φ ◦ f ◦φ−1. Prove that f(a) = a if and only if g(φ(a)) = φ(a). Furthermore
prove that if a, φ(a) ∈ C, then we also have f ′(a) = g′(φ(a)) when f(a) = a. Try it
out!

Also, see Additional Exercises 1.168–1.171.

Remark 1.31. There is also a very useful technique called local conjugation which
can greatly simplify calculations in many situations. In fact, an important question
is when we can locally conjugate a map of the form f(z) = a1z + a2z

2 + . . . having
a fixed point at 0 to another map which is simply z 7→ a1z. This is called linearizing
the map f near 0. It can always be done when 0 < |a1| 6= 1, but only sometimes
when |a1| = 1. The interested reader can pursue such results and their proofs in the
literature (e.g., [1, 2, 23]).

1.2.7. Analysis of the Newton map of a quadratic polynomial. We now
use this powerful global conjugation technique greatly simplify the analysis of the

Newton map F (z) = z2−αβ
2z−(α+β)

in Example 1.25. We first choose a Möbius map which

sends α and β to 0 and ∞, respectively, and then analyze the much simpler map
obtained by conjugation. In particular, the map φ(z) = z−α

z−β conjugates F to the map

g(z) = φ ◦ F ◦ φ−1(z) = z2, a calculation we leave to the reader. We also leave it to
the reader to show that gn(z) = z2n .

Our goal is to show that if z ∈ C is closer to α than to β, then F n(z) iterates to
α, i.e., |z − α| < |z − β| implies F n(z) → α. Let |z − α| < |z − β| and note that this
implies |φ(z)| < 1. Since |gn(φ(z))| = |φ(z)2n| = |φ(z)|2n → 0, we have gn(φ(z)) → 0.

7Recall that a Möbius map is a map of the form z 7→ az+b
cz+d where ad− bc 6= 0.

8Recall that a rational map is a quotient of two polynomials.
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By the conjugation property above we have F n(z) = φ−1(gn(φ(z))) → φ−1(0) = α.
Thus we have shown that the points z ∈ C which are closer to α than to β are indeed
in AF (α).

Exercise 1.32. Show that the points z ∈ C which are closer to β than to α are in
AF (β). Try it out!

We illustrate the conjugation used above by the following diagram, called a com-
mutative diagram because each of the maps φ ◦ F and g ◦ φ from the upper left to the
bottom right are equal.

β

α

C(0, 1)

0

φ

β

α

C(0, 1)

0

φ

g(z) = z2

F (z)

LL

Figure 1.3. Commutative diagram for global conjugation of Newton

map F (z) = z2−αβ
2z−(α+β)

.

Note how the points α and β are moved by φ to the points 0 and ∞, and that the
line L in the top pictures is transformed to the unit circle in the bottom pictures. By
using this conjugation, we are able to analyze the relatively simple dynamics of g to get
corresponding information about the dynamics of F , in particular, Af (α) = φ−1(Ag(0))
and Af (β) = φ−1(Ag(∞)).

16



Let’s return to the question of whether Newton’s method can fail in this example.
Are there initial values for which the Newton’s method orbit never finds any root of
f? In Example 1.5, we saw that Newton’s method fails (or more properly, the formula
for Newton’s method fails) when an initial value x0 is such that f ′(x0) = 0. This,
what we term, an analytic obstruction of having a zero in the denominator, however,
is overcome when one allows ∞ to take its equal place with all the values in the
Riemann Sphere C. In particular, even though in Example 1.25, we have f ′(α+β

2
) = 0,

the Newton Map gives F (α+β
2

) = ∞ (see Section B.4 for a review of a discussion on

functions defined at ∞). Also, since F (∞) =∞, we see that an initial value z0 = α+β
2

will never find either root α or β because this seed generates the following sequence
of Newton “approximations”: α+β

2
,∞,∞,∞, . . . . Note that the actual obstruction for

the success of Newton’s method starting with seed value z0 is not that the function F
cannot be appropriately defined at z0, but that such a definition forces the map F to
never iterate z0 to a root of f(z) (since F n(z0) = ∞ for all n ≥ 1). The seed α+β

2
is

not the only complex number which fails to find a root of f(z) though. We can show,
again with he help of the conjugation above that the boundary line L which divides
AF (α) from AF (β) consists of exactly those points in C for which Newton’s method
fails to find either root. As witnessed in the real variable examples, we can understand
this dynamically since this line divides those points which are pulled or attracted to α
and those points which are attracted to β. And so by an informal use of symmetry, it
would stand to reason that something must fail to work out for points exactly on this
line. Of course, we have not proven this fact carefully yet. We have only looked at
compelling computer generated evidence, which, as is a common theme in this chapter,
is always to be viewed with a bit of skepticism.

A formal argument can be made, however. For a point z ∈ L, we have |φ(z)| =
|z−α|
|z−β| = 1 and thus by the conjugation property above we have |gn(φ(z))| = |φ(z)2n| =
|φ(z)|2n = 1 for all n ∈ N. Hence for all n ∈ N, we see that F n(z) = φ−1(gn(φ(z))) ∈
φ−1(C(0, 1)) = L ∪ {∞}. In particular, F n(z) neither limits to α nor β.

Exercise 1.33. The above analysis applies to any monic quadratic polynomial
p(z) with distinct roots, but what if the leading coefficient is not 1? Also, what if the
quadratic polynomial p(z) has a double root instead of two distinct roots? Analyze
what happens in these situations. Try it out!

1.2.8. Analysis of the Newton map of a cubic polynomial. The behavior
found in Exploration 1.27 with a cubic function for f is far more complicated than
the quadratic case. It is not simply the case that a starting point under Newton’s
method will find the root to which it is nearest. If it were, then the picture of the
global dynamics would look like the picture in Figure 1.4. However, the better picture
to represent the actual dynamics is given in Figure 1.5, showing that the set of initial
guesses in the complex plane is divided into very intricate regions of points that find
the various roots.
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e−2πi/3

1

e−2πi/3

Figure 1.4. A reasonable (but false) guess for the picture description
of the global dynamics of F (z), the Newton Map for f(z) = z3 − 1.

Figure 1.5. A more accurate picture of the global dynamics of F (z),
the Newton Map for f(z) = z3 − 1 (with magnification on the right).
Here the red represents AF (1), the turquoise represents AF (e2πi/3) and
the blue represents AF (e−2πi/3).

Let’s experiment with the zoom feature of the Complex Newton Method Applet to
investigate this. In particular, notice that when you zoom in on any point that is on
the boundary of one colored region (attracting basin), you always find tiny “bulbs” of
the other two colors (attracting basins) nearby. In fact, this happens no matter how

18



much you zoom in! This shocking feature is why we call such sets fractals.9 In this
case, at a large scale there are extremely tiny bulbs (smaller than a single pixel) that
are not revealed in the picture unless one zooms in far enough to see them.

So again we see that Newton’s method became very complicated to understand
globally when the original function f(z) changed from a quadratic to a cubic map.
Earlier we posed the questions: Why? How? Is there a way to know when a system
will necessarily be simple or complicated ahead of time? With the use of our deep
knowledge and fancy tools in complex analysis we can give some good reasons why the
pictures, and hence the dynamics they represent, must be so complicated. We first
remind ourselves of some key concepts.

Definition 1.34. The boundary of a set E in C is ∂E = E ∩ C \ E, which is
equal to the set of points z ∈ C which have the property that every open disk (in the
spherical metric) 4σ(z, r) intersects both E and the complement of E no matter how
small r > 0 is.

We can now describe the fractal features we already observed in Figure 1.5 by
saying ∂AF (1) = ∂AF (e2πi/3) = ∂AF (e−2πi/3). In fact, we see this same phenomenon
in Example 1.4 and Explorations 1.6 and 1.26 as well when we consider the complex
versions of all these maps. It turns out that, in general, all attracting basins of a
Newton Map F must share the exact same set of boundary points. Specifically, we
have the following Common Boundary Condition.

Theorem 1.35. (Common Boundary Condition) Let f(z) be an analytic func-

tion such that its Newton Map F (z) = z − f(z)
f ′(z)

is a rational map. If w1 and w2 are

roots of f(z), then ∂AF (w1) = ∂AF (w2).

Proof. This result can be proven using Proposition 1.21 and the forthcoming
Theorem 1.59. �

Let’s examine how Theorem 1.35 forces the dynamics illustrated in Figure 1.5 to
necessarily be complicated. According to Proposition 1.21 there exists some r > 0
such that 4(1, r) ⊂ AF (1),4(e2πi/3, r) ⊂ AF (e2πi/3), and 4(e−2πi/3, r) ⊂ AF (e−2πi/3).
And so starting from the picture shown in Figure 1.6 we need to consider how to color
in the rest of the points in AF (1), AF (e2πi/3), and AF (e−2πi/3) with red, turquoise,
and blue, respectively, while also being certain to make sure that the boundary of each
color exactly matches the boundary of the other two colors. A moment’s thought tells
us that this Common Boundary Condition forces the picture to necessarily be very
complicated, and also rules out having the global dynamics behaving as suggested by
Figure 1.4 (since a point on the negative real axis in that picture lies on the boundary
of only two of the three attracting basins).

9A fractal is a set which when you zoom in reveals new features not seen from the coarse larger scale
picture.
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4(1, r) ⊂ AF (1)

4(e2πi/3, r) ⊂ AF (e2πi/3)

4(e−2πi/3, r) ⊂ AF (e−2πi/3)

·
0

Figure 1.6. Consequence of the Attracting Property of Newton’s
Method (Proposition 1.21).

This Common Boundary Condition is also at the heart of what we will learn to call
chaos in the dynamics of Newton’s method. Consider any point z on the boundary of
any basin and then draw a tiny disk B around it. According to the Common Boundary
Condition, this tiny disk B must contain all three colors in it. So if we wish to determine
the fate of the orbit of z with a computer, what we will find is that any tiny error (like
roundoff error) from inputting the coordinates of z could lead to drastically different
results. We see that by changing z even by the slightest amount, we can change the
orbit of z tremendously as z could slip into any of the red, turquoise, or blue regions.
So with such a point z, we see that the behavior of the orbit in the long run will be
quite different even if we change z only a little. This is the essence of what we call
chaos. Although a more formal and more thorough understanding of chaos will come
later in the text, use this understanding of this notion to explain why each point on
the line L that appeared in the analysis of the quadratic Newton method case has this
behavior. Also, explain why each point in one of the attracting basins (which has a
tiny disk of all the same color) is NOT such a point. Try it out!

Remark 1.36. We mention here a remarkable fact about sets which share a com-
plicated boundary. The three sets AF (1), AF (e2πi/3), and AF (e−2πi/3) above share the
same boundary because each set is broken up into an infinite number of pieces which
are then arranged in the complicated fractal pattern you see in Figure 1.5. However,
it is true that three open sets (or even n open sets for any n ∈ N) can all share the
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same boundary set and have the property that each set is connected! Such sets are
complicated indeed. The interested reader is encouraged to read about the Lakes of
Wada in [16], p. 143.

Let us now consider the question of whether or not there are any starting (seed)
values for which the Newton Map for f(z) = z3 − 1 fails to find a root of f(z). In
all the previous examples there always exist such points, however, these were, in some
sense, relatively few. You might guess that each point in ∂AF (1) = ∂AF (e2πi/3) =
∂AF (e−2πi/3) is such a point...and you would be right. Heuristically, we can use our
intuition to imagine that such points fail to find any root since any such point is, in
some sense, being pulled or attracted by each of the three different roots with equal
force. You are asked to prove this in Additional Exercise 1.172. Note however, that
even assuming the result that each point in ∂AF (1) = ∂AF (e2πi/3) = ∂AF (e−2πi/3) fails
to iterate under F (z) to any of the roots of f(z), we still do not necessarily know the
fate of ALL starting points. Specifically, we wonder if it is true that all points in C lie
in either one of the attracting basins or on the common boundary of these sets. We
pose this and a related question as follows.

1. Is there a point not in ∂AF (1) = ∂AF (e2πi/3) = ∂AF (e−2πi/3) which fails to find
any root of f(z)?

2. Can there be a whole open disk of such points?

When considering the particular map f(z) = z3−1 (or any of the maps f mentioned
thus far in this chapter) and its related Newton Map F (z), the answer to both of these
questions is no (see Additional Exercise 1.184). However, in general, it is possible for
the answer to the second question (and hence also the first) to be yes.

Exploration 1.37. Consider the map f(z) = z ∗ (z−1)∗ (z− .909− .416i) and its
related Newton Map F (z). Using the the Complex Newton Method Applet you can find
regions of seed values colored black which fail to find any root of f(z) under Newton’s
method. For example you will find such a region of points by zooming in on the point
0.64 + 0.14i. Use the applet to select such points and then iterate F (z) to explore
the behavior. Experiment with many seed values chosen from the black regions to see
what type of behavior you can find. Use the zoom feature to see whether or not it
appears that the boundary of the black region matches the boundary of the attracting
basins for the three roots of f(z). Try it out!

The reader can investigate Newton’s method applied to other cubic polynomials in
Additional Exercise 1.173.

1.2.9. Newton’s method applied to any cubic polynomial. In this section
we study Newton’s method applied to an arbitrary cubic polynomial. We begin by
introducing a (nearly) representative class for all cubic polynomials. Let F denote the
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collection of all polynomials pρ(z) = z(z − 1)(z − ρ) where ρ is in D = {ρ : Im ρ ≥
0, |ρ| ≤ 1, |ρ− 1| ≤ 1}.

1
2

+
√

3
2
i

0 1

Figure 1.7. Region D of ρ values corresponding to the maps pρ in F .

This class of polynomials F is then representative of a all polynomials with three
distinct roots in the following sense.

Proposition 1.38. For each cubic polynomial p(z) with three distinct roots, there
exists ρ ∈ D such that the Newton map Fp is globally conjugate by a linear map T to
the Newton map Fpρ of pρ(z), i.e., T ◦ Fp ◦ T−1 = Fpρ .

In order to prove the above proposition we require the following proposition, which
we note applies to polynomials of any degree.

Proposition 1.39. Let p(z) be a polynomial and let T (z) = az+b for a 6= 0 where
a, b ∈ C. Then for the polynomial q(z) = p(T (z)), we have

T ◦ Fq ◦ T−1 = Fp

where Fq and Fp are the Newton maps of q and p respectively.

We leave the proof of Proposition 1.39 to the reader. However, we say a few words
about its meaning and usefulness. Note that the polynomial q (which is sometimes
called the “rescaling” of p) will have the same degree as p. Furthermore, if p has roots
at r1, . . . , rd, then q will have roots at T−1(r1), . . . , T−1(rd). Hence the result of the
proposition says that we can “move” the roots of p by choosing T−1 appropriately and
generating a new polynomial q. Furthermore, studying the dynamics of Fq will be
essentially the same as studying the dynamics of Fp since these are globally conjugate
to each other.

Example 1.40. Consider p(z) = (z + i/2)(z − 1)(z + 1). We wish to illustrate
Proposition 1.38 by finding a ρ ∈ D so that Fpρ is conjugate to Fp. Consider the
triangle formed by the roots of p(z) at −i/2, 1, and −1. We now construct a linear
map T−1 to transform this triangle into a triangle with longest side being the interval
[0, 1] and third vertex (which will be our choice of ρ) in the upper half plane {Im z ≥ 0}.
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These constrictions then force T−1(1) = 0 and T−1(−1) = 1, which in turn determine
that T−1(z) = −1

2
z + 1

2
and ρ = T−1(−i/2) = 1/2 + i/4 (which is in D).

Let’s verify that this choice of ρ works. Note that q(z) = p(T (z)) must have roots
at 0, 1, and ρ. Since q and pρ share the exact same roots, they must agree up to
a multiplicative constant, i.e., we must have q(z) = cpρ(z) for some constant c 6= 0.
This, however, implies that Fq = Fpρ (why?). Hence, by Proposition 1.39 we have that
T ◦ Fpρ ◦ T−1 = T ◦ Fq ◦ T−1 = Fp as desired.

The reader should use the Complex Newton Method Applet to compare the pictures
of the attracting basins for Fp and Fpρ noting the similarities one would expect from
the fact that these maps are globally conjugate. In particular, see if you can see the
effects of the specific map T when you compare the two pictures. Try it out!

Exercise 1.41. Find ρ ∈ D so that for p(z) = (z − 4)(z + i)(z + 4) we have Fpρ is
globally conjugate to Fp. Try it out!

In the same manner as Example 1.40, one can prove Proposition 1.38, and so we
omit the details. However, we leave it to the reader to investigate what can be said
about the dynamics of Fp when p(z) is a cubic polynomial with a double or triple root.
Aside from these exceptional cases, we can study the dynamics of all cubic polynomials
by studying just the maps pρ where ρ ∈ D. We have created the Cubic Polynomial
Complex Newton Method Applet to help. This applet allows the user to generate the
pictures of the attracting basins for Newton’s method applied to any pρ (not just
ρ ∈ D). Also, it allows the user to investigate the parameter plane of ρ values since
each such value will be colored according to the corresponding dynamics of Fpρ .

A note about the coloring of the parameter plane of ρ values. You will see in
Section 1.4 that the orbit of all points where F ′pρ(z) = 0 are critically important to

understanding the dynamics of Fpρ . Since F ′pρ(z) =
pρ(z)p′′ρ (z)

(p′ρ(z))2
, we see that F ′pρ(z) = 0

only at the roots of pρ(z) or when p′′ρ(z) = 0. Since the roots of pρ(z) are attracting
fixed points, their orbits are understood. However, since p′′ρ(z) = 0 for z = (1+ρ)/3 we
see that this, so-called, free critical point is important. Hence in the Cubic Polynomial
Complex Newton Method Applet, we track, for each ρ, the critical orbit of z0 = (1+ρ)/3.
When this critical orbit is attracted to one of the roots of pρ, we color the point ρ in
the parameter plane the corresponding color of the attracting basin. If this orbit is not
attracted to any of the roots of pρ, we color the point ρ in the parameter plane black.

Exploration 1.42. Use the Cubic Polynomial Complex Newton Method Applet to
investigate the dynamics of Newton’s method applied to any pρ. Look for symmetries
and experiment with the dynamical behavior you find. Make conjectures, and then see
if you can prove them!

1.3. Iteration of an Analytic Function

In this section we focus our study on the dynamics of analytic maps which do not
necessarily arise as Newton Maps of polynomials. One goal is to understand which
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dynamical features of Newton’s method extend to such a wider class of maps. We pay
particular attention to the iteration of polynomial maps of the form z2 + c where c is a
complex parameter, since these are the simplest maps which still produce a rich variety
of dynamical behaviors.10 We also note that with the help of the global conjugation
technique (see Section 1.2.6), every quadratic map is globally conjugate, and in some
sense dynamically equivalent, to exactly one map of the form z2 + c (see Additional
Exercise 1.170). Hence, in this way the dynamics of maps z2+c represent the dynamics
of all quadratic maps.

One need not have worked through all of Section 1.2; however, it is critical that
Sections 1.2.3 and 1.2.6 be read before proceeding with this section.

Though the quadratic maps of the form z2 + c are genuinely very simple and well
understood as functions, we will see that their dynamics can be extremely complicated.
We will explore this carefully, not only the dynamics of each map z2 + c, but we will
also study how the dynamics of such maps change as the parameter c changes, leading
us into the study of what is called bifurcation theory.

In Section 1.6, we consider the dynamics of more exotic transcendental entire com-
plex analytic maps such as cez, c sin z, and c cos z.

1.3.1. Classification of Fixed Points for Analytic maps. Having noted the
importance of fixed points in Section 1.2.3, where we defined attracting fixed points,
we extend our discussion here to understand the two remaining types of fixed points,
repelling and indifferent. We begin with an example.

Example 1.43. Let f(x) = x2 and g(x) =
√
x each restricted so that f, g : R+ →

R+ where R+ = {x ≥ 0}. We leave it to the reader to quickly check that 0 and 1 are
each fixed points of both f and g. Further, we have fn(x) → 0 if 0 < x < 1, and
fn(x) → ∞ if x > 1. Also we have gn(x) → 1 for all x ∈ R+ \ {0}. Note that 0 is an
attracting fixed point for f (why?). However, we see that for x values close to, but not
equal to 1, we have that the orbit fn(x) moves away from 1. We then call 1 a repelling
fixed point for f (which we formally define below). We also note that the function
g(x) has an attracting fixed point at 1 and a repelling fixed point at 0. We illustrate
the dynamics of these two maps graphically in Figure 1.8.

Note that f = g−1 and g = f−1. Giving some thought to this fact that f and g
“undo” each other in this fashion, it stands to reason that an attracting fixed point
for f must be a repelling fixed point for g and vice versa.

Inspired by this example, we formally define a repelling fixed point as follows.

Definition 1.44. (Repelling Fixed Point) Let f be a map with domain set
Ω ⊂ C (note that Ω could be a subset of R).

10The dynamics of Möbius maps is simpler to study, however, such maps have relatively simple
dynamics. See Section 1.B for a classification of the dynamics of Möbius maps.
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••
0 1

f f
............................................................................................................................................................................................ ............................................................................................................................................................................ ................

Dynamics of f(x) = x2 has attracting fixed point 0 and repelling fixed point 1.

••
0 1

g g
............................................................................................................................................................................ ................ ............................................................................................................................................................................................

Dynamics of g(x) =
√
x has repelling fixed point 0 and attracting fixed point 1.

Figure 1.8. Graphical description of the dynamics of f and g = f−1.

(a) We call a (finite) fixed point a ∈ C a repelling fixed point of f if there exists a
neighborhood U of a such that for any point z ∈ Ω∩U \{a}, we have |f(z)−a| > |z−a|,
i.e., the action of f is to move each point in Ω ∩ U \ {a} farther from a.

(b) Suppose f(∞) = ∞. We call ∞ a repelling fixed point of f if there exists
a neighborhood U ⊂ C of ∞ such that for any point z ∈ Ω ∩ U \ {∞}, we have
|f(z)| < |z|, i.e., the action of f is to move each point in Ω∩U \ {∞} farther from ∞
(as measured by the spherical metric).

Theorem 1.45. Suppose Ω ⊂ R or Ω ⊂ C. Let f : Ω→ Ω such that f(a) = a and
|f ′(a)| > 1. Then a is a repelling fixed point of f . In fact, there exists ε > 0 such that
for all z ∈ Ω ∩4(a, ε) \ {a} the orbit fn(z) eventually leaves 4(a, ε), i.e., there exists
N such that fN(z) /∈ 4(a, ε).

Remark 1.46. The proof is given by a quick modification of the proof of Theo-
rem 1.18, and so we leave the details to the reader. Note, however, that the theorem
does not preclude the case that the orbit of z, after leaving 4(a, ε), might reenter
4(a, ε) (see Additional Exercise 1.174).

Remark 1.47. Again we note that Theorem 1.45 is not, in general, an if and
only if result. In particular, the reader is encouraged to find a real valued function
f : R→ R such that 0 is a repelling fixed point which has |f ′(0)| = 1. Hint: Consider
maps of the form x 7→ x± xn.

Above we provided examples of real valued maps which show that the converses of
Theorems 1.18 and 1.45 do not, in general, hold. However, the next theorem shows
that such examples cannot be found for complex analytic maps.

Theorem 1.48. Let f(z) be an analytic map on an open set Ω ⊂ C such that
f(a) = a. Then we have the following,

(i) a is an attracting fixed point if and only if |f ′(a)| < 1, and
(ii) a is a repelling fixed point if and only if |f ′(a)| > 1.

Theorems 1.18 and 1.45 provide two of the four implications. The proofs of the
remaining two, outlined in the Exercise 1.175, use special properties of complex analytic
maps.
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We note that Theorem 1.48 only applies to finite fixed points and so we ask if there
is a corresponding result when ∞ is fixed. Let us examine the following examples in
preparation of handling this issue.

Example 1.49. Consider the map h(z) = z + 1 on C, which fixes ∞ and shifts
each point in the complex plane one unit to the right. Note that for z near ∞ with
very large and positive real part, for example z = 106 + 2i, we have |h(z)| > |z|, which
makes it appear that ∞ is attracting. However, for z near ∞ with very large and
negative real part, for example z = −106 + 5i, we see that |h(z)| < |z|, which makes
it appear that ∞ is repelling. We then are left to conclude that for h, the fixed point
at ∞ is neither attracting nor repelling. Also note that hn(z) = z + n and so for any
point z in C we have fn(z)→∞ (always moving parallel to the x-axis) and so Ah(∞)
is equal to the entire Riemann Sphere C. This is somewhat surprising given that ∞ is
not even an attracting fixed point. We graphically represent the dynamics both on C
and C in Figure 1.9.
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z 7→ z + 1
C ∞

Figure 1.9. Graphical representations of the dynamics of h(z) = z+ 1
on the plane C (left) and on the Riemann sphere C (right).

Example 1.50. Consider the map g(z) = z/2 on C. Each point in C is mapped
to a point with one half the modulus, but with the same argument. Clearly then the
origin is an attracting fixed point and Ag(0) = C. We also note that g(∞) = ∞ and
if z is near ∞, then g(z) moves away from ∞, i.e., |g(z)| < |z|. Thus ∞ is a repelling
fixed point. Note also that gn(z) = z/2n. We graphically represent the dynamics both
on C and C in Figure 1.10.
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∞

Figure 1.10. Graphical representations of the dynamics of g(z) = z/2
on the plane C (left) and on the Riemann sphere C (right).

Example 1.51. Consider the map f(z) = z2 on C. Convince yourself that fn(z) =
z2n for all n = 1, 2, . . . . Thus, we see that |z| < 1 implies |fn(z)| = |z2n| = |z|2n → 0.
Also, |z| > 1 implies |fn(z)| = |z2n| = |z|2n → +∞. Thus we conclude that both 0 and
∞ are attracting fixed points with attracting basins Af (0) = 4(0, 1) and Af (∞) =

C \ 4(0, 1). We represent the dynamics graphically in Figure 1.11, being careful to
note that the angle doubling property of the z2 map is not represented in this picture.
To be more precise, if z0 = reiθ in polar form we have that f(z0) = r2ei2θ. Thus, for
example, starting with seed z0 = 0.999eiπ/100, the orbit zn will converge towards 0,
doubling the angle at each step, which we encourage the reader to visually see using
the Complex Function Iterator Applet (using the Polar seed form and the Polar
computation mode of the applet).

The last three examples were chosen to illustrate fixed points at ∞, but we should
note that they can be misleading in another regard. Namely, in each example we
were to be able to calculate a formula for fn. We caution the reader that this is very
rare. We also make the point that having an actual formula for the iterates fn was
really unnecessary. We can analyze the dynamics without appealing directly to these
formulas.
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Figure 1.11. Graphical representation of the dynamics of f(z) = z2.

In each of Examples 1.49, 1.50, and 1.51 we see that∞ is a fixed point that we were
able to classify by carefully examining the dynamics near ∞. However, we wonder (in
light of Theorem 1.48) if we can also make use of the derivative to classify fixed points
at ∞. It turns out that we can; however, we must be careful. Above we saw that
|h′(∞)| = 1 corresponded to a fixed point that was neither attracting nor repelling,
|g′(∞)| = 1/2 corresponded to a repelling fixed point, and f ′(∞) = ∞ corresponded
to an attracting fixed point. Clearly, the derivative evaluated at ∞ does not play the
same role as it does in Theorem 1.18 for finite points. However, as we now see, it is
not far off.

Definition 1.52. (Multiplier of a fixed point) Let f be analytic at ∞ such
that f(∞) =∞ (see Definition B.13 in Appendix B for the definition of what is means
for a map to be analytic at ∞). We define the multiplier λ at ∞ to be 1/f ′(∞) =
limz→∞ 1/f ′(z). If a is a finite fixed point in C, then we define the multiplier λ at a
to be f ′(a).

Definition 1.53. (Classification of Fixed Points) With this definition and
with Theorem 1.48 in mind, we now classify all fixed points of analytic maps, whether
finite or not, based on their multiplier λ. Suppose f : Ω→ Ω is analytic where Ω is an
open subset of C and a is a fixed point with multiplier λ. Then a is called

a) super attracting if λ = 0
b) attracting if 0 < |λ| < 1
c) repelling if |λ| > 1
d) indifferent if |λ| = 1.

We write that a is (super)attracting, when it is known that either case (a) or (b) holds.

The reader can check that these classifications match what we found in Exam-
ples 1.49, 1.50, and 1.51. Further, we note the motivation for the definition of the
multiplier when f has a fixed point at ∞. In this case, by globally conjugating f by
φ(z) = 1/z we obtain the map k(z) = 1/f(1/z) which has a fixed point at 0. We chose
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to define the multiplier of f at ∞ to be the multiplier of k at 0, which is shown in
Lemma B.19 to be k′(0) = 1/f ′(∞). In Additional Exercise 1.176 you are asked to
prove that this multiplier, thusly defined, does correctly correspond to Definitions 1.16
and 1.44.

Remark 1.54. We note that indifferent fixed points can exhibit both a partial
attracting nature and a partial repelling nature. For example, we saw in Section 1.2.3
that the indifferent fixed point at the origin for the complex map g(z) = sin z is
“attracting” for real valued seeds, but “repelling” for purely imaginary seeds. Likewise,
the indifferent fixed point at ∞ for the map h(z) = z + 1 “attracts” points with large
and positive real part, but “repels” (at least initially) points with large and negative
real part. However, sometimes an indifferent fixed point, like the origin under the map

f(z) = e
√

2πiz, acts in neither an attracting nor repelling manner. Indifferent fixed
points of analytic maps can exhibit many different types of dynamical behavior and
their study can be quite complicated. In fact, it is complicated enough that we will
not say more about them here, but will only refer the interested reader to [1, 2, 23].

1.3.2. A Closer look at the Dynamics of f(z) = z2. Let us return to consid-
ering the dynamics of the map f(z) = z2. First we note that if |z| = 1, then |fn(z)| =
|z2n| = |z|2n = 12n = 1, i.e., if a point is on the unit circle C(0, 1) = {z : |z| = 1}, then
its entire orbit {fn(z)}∞n=1 is also on the unit circle. It might appear from this and from
our previous work in Example 1.51 that all the mysteries concerning the dynamics of
this map have been solved. But as we will see this is not at all close to the truth!

Consider the question, if we know the orbit of one seed value, will all nearby seed
values have similar orbits? If z lies within the unit disk, then it and all the nearby
points within the unit disk all have the same behavior – namely each orbit converges
to 0. Likewise, if z lies outside of the closed unit disk, then it and all the nearby
points outside of the closed unit disk all have the same behavior, namely each orbit
converges to∞. However, the story is quite different for seed values on the unit circle.
In particular, for any seed on C(0, 1) we can find other seed values arbitrarily close
which have drastically different orbits (namely which limit to either ∞ or 0).

Let’s examine this behavior using the computer to iterate for us. For the map
f(z) = z2 use the Complex Iteration Applet to iterate the seed value z0 = 1 + i as well
as various seed values very close to z0. You can see that this seed value and all of the
nearby seed values have the same behavior. Now repeat this by iterating z0 for the
values −0.4 + 0.5i, 1, i, and 0.6 + 0.8i, being sure to test various nearby seed values
that you choose yourself.

Remark 1.55. (A word of caution about using the computer) We must
always keep in mind that if we are trying to calculate the orbit under the map f(z) = z2

of a point on C(0, 1), we may have some serious problems getting our computer to
provide accurate results. Let’s test this out now on the Complex Iteration Applet. For
the map f(z) = z2 try iterating seed value z0 = 0.6 + 0.8i (which lies on C(0, 1)) by
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entering in the seed value in Euclidean form and using the Euclidean computation
mode. Iterating 20 times, you will see what you would expect. However, after iterating
about 55 times you will see the orbit move outside of the unit disk (where it will then
iterate to ∞). Why? Well, the problem is that if the computer truncates, rounds, or
approximates any of the values in the orbit (as computers often do), these small errors
will likely push the orbit outside or inside of the unit circle, causing the computer
to mistakenly calculate the orbit as tending to either ∞ or 0. Thus, when using a
computer it is important to know (a) if the computer will approximate values it uses,
and (b) whether these approximations will be significant or not in the end result.

As an illustration of the subtle issues that can wreak havoc on your computations,
we show the problems that can arise from the fact that z ∗ z and z2 are not always
equivalent. Of course we know that the expressions z2 and z ∗ z are mathematically
equivalent, but these expressions are not computationally equivalent. The former is
evaluated as e2Log z, where Log z is the principal logarithm, and the latter is evaluated
through usual complex multiplication. Thus each will incorporate different rounding
errors at times. The end result of this very subtle difference is quite evident when
iterating the seed 0.6 + 0.8i in Euclidean computation mode under each of these
maps. Try it out!

In line with the concerns one has when using the computer, specifically item (b)
above, we see that it is important to clearly identify those seed values where approxi-
mations (or more precisely errors introduced by using approximations in place of exact
values) would lead to significant errors in future calculations of orbit values. Such seed
values are said to be in the chaotic set . The chaotic set in this context is usually
called the Julia set , in honor of the mathematician Gaston Julia who in 1918, at
the age of 25, published his 199 page masterpiece titled “Mémoire sur l’itération des
fonctions rationnelles” describing the iteration of complex rational functions (see [17]).

Remark 1.56. Note that our notion of Julia set is not tied only to errors or
approximations that a computer might introduce. The issue is to know whether or not
a tiny error in the seed value (no matter what or who created the error) could produce
a significant error in some orbit value. For example, the seed z0 = i would be in the
Julia set of f(z) = z2 even though its orbit i,−1, 1, 1, 1, . . . is computed exactly by
a computer. We say it is a chaotic seed value since given any allowable error in the
seed value (even an error as small as 10−631), we can always find another seed z′0 close
to z0 = i (i.e., within the tiny allowable error) such that z′0 has a drastically different
orbit from the orbit of z0. Thus, even if a computer wouldn’t introduce an error of any
kind in its orbit calculation for a specific seed z0, the seed value might still be in the
Julia set.

From the above discussion we see that the Julia set for f(z) = z2 is C(0, 1) because
the dynamics there are chaotic, i.e., for any z0 ∈ C(0, 1) there is a point z′0 arbitrarily
close by that has a drastically different orbit. As we have seen, the computer often
fails to be accurate here since we would need the computer to store such a value (and
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each point in its orbit) with an infinite degree of accuracy. To put it another way,
approximation of the starting value (or some future iterate value) ruins our confidence
in the calculations of the long term behavior. This is called sensitive dependence
on initial conditions, and this is the defining feature in what is called chaos.

We call the complement C\C(0, 1) the stable set for f(z) = z2 because orbits are
stable there, i.e., for any z0 ∈ C\C(0, 1) its orbit zn will behave like the orbit z′n of any
seed value z′0 chosen sufficiently close to z0. In honor of Pierre Fatou the stable set is
commonly called the Fatou set because of his role in developing the theory of complex
function iteration in 1917 (see [13, 14, 12]). In honor of their pioneering work in the
field, dynamics of complex analytic functions is often called the Fatou-Julia theory.

Exercise 1.57. Use your intuitive understanding of the meanings of the Fatou and
Julia sets to determine each of these sets for the maps h(z) = z + 1, g(z) = z/2 and
k(z) = 3z. Try it out!

Exercise 1.58. Try on your own to write down a precise mathematical definition
of the Fatou set and the Julia set that will work for any rational function g(z) defined
on C. In particular, try to formulate what it means for orbits to be drastically or
significantly different. Try it out!

Notation: For a rational function g(z), we employ the notation F (g) for the Fatou
set of g and J(g) for the Julia set of g. Formal definitions are given in Appendix 1.A.
These should be read, but note that it is not necessary to know these formal definitions
well to continue on in the text; an intuitive understanding of these ideas will allow you
to progress through this text just fine.

We showed that J(f) = C(0, 1) for the map f(z) = z2 by noting that for any seed
z0 ∈ C(0, 1) there is a point arbitrarily close to z0 whose orbit tends to ∞ (and is
thus drastically different from the orbit of z0 which must remain on C(0, 1)). However,
it is also true that f is even chaotic on C(0, 1) if we restrict ourselves to only using
seed values from C(0, 1). To see this, consider z0 = eiθ written in polar form. For any
nearby point z′0 = eiα we must, due to the angle doubling nature of f , have that the
distance |f(z0)− f(z′0)| > |z0− z′0|. Indeed, denoting the (arclength) distance between
z0 and z′0 along the unit circle by β = |θ − α|, we see that the distance between f(z0)
and f(z′0) along the unit circle will then be 2β. Inductively, we see that the distance
between fn(z0) and fn(z′0) along the unit circle will be 2nβ, as long as 2nβ < π.
Clearly then, no matter how close z0 and z′0 start out, i.e., no matter how small β is,
corresponding orbit points will eventually be “far” apart. More precisely, as soon as
2nβ > π/3 we must have |fn(z0) − fn(z′0)| > 1. Thus arbitrarily close seed values on
C(0, 1) do not have corresponding orbit values that forever stay arbitrarily close. Use
the Complex Function Iterator Applet (using both Polar computation mode and
Polar seed form) to witness this sensitive dependence. In particular, simultaneously
iterate (one step at a time) Seed 1 z0 = e2.18i and Seed 2 z′0 = e2.19i.
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We close this section by reflecting on some commonalities between the Newton
Map dynamics we have seen in Section 1.2.4 and the dynamics of f(z) = z2. As
we saw in each Newton’s method example, so too for the f(z) = z2 dynamics, any
two basins of attraction of attracting fixed points share a common boundary. In the
case of f(z) = z2, the basins Af (0) and Af (∞) share the common boundary which
turns out the be exactly the Julia set J(f) = C(0, 1) where, informally speaking, the
attractive “pull” of each attracting fixed point is balanced by the other. The reader
who read all of Section 1.2 should now go back and consider each complex Newton’s
method example to convince himself or herself that in those cases too the Julia set of
the Newton map is exactly the common boundary of any attracting basin. This is no
coincidence and we state the precise result as follows.

Theorem 1.59. Let f(z) be a rational map. If w is an attracting fixed point of
f(z), then ∂Af (w) = J(f).

Remark 1.60. Theorem 1.59 together with Proposition 1.21 implies Theorem 1.35.

Remark 1.61. In Theorem 1.59, if we do not demand that the fixed point be
attracting, then the conclusion might not follow. We saw this in Example 1.49 where
Ah(∞) = C which has empty boundary, but J(h) = {∞} which we leave the reader
to show.

An incomplete sketch of the proof of Theorem 1.59. Showing the full
details of this proof requires both a precise definition of Julia set and a little ad-
vanced complex analysis beyond the level of this text. Instead we provide just a sketch
of some of the arguments. By Additional Exercise 1.172, Af (w) is an open set. Thus
each point in Af (w) has a whole neighborhood of points whose orbits all act the same
way, showing (albeit informally) Af (w) ⊂ F (f). Likewise, any point in ∂Af (w) con-
tains points arbitrarily close which iterate to w and points arbitrarily close whose
orbit points stay far away from w. Thus such a point must be in the Julia set, i.e.,
∂Af (w) ⊂ J(f). What remains is to show that C \ Af (w) is in the Fatou set. By

showing f(C \ Af (w)) ⊂ C \ Af (w), one may use Montel’s Theorem (Theorem 1.151)

to conclude C \Af (w) ⊂ F (f). We leave it to the interested reader to pursue the finer
details of the proof in p. 58 of [2]. �

1.3.3. Dynamics of maps of the form fc(z) = z2 + c. We have carefully inves-
tigated the dynamics of the map f(z) = z2 (though there is still more to say since a
finer analysis of the dynamics on C(0, 1) reveals some very interesting behavior - see
Remark 1.155 and Additional Exercises 1.174 and 1.211). Now we investigate what
effect there will be when we change the map by adding a constant.

One justification for studying this (although the only justification a mathematician
usually requires is that the resulting problem be interesting) is in line with our theme
of wanting to know what happens when the system we are studying is tweaked a
little bit, or has some error causing us to believe that we cannot be 100% certain
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that our mathematical model is exactly correct (as opposed to being just a very good
approximation). In the dynamics of f(z) = z2 above, we identified which seed values
z0 were stable (in the Fatou set) or chaotic (in the Julia set) by studying the effects of
allowing arbitrarily small errors in the seed value. Now we will investigate what type
of stability may or may not be present when we allow for an error or perturbation in
the map we are iterating. Hence, we will consider the dynamics of maps of the form
fc(z) = z2 + c where c is a complex parameter. Thus, we will fix a c0 value and study
the dynamics of fc0 . Then we will vary the c parameter a little and study whether
or not the dynamics of the resulting maps fc have similar behavior. Just as we saw
the seed values z for a fixed map get naturally split into the stable Fatou set and the
chaotic Julia set, so too will we see the set of all parameter values c be naturally split
into stable parameters and what we will call bifurcation parameters.

We begin by noting a common aspect of the dynamics of fc for all values of c. Each
map fc has a super attracting fixed point at∞ (which the reader should formally verify
by either checking the behavior of fc near ∞ or by checking the multiplier of the fixed
point at ∞). Thus, if any part of the orbit zn = fnc (z0) of some seed value z0 should
be large enough (by this we mean that |zn| is large enough), then the orbit will tend
to ∞. A careful calculation in Additional Exercise 1.194 shows that for the maps fc,
we have |zn| > max{2, |c|} for some n ∈ N if and only if zn →∞.

We begin by considering a small perturbation of the map f0(z) = z2. If we let c
be very small (by which we mean |c| is small), then we might expect the dynamics of
fc to be very similar to the dynamics of f0(z) = z2. This turn out to be true in many
respects.

Exploration 1.62. Fix c = 0.1 and use the Complex Function Iterator Applet to
study the dynamics of f0.1(z) = z2 + 0.1. Try many different seed values including
z0 = 0, 1 + i,−2 − 0.5i, ... and record the different types of behavior you are able to
find. Try it out!

As in the f0 case, it seems we have only two types of long term behavior. In
particular, iterates of f0.1 seem to either approach ∞ or they approach the attracting
fixed point p ≈ 0.1127. The intuition we’ve built up, however, tells us that this cannot
be the whole story. If there are two attracting fixed points, then we expect there to
be some “tension” between attracting basins, and that points on the boundaries of
these basins will not be attracted to either fixed point. Recall, that the boundaries of
the two attracting basins for the map f0(z) = z2 were both equal to the chaotic set
J(f0) = C(0, 1). Similarly, this same phenomenon occurs with the map f0.1, except
that the chaotic set J(f0.1) is not a circle (though some advanced mathematics can show
that it is a simple closed curve, see [2], p. 126). Let’s now use the Global Complex
Iteration Applet for Polynomials to see a picture of J(f0.1). This applet will color each
seed in the basin of attraction of ∞ for the map f0.1 based on how many iterates it
takes for the orbit to become strictly larger than max{2, |0.1|} = 2, and it will color
the remaining points black. By Theorem 1.59, the basin Af0.1(∞) has boundary set

33



equal to J(f0.1). Experiment with iterating seed values (two at a time) near J(f0.1) to
see the sensitive dependence on initial conditions. Try it out!

The set of points colored in black in the applet has a special name which we present
here in general terms for any polynomial.

Definition 1.63. For a polynomial g(z), we define the filled-in Julia set K(g) to
be the set of points which do not iterate to ∞, i.e.,

K(g) = {z ∈ C : {gn(z)}∞n=0 is bounded in C} = C \ Ag(∞).

Remark 1.64. For a polynomial g(z) of degree greater than or equal to two (which
must then have a super attracting fixed point at ∞), it is true that ∂Ag(∞) = ∂K(g),
and so by Theorem 1.59 we have J(g), ∂Ag(∞) and ∂K(g) are all identical sets. The
reader is asked to prove this in Additional Exercise 1.177.

Returning to the dynamics of the map f0.1, we ask if we could we have predicted
ahead of time that there would be a finite attracting fixed point? The answer is yes,
and here is how. We find the two finite fixed points of f0.1 by solving the equation
f0.1(z) = z (do you see why?). Doing this we then show that the two finite fixed points
p = (1−

√
0.6)/2 and q = (1 +

√
0.6)/2 are attracting and repelling, respectively, since

|f ′0.1(p)| < 1 and |f ′0.1(q)| > 1.
One way to relate the dynamics of f0 and f0.1 is to say that as the c parameter

moves from c = 0 to c = 0.1, (a) the super attracting fixed point at 0 with multiplier
λ0 = 0 becomes an attracting fixed point at p ≈ 0.1127 with multiplier λp = f ′0.1(p), (b)
the circle J(f0) becomes a slightly distorted circle J(f0.1), and (c) the super attracting
fixed point at∞ persists, i.e., remains a super attracting fixed point for f0.1. Thus the
small change in the c parameter led to only a small change in the dynamics. Let us
explore other c values to decide which c values have similar dynamics to f0 and which
do not.

Exercise 1.65. Fix c = 0.2 + 0.2i and use the Complex Iteration Applet for Poly-
nomials to study the dynamics of f0.2+0.2i(z) = z2 +0.2+0.2i. Try many different seed
values including z0 = 0, 1 + i,−2 − 0.5i, ... and record the different types of behavior
you are able to find. Try it out!

Now use the Global Complex Iteration Applet for Polynomials to see the global
picture of the attracting basins and the Julia set. Calculate by hand the exact value
of the attracting fixed point of this map. You can test your calculation by using the
applet to iterate a nearby seed. Try it out!

Now let us see what happens if we move the parameter c somewhat far from 0.

Exercise 1.66. Fix c = −1 and use the Global Complex Iteration Applet for
Polynomials to study the dynamics of f−1(z) = z2 − 1. Are the dynamics similar to
that of f0? Try it out!
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Exercise 1.67. By generalizing the calculations done in the c = 0.1 case, mathe-
matically describe the set K1 of all c values such that fc has a finite attracting fixed
point in C. You can see the picture of K1, which is called a cardioid (heart shaped
region) in Figure 1.13. Try it out!

By examining the attracting basins and Julia sets for maps fc where c ∈ K1 (using
the Global Complex Iteration Applet for Polynomials) you will see that each such
function has dynamics similar to the dynamics of f0. Thus we have witnessed our first
example of stability in the parameter, i.e., for any c in this set of parameters, the
dynamics does not fundamentally change when you move the parameter around a little
bit. Another way of saying this is that K1 is an open set of parameter values.

We know that for each c ∈ K1 there is an attracting fixed point pc of the map fc.
Let’s call λ(c) the multiplier at pc and thus, using Theorem 1.48 which says that the
multiplier of a (super) attracting fixed point must have modulus strictly less than 1, we
may regard λ as a map from K1 into 4(0, 1). If we follow the calculations in the above
Exercise 1.67 carefully, we see that this multiplier map λ : K1 → 4(0, 1) is one-to-
one, continuous, and onto (onto means that for every λ0 ∈ 4(0, 1) there is a parameter
c0 ∈ K1 such that λ(c0) = λ0). In fact, this map can be extended to be defined and
continuous on all of K1.11 However, for c ∈ ∂K1 we only have λ(c) ∈ C(0, 1) and the
corresponding fixed point pc is indifferent. In Additional Exercise 1.178 you are asked
to explicitly find the inverse of the multiplier map. The reader should now pause for a
moment to think about the meaning and significance of this inverse map.

Additional Exercise 1.179 will help the reader gain a better understanding of the
role the multiplier plays in the dynamics. The reader may go on without doing this
exercise now, but for a deeper understanding the reader should take the time to do it
now.

1.3.4. Cycles for the map fc(z) = z2 + c. As we saw above, the orbit of 0 under
the map f−1(z) = z2 − 1 is 0,−1, 0,−1, 0,−1, . . . . We summarize this situation by
saying that f−1 has a 2-cycle {0,−1}. Also, as we saw (for example, by iterating the
seed z0 = 0.2−0.3i), this 2-cycle seems to be attracting (actually, we discuss later that
this cycle can even be properly labeled super attracting).

Exercise 1.68. Modify Definition 1.16 of an attracting fixed point to come up
with your own definition of an attracting 2-cycle. Try it out!

Exercise 1.69. Modify Definition 1.14 of an attracting basin of a point to come
up with your own definition of an attracting basin for a 2-cycle. Try it out!

Using an applet to produce the orbit of several seed values, we again seem to have
only two types of long term behavior for the map f−1. In particular, iterates of f−1

11We say a map g defined on its domain set D can be extended to a larger set D̃ ⊃ D, if there exists
an extension map g̃ on D̃ such that g̃ = g on D. By a slight abuse of notation we use g to denote the
extension, which simply means that we assume g itself is defined on the larger set D̃.
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seem to either approach ∞ or they “approach” the 2-cycle {0,−1}. Our intuition,
however, suggests that this cannot be the whole story. Tension between attracting
“basins” probably leads to points which are neither attracted to ∞ nor to the 2-cycle
{0,−1}. Use the Global Complex Iteration Applet for Polynomials to see these basins,
and the corresponding Julia set. Try it out!

Example 1.70. Let c = −0.9 − 0.1i and use one of the applets to study the
dynamics of the map f−0.9−0.1i(z) = z2 + (−0.9− 0.1i) to verify that this map also has
an attracting 2-cycle. Try it out!

Example 1.71. Let c = −0.13 + 0.73i and use one of the applets to study the
dynamics of the map f−0.13+0.73i(z) = z2 + (−0.13 + 0.73i) to verify that this map has
what we should naturally call an attracting 3-cycle. Try it out!

Ultimately we would like to calculate (by hand, or at least only use the computer
when we know we will get trustworthy results) which c parameters will lead to the
map fc(z) = z2 + c having an attracting 2-cycle, an attracting 3-cycle, an attracting
4-cycle, and so on. We will be able to make some progress on this question, but our
methods, as you will see, will hit the familiar road block of trying to find the roots of
a polynomial of high degree. We begin by first defining cycles of any length and then
we see how to classify cycles by using the derivative (or more precisely the multiplier).

1.3.5. p-Cycles and their Classification.

Definition 1.72. (Cycles) A point w ∈ C is called periodic with period p for the
map f if fp(w) = w and w, f(w), . . . , f p−1(w) are distinct points. In this case we call
the set {w, f(w), . . . , f p−1(w)} a p-cycle for the map f .

Thus we see that periodic points correspond exactly to fixed points of higher iterates
fp of the map f . For example, the periodic point of period 2 at w = 0 for the map
f−1 is a fixed point of the second iterate f 2

−1. We can then use this fact to classify a
cycle as attracting/repelling/indifferent based on the multiplier of the corresponding
iterate.

Definition 1.73. (Multiplier for Cycles) Suppose the set {w0, . . . , wp−1} forms
a p-cycle for the map f . We define the multiplier λ of this cycle (also called the
multiplier of each point w0, . . . , wp−1 of period p) to be the multiplier of the map fp

at its fixed point w0. Then the p-cycle {w0, . . . , wp−1} of the map f is called
a) super attracting if λ = 0
b) attracting if 0 < |λ| < 1
c) repelling if |λ| > 1
d) indifferent if |λ| = 1.

As for fixed points, we say the cycle is (super)attracting when it is known that either
case (a) or (b) holds.
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Example 1.74. The 2-cycle {0,−1} for the map f−1 is super-attracting since λ =
(f 2
−1)′(0) = f ′−1(0) · f ′−1(f−1(0)) = f ′−1(0) · f ′−1(−1) = 0. We note also that instead of

using 0 we could have use the other point in the 2-cycle to calculate λ = (f 2
−1)′(−1) =

f ′−1(−1) · f ′−1(f−1(−1)) = f ′−1(−1) · f ′−1(0) = 0.

Understanding the use of the chain rule, as seen in Example 1.74, is very important
in understanding the classification of p-cycles and so we now examine it more closely.

Chain Rule in C: If f and g are analytic functions at finite points z0 and z1, re-

spectively, and if z0
f7→ z1

g7→ z2, then (g ◦ f)′(z0) = g′(f(z0))f ′(z0) = g′(z1)f ′(z0). In
other words, in order to compute the derivative of the composite function, we simply
multiply the derivatives of each function (evaluated at the appropriate point) along
the way.

............................................................ ......
... ............................................................ ......

...

...............................................................................................................................................................................
...............................

.......................

∗
z0

∗
z1

∗
z2

f g

f ◦ g
.....................
.........

Now suppose that set of finite points {w0, . . . , wp−1} forms a p-cycle for the analytic
map f (see Figure 1.12).

f 5

w4

w3

w2

w1

z0

z5

z4 z3

z2

z1

w0 = w5

f
f

ff

f

Figure 1.12. Illustration of a 5-cycle {w0, w1, . . . , w4} along with the
partial orbit of a point z0 chosen near w0.

We have (fp)(w0) = w0, and so by the chain rule we compute

(1) λ = (fp)′(w0) = f ′(w0)f ′(w1) . . . f ′(wp−1) = (fp)′(wj), for j = 0, . . . , p− 1,
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which shows, among other things, that the definition of the multiplier in Definition 1.73
is well defined since the derivative of fp is the same at any point in the cycle.

We now wish to understand the relationship between the classification of the cycle
as attracting/repelling/indifferent (determined by λ) and the dynamics of the map f
near the cycle. We first note that simply by continuity of the map f , for any seed
z0 sufficiently close to w0, the orbit points z1, . . . , zp−1, zp will be close to the points
w1, . . . , wp−1, w0, respectively. Supposing that |λ| < 1, the map fp has an attracting
fixed point at w0. Thus, if we choose a seed z0 sufficiently close to w0, we must have
that fp(z0) is closer to w0 than z0 is (i.e., |fp(z0)−w0| < |z0 −w0|) by Definition 1.16
applied to the fixed point w0 of the map fp. We also note that this argument works
equally well for any of w1, . . . , wp−1 as it does for w0, and so one way to describe such
an attracting cycle is to say that each time you apply the map f for a total of p
times, points near any wk will move around the cycle only to return closer to wk. See
Figure 1.12 where the orbit of z0 exhibits this behavior. In a similar way we justify
the classification of repelling cycles.

Note that the above calculations require only minor modifications when one of
the points wk in the cycle is ∞. In the spherical metric, where ∞ does not play
a more special role than any other point in C, one sees that the dynamic behavior
(attractiion/repulsion) of the cycle behaves in the same fashion as described above for
cycles in the finite plane C.

1.3.6. Attracting cycles for the maps fc(z) = z2 + c. Let us return to inves-
tigating the dynamics of the maps fc. We have seen two examples of maps of the
form fc(z) = z2 + c with attracting 2-cycles. Let us now determine the set K2 of all
c values such that fc has an attracting 2-cycle. Any point in a 2-cycle must (a) be
a fixed point of f 2

c , and (b) not be a fixed point of fc. Thus we wish to solve the
equation A: (z2 + c)2 + c = z and exclude the solutions of equation B: z2 + c = z.
Since each solution to B, rewritten as z2 + c − z = 0, is a solution to A, rewritten as
(z2 + c)2 + c− z = 0, we have that z2 + c− z must divide (z2 + c)2 + c− z. After doing
some long division, we can then rewrite A as (z2 + z + 1 + c)(z2 + c− z) = 0. Thus a
2-cycle {u, v} must be such that both u and v solve the equation (z2 + z + 1 + c) = 0,
i.e., (z − u)(z − v) = z2 + z + 1 + c, which after expanding and comparing coefficients
implies uv = 1 + c. According to Equation (1) the multiplier of the 2-cycle {u, v} is
λ = f ′c(u)f ′c(v) = 4uv = 4(1 + c). Hence this 2-cycle will be attracting exactly when
4|1 + c| = |λ| < 1, i.e., when |c − (−1)| < 1/4. Hence K2 = 4(−1, 1/4), which is the
disk pictured in Figure 1.13.

Exploration 1.75. Test various c values in K2 by using the Global Complex
Iteration Applet for Polynomials to see that you do indeed get an attracting 2-cycle.
Which seed values in the picture produced by the applet seem to “find” the attracting
2-cycle? Try it out!
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Figure 1.13. Parameter space of c values showing the cardioid K1 with
cusp at c = 1/4 and the disk K2 = 4(−1, 1/4). The boundaries of K1
and K2 meet at c = −3/4.

In Additional Exercise 1.180 the reader is asked to investigate the relationship
between the multiplier and the convergence towards the 2-cycle. And in Additional
Exercise 1.181 the reader is asked to investigate another multiplier map (this time
defined on K2) and its inverse.

Let us now try to determine the set K3 of all c parameters which lead to attracting
3-cycles for fc(z) = z2 + c . Any point in a 3-cycle must (a) be a fixed point of f 3

c , and
(b) not be a fixed point of fc, and so must solve (when substituted for z) the eight
degree polynomial [(z2 + c)2 + c]2 + c − z = 0, but not be a root of z2 + c − z = 0.
After long division, as above, we are still left with a degree six polynomial to solve if
we are to find the points of the 3-cycle. Thus we see that since we cannot, in general,
solve a polynomial of degree five or greater, we will have considerable more difficulty
determining the attracting 3-cycles for maps of the form fc(z) = z2 + c . However, in
the above calculation we were able to locate the c values that correspond to attracting
2-cycles without ever having to explicitly solve for the points of the cycle (although
we could have since it is just a matter of applying the quadratic formula). We wonder
then if it is possible to use similar techniques, or devise new ones, to describe as much
as we can of this set K3.

Large Project 1.76. Is it possible to determine the set K3 precisely, as was done
for K1 and K2? Even though we might not be able to explicitly solve the degree six
polynomial mentioned above, perhaps one can use other root solving techniques (such
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as Newton’s method) to approximate roots to a high enough degree to be useful. Such
roots could then be tested with the Global Complex Iteration Applet for Polynomials
to see their role in the dynamics of fc. Related questions of interest are: Can you show
the fact (not proven in this chapter) that K3 is an open set? It turns out that K3 has
more than one connected component (as opposed to K1 and K2 which were connected).
Can you determine how many connected components K3 has and what relationship
these components have to each other? Can you find the c parameters which lead to
super attracting 3-cycles? The roots of the aforementioned degree six polynomial must
include three points which make up the attracting 3-cycle, but what do the other three
points represent? Will any of these techniques yield useful results for the problem of
finding the c parameters which yield attracting 4, 5, 6, . . . cycles?

We present a definition and theorem (whose proof is beyond the scope of this text)
which might be of some use in understanding the above project.

Definition 1.77. (Hyperbolic Components) For each n ∈ N, we define the set
Kn to be the set of parameters c such that fc has an attracting n-cycle. We call any
connected component W of some Kn a hyperbolic component of Kn.

Although K1 and K2 are connected sets, it is true that some of the Kn are discon-
nected. Each piece, that is, connected component of Kn, however, has the following
nice property corresponding to its multiplier map.

Theorem 1.78. [[2], p. 134](Multiplier Map Theorem) Let W be a hyperbolic
component of some Kn. Let λ : W → 4(0, 1) be the multiplier map which takes
each parameter c ∈ W to the multiplier λ(c) of the associated attracting n-cycle.
Then the map λ is one-to-one, analytic, and onto, i.e., it maps W conformally onto
4(0, 1). Furthermore, the map λ extends12 to be a one-to-one continuous map of W

onto 4(0, 1).

Definition 1.79. For a hyperbolic component W of Kn, we call the unique c ∈ W
the center of W if λ(c) = 0, i.e., it is the unique c in W for which fc has a super
attracting n-cycle.

Example 1.80. We have already observed that the center of K1 is c = 0 and the
center of K2 is c = −1.

One can explicitly show this theorem to be true for the parameter sets K1 and
K2 by actually writing down and studying the multiplier map (see Additional Exer-
cises 1.178 and 1.181). For the other sets Kn, however, it is not so easy. The proof of
Theorem 1.78 uses key properties of the multiplier map without explicitly construct-
ing it. One important application of this result is that it proves that each hyperbolic
component W of Kn is open since it is the conformal13 image of an open set, namely
W = λ−1(4(0, 1)). Hence, each Kn is also open.

12See Footnote 11 on p. 35.
13Recall, that a map is called conformal when it is both one-to-one and analytic.
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As we have seen, if we move the parameter c within the cardioid K1 the dynamics
of fc(z) = z2 + c do not change much. Similarly, if we move the parameter c within
the disk K2 the dynamics of fc(z) = z2 + c do not change much. For these reasons
we call K1 and K2 stable regions of parameter space. It is also true that each Kn is a
stable region of parameter space, which, given its definition, is really just another way
of saying that Kn is an open set. This follows from above, but also seems reasonable
without appealing to Theorem 1.78. Note that if you gently tweak a function with an
attracting cycle (keeping in mind the strict inequality condition on the multiplier), then
it seems reasonable the new function will still have an attracting cycle (i.e., will have a
strict inequality condition on the multiplier) in roughly the same place (see Additional
Exercise 1.182). This is exactly what we witness when we move the c parameter by
small amounts within the cardioid K1 or within the disk K2. We cannot, however,
expect this to happen with an indifferent fixed point (or cycle) since by tweaking the
multiplier of an indifferent fixed point, the modulus could easily be strictly less than
one (attracting) or strictly greater than one (repelling), instead of remaining exactly
equal to one.

As opposed to the stable parameters found in the sets Kn, we call a parameter c
unstable if there are parameters arbitrarily close for which the maps fc(z) = z2+c have
fundamentally different dynamics. For example, c = −3/4 is an unstable parameter.

Exploration 1.81. The reader should now pause before reading further to write
down several reasons why c = −3/4 is an unstable parameter. Use the Global Complex
Iteration Applet for Polynomials to explore the dynamics when c is close to c = −3/4,
paying special to the dynamics for c1 = −0.75 + .05, c2 = −0.75 − .05 and c3 =
−0.75 + .05i. Try it out!

Now that the reader has provided their own reasons, we go on to illustrate the
unstable nature of the parameter c = −3/4 by describing three particular ways in
which the dynamics changes at this c value. We note how the type of attracting cycle,
the Julia set, and the orbit of the origin all undergo fundamental changes. We call
c = −3/4 a bifurcation point, since it is the parameter on the boundary of two regions in
parameter space where the corresponding dynamics undergoes a fundamental change.

1. Attracting Cycle: We first note that we don’t even have to know the dynamics
exactly at the point c = −3/4 to show it is unstable. It is enough to know that there
are parameters arbitrarily close to and less than c = −3/4 (in K2) which give rise to an
attracting 2-cycle, but no attracting fixed point and there are parameters arbitrarily
close to and greater than c = −3/4 (in K1) which give rise to an attracting fixed point,
but no attracting 2-cycle. The reader can verify that as c decreases to and then past
−3/4 the attracting fixed point becomes indifferent and then “splits” into an attracting
2-cycle.14

14A different way to look at this is to instead say that as c decreases to −3/4 the attracting fixed
point merges with a repelling 2-cycle to form an indifferent fixed point exactly at c = −3/4. Then
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2. Julia Set: We can also see the result of this fundamental change in dynamics
by looking at the Julia sets J(fc) as we vary c. For example, if we start at c = 0
and then slowly decrease c, we see the Julia sets J(fc) change from a circle to a
distorted circle. Decreasing c further towards c = −3/4, we see the distorted circle
J(fc) begins to have infinitely many “bulbs” partially forming as the distorted circle
J(fc) starts “pinching in”. Exactly at c = −3/4 pinching in for each of the infinitely
many distinct bulbs simultaneously becomes complete. Thus we have gone from having
one bounded component of F (fc) for c ∈ (−3/4, 1/4) consisting of one attracting basin
of an attracting fixed point to the situation for c ∈ (−5/4,−3/4) where there exist
infinitely many bounded components of F (fc) consisting of the attracting basin of an
attracting 2-cycle.

3. Orbit of the origin: Lastly, we notice another change in the dynamics as the
parameter c moves from K1 to K2. The orbit of the origin changes from being attracted
to an attracting fixed point to being attracted to an attracting 2-cycle. As this will
be a key aspect to keep in mind, we point out that in each of the examples we have
considered where the map fc(z) = z2 + c had an attracting cycle, the origin was
“absorbed” into the cycle in the sense that the tail end of the orbit (formally {fnc (0) :
n > N} for very large N) is nearly identical to the attracting cycle. Another way to
say this is simply that the origin was attracted to the cycle. It turns out that this
is true in general (see Remark 1.92 below), and the key fact, as we shall see, is that
z = 0 is a critical point, i.e., f ′c(0) = 0.

Exercise 1.82. The reader should also verify that c = 1/4, the cusp of the car-
dioid K1, is also an unstable parameter. Use the Global Complex Iteration Applet for
Polynomials to investigate this with respect to items 1-3 above. Try it out!

Exploration 1.83. What do you think happens to the attracting fixed point and
repelling 2-cycle when the parameter c decreases to −3/4, but then “makes a right
turn” and starts heading towards −0.75 + 0.05i? Investigate this with respect to item
1 above and Footnote 14 using the Global Complex Iteration Applet for Polynomials.

1.4. Critical Points and Critical Orbits

In this section, we are able to address some of the following natural questions you
may have been asking yourself as we looked at the dynamics of the maps fc(z) = z2 +c.

(1) Does every such map have an attracting cycle (other than ∞)?
(2) How many attracting cycles can fc have?
(3) In all the examples we looked at, it seems that the orbit of the origin is always

attracted to the attracting cycle. Is this true in general?

as c decreases further, the 2-cycle re-emerges as an attracting 2-cycle and the fixed point becomes
repelling (see Exercise 1.183). Thus, the fixed point and the 2-cycle sort of exchange “polarity” in
this transition.
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In this section we see that the key to answering many of these questions involves
the notion of critical points, and investigating how the orbit of such points largely
determines many key dynamical features. We begin with a definition.

Recall that when the power series of an analytic map f(z) at z0 ∈ C has the form
f(z) = f(z0) + ak(z − z0)k + . . . , where ak 6= 0, we say that z0 maps to f(z0) with
degree vf (z0) = k (we also call vf (z0) the multiplicity or valency).

Remark 1.84. The condition that z0 and f(z0) are both in C will always be
met in the examples in which we are concerned, and so we leave it to the interested
reader to make the customary modifications to this definition when z0 and/or f(z0) is
infinity. When the term critical point is applied below to a point z0, however, it will
be understood that we do include the possibilities that z0 and/or f(z0) is infinity.

Definition 1.85. We call z0 a critical point of f if vf (z0) > 1.

If z0 and f(z0) are both in C, then z0 is a critical point exactly when f ′(z0) = 0
(just like we define in Calculus I). Also, as described in Appendix Section A.6.1, since
near z0 the map f is locally a vf (z0)-to-one mapping, we see that z0 is a critical point
exactly when f is not locally one-to-one.

Definition 1.86. Let f be a rational or entire map. If w is a (super) attracting
fixed point of f , then we define the immediate basin of attraction A∗f (w) to be the
connected component of Af (w) which contains w. We point out (but leave it to the
interested reader to show) that A∗f (w) is the component of the Fatou set F (f) which
contains w.

Theorem 1.87. Let w be a (super) attracting fixed point of a non Möbius rational
map f . Then there exists a critical point z0 ∈ A∗f (w) and hence fn(z0)→ w.

The proof of Theorem 1.87 is beyond the scope of this text, but the interested reader
can find it as Theorem 7.5.1 in [1]. We do note, however, that we have witnessed this
result in action many times now.

Example 1.88. For c in K1 (see Figure 1.13), we know that fc(z) = z2 + c has
a finite (super) attracting fixed point pc. Since the origin is the only critical point
(other than ∞ which is fixed) we must then have by Theorem 1.87 that 0 ∈ A∗f (pc)
and fn(0) → pc. This is exactly what we observed (without proof) using the applets
in many examples above.

In order to present the corresponding result for attracting cycles we will need the
following definition.

Definition 1.89. Let f be a rational or entire map which is non Möbius. For a
(super) attracting p-cycle w0, . . . , wp−1 of f we define the immediate basin of this cycle

to be the union of components ∪p−1
j=0Fj where Fj is the component of the Fatou set

F (f) containing wj.
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Exercise 1.90. The map f−1(z) = z2 − 1 has a super attracting 2-cycle {0,−1}
and so the immediate basin of this cycle consists of two components of F (f−1), one of
which contains the point 0 and the other contains the point -1. Use the Global Complex
Iteration Applet for Polynomials to investigate the picture shown in Figure 1.14. What
are the dynamic properties of the other black “bulbs”, i.e., components of F (f−1)? Try
to find a pattern to the bulbs so you can experimentally approximate points z0 such
that f 3

−1(z0) = 0. How many such points are there? Do the same, but with changing
3 to 5. Can you generalize this? Try it out!

Immediate attracting basin

0−1

F−1 ∪ F0

for 2-cycle {−1,0}

Figure 1.14. The immediate attracting basin of the 2-cycle {0, 1} for
f−1(z) = z2− 1 consists of the 2 components of the Fatou set containing
the cycle points.

Theorem 1.91. Let f be a rational map which is non Möbius. Then the immediate
basin of each (super) attracting cycle contains a critical point of the map f .

The proof of this result takes advantage of the fixed point version of this theorem
given in Theorem 1.87, the chain rule, and a couple other results which are slightly
more than we want to take on at this point. The interested reader should consult [1]
or [2]. However, it is pertinent to our discussion as it leads to the following remark.

Remark 1.92. Since all maps of the form fc(z) = z2 + c have only one finite
critical point (namely z = 0), Theorem 1.91 implies that each such map can have at
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most one finite (super) attracting cycle and any such cycle must “absorb” the orbit of
the critical point at the origin. Thus we have answered Question 2 above and answered
Question 3 in the case that fc actually does have an attracting cycle.

Definition 1.93. Both because 0 is a critical point of the map fc and because its
orbit is so important, we call {fnc (0)}∞n=1 the critical orbit of the map fc.

We have seen that the critical orbit {fnc (0)}∞n=1 plays a special role in understanding
the dynamics of the maps fc(z) = z2 + c . For some c values the critical orbit gets
attracted to an attracting cycle (e.g., c = 0,−1, 0.278 + 0.534i) and for some other c
values it gets attracted to the super attracting fixed point at∞ (e.g., c = 0.3, 4+i,−2−
0.3i). One may wonder then, is it true that for every c value the critical orbit becomes
attracted to some (super) attracting cycle? Here again we can use our intuition to say
that this is probably not true. If we consider the parameter plane, also called the
c-plane, of all c parameters for the maps fc, we can think of a new type of tension
created by those c values whose critical orbits are attracted to ∞ and those c values
whose critical orbits are not. It seems that maybe there are c values where the pull
of the critical orbit towards ∞ and the pull of the critical orbit to stay bounded is
balanced. This informal reasoning can be the basis for a good guess, but since it is far
from a formal proof, we take the easier route and settle the question by looking at the
following example.

Example 1.94. Show formally with paper and pencil (or informally with an applet)
that for c = i, 1/4,−5/4,−2, and −3/4, the critical orbit under fc(z) = z2 +c is neither
attracted to∞ nor attracted a finite attracting cycle. Thus we have answered Question
1 from above. Try it out!

In the case c = i, you noticed that the critical orbit i 7→ i − 1 7→ −i 7→ i − 1 7→
−i 7→ . . . became cyclic, but the cycle did not include 0. These types of orbits have
an important role in dynamics and so we give them a special name, as well as the c
values which lead to these types of critical orbits.

Definition 1.95. We call a point z0 pre-periodic (or eventually periodic, but not
periodic) under the map f if it is not periodic, but some point on the orbit of z0 is
periodic.

Definition 1.96. We call a parameter c a Misiurewicz point if 0 is pre-periodic
under fc.

Thus we see that c = i and c = −2 are Misiurewicz points. However, c = 0 is not
since f0(z) = z2 has a critical orbit 0 7→ 0 7→ . . . which is not pre-periodic. However,
f0(z) = z2 does have non-critical pre-periodic points, and in Additional Exercise 1.185
you are asked to find them.

It turns out that if c is a Misiurewicz point, then J(fc) = K(fc) (see [2], p. 133),
in which case we call J(fc) a dendrite. See Figure 1.15 for an example.
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i
i− 1

−i

Figure 1.15. The dendrite J(fi) along with the critical orbit i, i −
1,−i, i− 1,−i, . . .

Remark 1.97. In order to correctly understand the concepts of pre-periodic points
and Misiurewicz points we note the important distinction between orbits that are
pre-periodic (which we informally described above as those which became cyclic) and
those orbits that are attracted to a cycle. The difference is the same as the difference
between a sequence approaching a value and a sequence eventually being a value.
For example, the sequence 1, 1/2, 1/3, 1/4, . . . approaches 0, but never becomes 0.
However, the sequence 2, 1, 1/2, 0, 0, 0, . . . eventually becomes 0 (and stays at 0). When
using technology, such as the provided applets, it can be very difficult, if not impossible,
to distinguish between these two concepts. For example, set c = −0.9 and look at the
numerical values of the first 100 points of the orbit of z0 = 0 under fc. Focusing
on the 75th and higher orbit values, we see that the data bounces back and forth
between what appears to be the same two values, which might falsely lead you to
conclude that z0 = 0 is pre-periodic. The problem is that the true orbit in this
case never actually exactly bounces back and forth between the exact same values.
In fact, one can show (which we leave to the reader) that z1 < z3 < z5 < . . . and
z0 > z2 > z4 > . . . with strict inequalities everywhere for all indices. However, the
odd terms approach some value −0.8872983346207418 . . . and the even terms approach
−0.1127016653792581 . . . . Since the applet truncates the data for each zn it appears
that the odd sequence and even sequence do eventually become constant. The moral
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of the story here is that when trying to discern whether a point is pre-periodic or not,
technology might very well mislead you. In such matters, careful analysis and proof
needs to be used.

Let us return to the question we addressed above, namely, does the critical orbit
for every map fc(z) = z2 + c get attracted to an attracting cycle? We saw that
for c = i, 1/4,−5/4,−2, and −3/4 this is not the case. However, in each case the
critical orbit either became cyclic or was attracted to a cycle (though not necessarily
an attracting cycle). As mathematicians we then must wonder, is this always the case?
Is it possible for some c value to be such that the critical orbit neither becomes cyclic
nor is attracted to any cycle? The answer happens to be yes. We cannot explain
the deep mathematics behind this answer in these limited pages, but we do note that
asking good questions like this, whether or not we can answer them, is an important
part of contributing to mathematics.

So it is not true that every c parameter has a critical orbit that either becomes
cyclic or is attracted to a cycle. What is true, however, is that every c parameter
has a critical orbit that is either attracted to ∞ or remains bounded. It is exactly
this dichotomy which leads us to consider one of the most beautiful objects in all of
mathematics, the Mandelbrot set.

Definition 1.98. The Mandelbrot set is defined as M = {c ∈ C : fnc (0) 9∞}.

We have already encountered some important aspects of M , namely, it contains
both K1 and K2 pictured in Figure 1.13. We also know that it must contain Kn for
every n (since for fc to have an attracting n-cycle, the critical orbit must be attracted
to this cycle by Theorem 1.91, and thus not be attracted to ∞). The calculation of
the sets Kn is, however, a very arduous task and a complete description of all such sets
has for years stumped mathematicians, and continues to stump us. Let us therefore
use the computer to draw M for us and experimentally investigate the sets Kn and M
(always keeping in mind that limitations of the sort discussed in Remarks 1.55 and 1.97
force us to moderate the confidence that we can place in such pictures). We begin by
first using the following applet to construct a picture of M .

The Mandelbrot Set Builder Applet will color each selected point c in the parameter
plane either red if c /∈ M or black if c ∈ M . Thus, if the the critical orbit (under the
map fc) limits to ∞, then the point c is colored red, otherwise it is colored black. Of
course, we cannot compute the infinite number of points in the critical orbit, so the
applet will compute only the number of iterates allowed in the Maximum Iterations
input box. Setting this value to 100 will produce nice results (however, we encourage
the reader to experiment with this value and investigate the effect it has on the picture).
Also, the computer applet will color a selected c value red if and only if one of the
calculated critical orbit points lands outside of4(0, 2). This is justified by the following
lemma, which you are asked to prove in Additional Exercise 1.194.
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Lemma 1.99. If the critical orbit fnc (0) ever escapes the closed disk of radius two
centered at the origin, then the critical orbit must necessarily converge to ∞.

Exploration 1.100. Take some time to experiment with the Mandelbrot Set
Builder Applet to get a feel for the mathematics which defines the Mandelbrot set.
Try it out!

One feature of the Mandelbrot set which stands out is that it is symmetric about
the x-axis (see Additional Exercise 1.186). Another feature you may have observed
is that M has no “holes” in it (see Additional Exercise 1.187). The Mandelbrot Set
Builder Applet is a nice tool for visualizing M and can lead us as above to pursue some
of its interesting features, but there are some important properties of M it cannot help
with, such as whether M is a closed set or not. To do this we need more formal
mathematics.

Lemma 1.101. The Mandelbrot set M is a closed set.

Proof. Suppose ck → c∗ where each ck ∈ M . We will show that c∗ ∈ M , thus
proving that M is closed. By observing that for fc the terms of the critical orbit are
0, c, c2 + c, (c2 + c)2 + c, . . . , we see that the nth term can be written Qn(c) for some
polynomial Qn. Fix some n ∈ N and note that Qn is continuous. Since |Qn(ck)| ≤ 2
for each k ∈ N by Lemma 1.99, we must have |Qn(c∗)| ≤ 2 since |Qn(ck)| → |Qn(c∗)|
by the continuity of Qn. Since this holds for every n, we have shown that the critical
orbit of fc∗ is contained within 4(0, 2), and thus c∗ ∈M . �

We close this section by presenting (without proof) two interesting facts about M .
First, the set of Misiurewicz points, each which is clearly in M (why?), is dense in
the boundary ∂M . This means that given any open set U which contains a point
in ∂M , the set U must also contain a Misiurewicz point (see [2], p. 133). Second,
∂M is contained in the closure of the centers of the hyperbolic components defined in
Definition 1.79 ([9], p. 100). Thus, any open set which contains a point in ∂M , must
also contain the center of some (small) hyperbolic component. Taking into account
the facts that each center of a hyperbolic component is in the interior of M and each
Misiurewicz point is on the boundary of M , we see that the two statements together
show why ∂M must be so complicated.

Remark 1.102. Although a lot is known about M , one very important question
that has stumped mathematicians thus far, is whether or not M contains an open set
which does not meet any Kn, that is, an open set of c values for which no fc has an
attracting cycle (other than∞). The conjecture that asserts that this cannot happen is
known as the density of hyperbolicity conjecture and remains the focus of much intense
research.
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1.5. Exploring the Mandelbrot Set M

The Mandelbrot set has been called one of the most beautiful objects in mathe-
matics, but our red and black picture created by the Mandelbrot Set Builder Applet
does not do it justice. The set M has many tiny “hairs” and “bulbs” that are hard
to see with this bichromatic picture, and the complexity of the picture cries out for a
way to zoom in on these intricate tiny hairs and bulbs.

Initially it was conjectured that the Mandelbrot set is disconnected. This was
motivated by the low resolution pictures that did not show the fine details and thin
filaments that connect all the parts of M . However, it turns out that M is connected
(see [1], p. 239). We cannot prove this here, but a much more sophisticated applet will
give us pictures which certainly hint that this might be the case.

From now on we use the Parameter Plane and Julia Set Applet, which still colors
points in M black, but colors the parameters c /∈ M a different shade based on how
many iterates it takes for the critical orbit to escape the disk 4(0, 2). This gives a
much better feel for the immense detail of the Mandelbrot set M (see Figure 1.16).
The applet also shows, for each selected c value, a picture of the corresponding Julia
set.

K2 K1

Figure 1.16. The Mandelbrot set.
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Exploration 1.103. The reader should now experiment and play with the Pa-
rameter Plane and Julia Set Applet, zooming in on various parts of M and the corre-
sponding Julia sets. Look at not just the geometry of the pictures you see, but also
at the dynamics you see. What do the bulbs and hairs mean dynamically? Is there a
relationship between the geometry and the dynamics? Start looking for patterns and
discovering new fine details in the hairs and bulbs. Describe what you find and make
a list of observations, questions, and conjectures. You have the tools to explore an
infinitely complex world. There are millions of new features of M and the related Julia
sets to be found by using this applet. In fact, after exploring for a sufficient amount
of time, zooming in on the fine details of the sets, you will likely find a picture that
no other human has ever seen before! Take your time to explore this fascinating new
world. Try it out!

We have quite a menagerie of pictures to see and investigate, including Rabbits,
Dragons, and Elephants. We even have Star Clusters, Galaxies, and baby Mandelbrot
sets (see Figure 1.17).

In the next section we investigate such star cluster sets more carefully so that we
can better understand exactly what we are seeing (or not seeing) in such pictures.

1.5.1. Cantor dust sets. As mentioned before we must always be careful when
using technology to represent mathematics. What you see is not always an accurate
representation of what we are trying to see. For example, using c = 0.21 + 0.64i in
the Parameter Plane and Julia Set Applet, it might appear that J(fc) is empty and
that all points iterate to ∞ under fc. In fact, if one displays the picture in Black
and White via the Dynamic plane black/white plot checkbox on the Settings
tab, you will see an all white screen, which taken at face value would mean J(fc) is
empty. That, however, is very far from the truth. There are infinitely many (in fact,
uncountably many) points which never iterate to ∞ (see Additional Exercise 1.188).
However J(fc), especially for having so many points, is rather small in the sense that
it does not show up on the computer screen very well. To see them better we view the
color picture and then zoom in very far on the non-red parts (e.g., center each zoom
in the middle of the largest “star cluster”) to eventually see regions of black, which
represent points which do not iterate to ∞. However, even these regions of black are
not what they seem to be. Because we are only using a finite number of Dynamic
plane max iterations some of these black points would ultimately iterate to ∞ if
we would increase the number of iterations used. However, other of these black points
will NOT iterate to ∞ and so should truly be colored black.

Exercise 1.104. Adjust the Dynamic plane max iterations value to make
J(fc) (using c = 0.21 + 0.64i) harder to see and more accurate or easier to see and less
accurate. Also, use the Black and White picture feature to see how it can sometimes
be used to give you a much better picture of J(fc). Of course, we must always keep
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Figure 1.17. From top left to bottom right we see a Rabbit (Julia
set when c = −0.12 + 0.75i), a Dragon (Julia set when c = 0.36 + 0.1i),
Elephants (zoom in on the Mandelbrot set centered at c = −0.77+.173i),
a Star cluster (Julia set when c = −0.4387+0.784i), a Galaxy (see zoom
in on the Mandelbrot set centered at c = −0.75623053 + 0.06418323i),
and a baby Mandelbrot set (zoom in on the Mandelbrot set centered at
c = −1.625 and adjust the Parameter plane max iterations to 150
for a better resolution).

in mind that what we see on the computer screen is only an approximation to the real
thing. Try it out!

The star cluster set J(f0.21+0.64i) and other such hard to see though infinite sets
of points are what we call Cantor dust sets. It is hard to see such sets depicted with
an applet because each point in the set is disconnected from any other point, that
is, for any two points z0 and w0 in the set, there is a simple closed curve which never
meets the Cantor dust set, but such that the curve surrounds z0 and does not surround
w0. Such a set is called totally disconnected because the only connected subsets
are single points. To prove that certain Julia sets have this property requires some
more advanced material not included in this text. However we will use our applet to
illustrate many examples of this phenomenon.
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Exploration 1.105. Experiment with the Parameter Plane and Julia Set Applet
to find many (apparent) examples of Cantor dust Julia sets J(fc). Can you make a
conjecture about which c values correspond to such Julia sets?

1.5.2. Self-similarity and symmetry. One of the properties you may have no-
ticed in each dynamical plane picture for the maps fc is that each picture is symmetric
about the origin. Specifically, each set Afc(∞), J(fc), and K(fc) has the property that
it contains z if and only if it also contains −z (see Additional Exercise 1.189).

Another property you may have noticed in each set J(fc) is that small parts of J(fc)
look very much like other larger parts of J(fc). We call this property self-similarity
and note that it actually is a property of all Julia sets.

Exploration 1.106. In the Parameter Plane and Julia Set Applet, set c = 0.112+
0.74667i and in the dynamic plane (z-plane) window set the x range to be 0.22026 to
0.28746 and set the y range to be 0.4648 to 0.532 (and then hit the Update button).
Notice how similar the picture looks when we zoom in further by setting the x range
to be 0.2277184 to 0.2475200 and setting the y range to be 0.50166592 to 0.52146752.
Continue zooming in on any point of J(fc) to see how at all scales (i.e., depth of zoom)
the picture, after rotating, looks very much like the first picture. Now repeat this with
a few other c values to get a sense that this is a general property of Julia sets. Try it
out!

How about the Mandelbrot set? Is it self-similar too? The answer is a definite...sort
of. There are places in M which have small pieces that look like larger pieces, but it
is not the case, as in the Star Cluster sets above, that the whole set M looks like a
bunch of small copies of just one piece of itself. The Mandelbrot set is sometimes called
quasi -self-similar for this reason.

Exploration 1.107. In the Parameter Plane and Julia Set Applet set
c = 0.41491386 + 0.60134804i and begin zooming in on the Mandelbrot set, centering
the zoom at this c value. What you will see is pictures that appear to look the same
as you zoom in. In fact, if you zoom in on the tips of any of the “antennae” of the
Mandelbrot set you will see a type of self-similarity. Now see what you find when you
repeatedly zoom in on a point in the middle of such an antenna. Try it out!

Now zoom in on the point c = −1.2418406 − 0.32366967i to find what we call a
baby Mandelbrot set. Set the Parameter plane max iterations to a higher value
(such as 200 or 300) to see this picture better. You can also adjust the Color sample
rate to adjust the color scheme to help create a nicer picture. What you have found
is not an exact copy of the full Mandelbrot set, as you can tell by the long antennae
coming out of it, but it certainly does have the unmistakeable look of M . It turns
out, due a deep result, that these baby Mandelbrot sets are actually dense in the
boundary of M , that is, given any neighborhood of a point in ∂M , now matter how
small, there exists a baby Mandelbrot set in that neighborhood. Of course, to see it,
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we usually have to zoom in pretty far, but it’s there. This phenomenon, and more, is
further discussed in Section 1.7.

Exploration 1.108. Try zooming in on an arbitrary point in the ∂M , and then
see if you can find a baby Mandelbrot set hiding in there. Keep in mind, however,
that you might need to adjust the Parameter plane max iterations to give you a
better view. Also, keep in mind that using a computer means there are limitations to
how far we can zoom in and still get reasonable results. Try it out!

1.5.3. Connectedness Locus. One of the many properties of M that you may
have observed in your experimentation is that for each c ∈ M , the Julia set J(fc)
is connected, and for each c /∈ M , the Julia set J(fc) is not connected. Move the
c value around the parameter plane in the Parameter Plane and Julia Set Applet to
observe this. This is not a coincidence, and it is because of this that we call M the
connectedness locus for the family of maps {fc : c ∈ C}, i.e., M = {c ∈ C :
J(fc) is connected}. This fact is proven by using the following theorem and noting
that the fc has its sole finite critical point at the origin.

Theorem 1.109 (See [1], p. 202). Let f be a polynomial of degree greater than or
equal to two. Then every finite critical point of f has a bounded orbit if and only if
both J(f) and K(f) are connected.

The proof of this result is beyond this text. However, we can prove the following
topological result which you may have observed in your explorations. This result says
that K(f) has no holes, where we define a hole as a bounded domain U in C \K(f)
such that ∂U ⊂ K(f).15 We prove this as follows by appealing directly to the definition
of K(f) and applying Corollary A.18 to the Maximum Modulus Theorem.

Suppose the set U hole. Assuming f is a polynomial of degree greater than or
equal to two (we leave the linear case to the reader), there exists R > 0 such that
if |z| > R, then |f(z)| > |z| > R. From this one can show, if |z| > R, then we
must have fn(z) → ∞. Thus we see that we must have |fn(z)| ≤ R for all n ∈ N
for any point z with a bounded orbit. This means, by definition of K(f), we have
K(f) = {z ∈ C : |fn(z)| ≤ R for all n ∈ N}. Since ∂U ⊂ K(f), we see that for any
n ∈ N, the polynomial fn is bounded by R on ∂U . By the Corollary A.18 to the
Maximum Modulus Theorem, we then conclude that fn is bounded by R on U as well.
Since this works for all n ∈ N, we see that U ⊂ K(f) contrary to our assumption that
U is a hole in K(f) which does not meet K(f). This contradiction proves the result
which we state as follows.

Lemma 1.110. Let f be a polynomial. Then K(f) has no holes.

15The advanced reader will recognize the absence of holes in K(f) to be equivalent to the set C\K(f)
being connected. However, to formally prove this equivalency we would need to delve more deeply
into some more advanced topological results, and so we do not undertake such a proof here.
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1.5.4. Bulbs in M. Let’s now try to systematically classify some of what we
see in M , in terms of both geometry and dynamics. Recall that each point c in the
parameter plane (also called the c-plane) corresponds to a function fc whose Julia set
J(fc), Fatou set F (fc), and dynamics are viewed in the dynamic plane (also called the
z-plane). With this in mind we will see that M , and all the parts which make it up,
provide us with a sort of “dictionary” or index of the types of dynamics we may find
for maps of the form fc(z) = z2 + c.

First we point out that we have already seen that the cardioid K1 (see Figure 1.16)
consists of c values corresponding to maps with attracting fixed points. Off this main
cardioid K1 there are infinitely many “bulbs” attached which we would like to un-
derstand both by their geometrical properties as sets in the c-plane and by the corre-
sponding dynamic properties in the z-plane.

The most prominent bulb off K1 is the disk K2 = 4(−1, 1/4) representing the
parameters corresponding to maps with attracting 2-cycles. The next largest bulb off
K1 is near the top. Select c = −0.12 + 0.77i from this bulb and consider the critical
orbit in the dynamic plane to see that there exists an attracting 3-cycle. Use the
Parameter Plane and Julia Set Applet to observe this by iterating the critical orbit
one iterate at a time (by checking the Show critical orbit box, then checking the
Iterate orbits box, and then hitting the + button that appears next to the Iterate
orbits box). Also, note that for this c, the Julia set J(fc) in the dynamic plane is
pinched in such a way that 3 bulbs meet at every pinch point. Let’s call the pinch point
which corresponds to the immediate basin of this attracting 3-cycle the main pinch
point (which in this case is near −0.282 + 0.492i). Then by iterating the origin one
step at a time you can see that each iterate makes roughly a 1/3 rotation around this
main pinch point.16 Remember that you can use the Connect orbit points checkbox
to help you track the path of the orbit. Trying other c values from this same bulb in
the c-plane we find that we always get this same type of behavior. For this reason we
call this bulb in M the 1/3 bulb.

Exercise 1.111. Now use the Parameter Plane and Julia Set Applet to investigate
the dynamics for c = −0.513 + 0.5693i. Pause for a moment to decide what fraction
p/q would best describe the bulb containing this point. Try it out!

In the dynamic plane we see an attracting 5-cycle, which cycles around a main
pinch point at which 5 bulbs meet. Further, we see by iterating the origin one step at
a time, the iterates make a 2/5 rotation about the main pinch point in each step. For
this reason we call the bulb of M (in the c-plane) which contains c = −0.513 + 0.5693i
the 2/5 bulb. Again, you should experiment to see this same type of behavior for all
c values within this 2/5 bulb. Try it out!

16When referencing rotations, we use the standard convention that a positive rotation is counter-
clockwise. Hence, a 1/3 rotation means a 120 degree rotation (one-third of a full rotation) in the
counterclockwise direction.
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Definition 1.112. Let B be a hyperbolic component of Kq, whose boundary meets
the boundary of the main cardioid K1. We call B the p/q bulb, and denote it Bp/q, if
for each c ∈ B the corresponding map fc has an attracting q cycle and each step in
the critical orbit in the dynamic plane makes roughly a p/q rotation about the main
pinch point.

From what follows it will become clear that for each rational number 0 ≤ p/q ≤ 1,
there is only one p/b bulb and so we are justified in calling Bp/q the p/b bulb, as
opposed to a p/b bulb.

Exercise 1.113. Experiment and prove a relationship between the p/q bulb and
its conjugate bulb, that is the bulb reflected over the x-axis (see Additional Exer-
cise 1.186). In particular, find p′ and q′ if the conjugate of the p/q bulb is the p′/q′

bulb. Try it out!

Remark 1.114. Theorem 1.78 shows that the multiplier map λp/q maps Bp/q con-
formally onto 4(0, 1). Furthermore, the map λp/q extends to be a one-to-one continu-

ous map of Bp/q onto 4(0, 1).

It turns out that Bp/q meets the boundary of the main cardioid ∂K1 in just a
single point, which we denote c(p/q), and call the root of the p/q bulb. For example,
c(1/2) = −3/4 is the root of the 1/2 bulb B1/2 = K2. In Additional Exercise 1.190, you
are asked to find an explicit formula for c(p/q) and in Additional Exercise 1.191 you
are asked to investigate the multiplier maps evaluated at the root (note that since the
root c(p/q) of the p/q bulb lies on the boundary of two hyperbolic components, namely

K1 and Bp/q, we see that there are two multiplier maps (namely, λ : K1 →4(0, 1) and

λp/q : Bp/q →4(0, 1)) that are defined at each c(p/q)). These root points happen play
a special role and so further understanding of them is now warranted. In particular,
it is important to understand the following dynamic property.

Exercise 1.115. Each root c(p/q) of a p/q bulb is a bifurcation parameter. De-
scribe three dynamical changes (as done in Exercise 1.82) which occur as the parameter
c moves from the main cardioid K1 into Bp/q passing through the root c(p/q). Try it
out!

Exploration 1.116. Explore and label other bulbs in the same way as done in
Exercise 1.111. We recommend that you print a large image of M and label each bulb
as you go. Try it out!

While doing Exercise 1.116 you may have stumbled upon an interesting pattern
that shows how one can quickly compute p/q for the largest bulb (measured by area)
between two bulbs. We explain here the pattern we see, but for the detailed proofs we
direct the interested reader to [6]. Looking at M we see B1/2 and B1/3 each attached to
the main cardioid, with infinitely many p/q bulbs in between decorating the boundary
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of the main cardioid. The largest such bulb, as we have seen, is B2/5. We can correctly
“do the math” quickly in this situation by what is known as Farey addition to compute

1

2
⊕ 1

3
=

2

5
.

In Farey addition, one “adds” fractions in the unusual way of simply adding the numer-
ators and adding the denominators (much easier than that arduous task which involves
finding a common denominator!). We call the two addends the Farey parents (e.g.,
1
2

and 1
3
) and the resulting fraction the Farey child (e.g., 2

5
). Correspondingly, we

will call the bulbs B1/2 and B1/3 the Farey parents of the Farey child bulb B2/5.

Example 1.117. The Farey child of B2/5 and B1/3, that is, the largest bulb between
these two, is B3/8 since

2

5
⊕ 1

3
=

3

8
.

A quick check with the Parameter Plane and Julia Set Applet will confirm this result.
Remember to use the Connect orbit points checkbox to help you track the path of
the orbit. Try it out!

Remark 1.118. We must be careful with our use of Farey addition of bulbs. The
main rule we must be sure to adhere to is: Two bulbs can only be Farey parents
if all the bulbs between them are smaller than they are. For example, one can
check that the largest bulb between the 4/11 bulb (the one containing c = −0.292 +
0.633i) and the 2/5 bulb is the 3/8 bulb. Here the Farey addition clearly does not
work. However, since the supposed child 3/8 bulb is clearly larger than the parent
4/11 bulb (which the reader should check on the applet), we know that Farey addition
is not applicable in this instance.

There is another issue to be dealt with if this Farey addition is to truly help us
compute the bulb fraction for all the p/q bulbs. Between the B1/3 and the cusp of the
cardioid K1 there is a largest bulb, but how can one use Farey addition to determine
it? The key is to treat the cusp itself like a Farey parent which is larger than all
other bulbs. We leave it to the reader in Additional Exercise 1.193 to experimentally
determine what Farey fraction should be used to represent the cusp.

1.5.5. Sub-bulbs of M. Just as the Main Cardioid K1 of M has many p/q bulbs
attached to it, so does each p/q bulb have many “sub-bulbs” attached. Let’s investigate
these small sub-bulbs. Use the Parameter Plane and Julia Set Applet to view the
change in dynamics as we let c vary from c1 = −0.16097811 + 0.80545706i within the
1/3 bulb to c2 = −0.17462417 + 0.8296561i in an attached smaller sub-bulb. We see
that the attracting 3-cycle became an attracting 15-cycle. Note also how the picture of
the Julia set with the attracting 15-cycle has features common to both Julia sets with
an attracting 3-cycles and Julia sets with an attracting 5-cycle. We see that 3 bulbs of
K(fc1) meet at each pinch point. In changing c to c2, we see that these pinch points
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from K(fc1) persisted, but also, within each bulb of K(fc1), new pinching occurs, such
that at each of these newly formed pinch points 5 different bulbs of K(fc2) meet. See
Figure 1.18 and also take some time to use the zooming features in the Parameter
Plane and Julia Set Applet to see this pattern repeat at all scales (remembering to
adjust the Dynamic plane max iterations value as needed).

Figure 1.18. Left shows J(fc1) and right shows J(fc2), slightly magni-
fied to make it easier to see.

Small Project 1.119. Investigate the behavior witnessed above by entering into
a variety of sub-bulbs attached to a variety of p/q bulbs. Can you discern a pattern? If
shown an example of a Julia set such as the one in Figure 1.19 below, can you identify
which sub-bulb the c value came from?

1.5.6. Limbs and Antennae in M. It turns out that the Mandelbrot set M is
a connected set. Your intuitive notion of what connected means will suffice in this
chapter. However, we can also more formally describe the notion in this case by saying
that any simple closed curve in the complement of M must either wind around no
point of M or must wind around all of M . The fact that M is connected is not easy to
prove and so we shall not attempt to do so here, but we will avail ourselves of this fact
in order to describe some other important aspects of M . In particular, we make use of
the fact that we can naturally “disconnect” M into two connected pieces by removing
any root c(p/q) of a p/q bulb (a fact we also will not prove here).

Definition 1.120. The set M \{c(p/q)} consists of two connected sets, one which
contains the cardioid K1 and the other containing Bp/q, which we call the p/q limb.

On each p/q limb there is the main p/q bulb with infinitely many sub-bulbs at-
tached. Each of these sub-bulbs in turn has an infinite number of tinier sub-sub-bulbs,
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Figure 1.19. How can you tell where to find the corresponding c pa-
rameter for this picture of J(fc)?

and so on. However, the p/q limb contains more than just these bulbs. It also contains
what we informally call antennae made out of thin filaments that, sort of, reach out
from the p/q bulb. Looking straight above the 1/3 bulb there is a junction where
3 equally spaced filaments, which we informally call spokes, meet (see Figure 1.20).
The main or principal spoke is the one which attaches to the 1/3 bulb, and the
shortest spoke is a 1/3 rotation about the junction point from the main spoke (and if
you were wondering, yes, the 1/3 rotation here is, in fact, related to the 1/3 designa-
tion of the bulb). It turns out that this relationship between the short spoke and the
p/q value occurs quite frequently, but not necessarily always (e.g., examine B1/5 which
contains the point c = 0.39 + 0.33i using the Parameter Plane and Julia Set Applet).
This generalization has been made into a formal theorem, but to do so, the notion of
“shortest” had to be changed slightly (see [6]). We also note that if you zoom in on
other junctions found on the antennae on the 1/3 limb, you will very often (but not
always) see 3 spokes meeting at the junction. This type of (more than) coincidence
cries out for further exploration indeed. First we make a definition.

Definition 1.121. When q spokes meet at a junction point, we will call this a
junction point of order q.
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Figure 1.20. Illustration of main junction point of 1/3 limb of M .

Exploration 1.122. Investigate other p/q limbs and their principal spokes to get
an idea of how often the spoke that is a p/q rotation from the main spoke is the
shortest. Is there a similar pattern for the longest spoke? Try it out!

Exploration 1.123. Investigate other p/q limbs and the junction points within
them to get an idea of how often the junctions there are of order q. What is the order
of the other junctions? Is there a pattern to the types of junction orders one can find
on a given p/q limb? Try it out!

In the course of exploring the p/q limbs you may have stumbled upon many baby
Mandelbrot sets like the one in Figure 1.21. In order to see these baby Mandelbrot sets
clearly you will usually want to adjust the Parameter plane max iterations value
to 300, 400, 500, or even 1,000 or more depending on the size of baby Mandelbrot set
you want to see. Also, adjusting the Color sample rate can help. We mentioned
before that these baby Mandelbrot sets are everywhere (to be more precise, they are
dense in ∂M), however, even though they are all unmistakable “copies” of the original
M set, they are not all the same. They each have different decorations (antennae
sprouting from them). If we pay close attention to these antennae and how many meet
at the various junction points, can we get an idea how the given baby Mandelbrot
set is related to the p/q limb it lives in? For example, in Figure 1.21 we see that the
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junction points near the “tips” of the antennae are all of order 3. Furthermore, we see
that along these filaments, closer to the baby Mandelbrot set, we have junction points
of order 5. Can this information be a clue to help you find where this baby Mandelbrot
set lives? Imagine playing a game where your friend shows you a picture of a baby
Mandelbrot set. Can you win the game by telling your friend where it lives? Note:
These are very hard questions, but maybe investigating these you will be able to come
up with some partial answers, connections, or maybe come up with some interesting
questions of your own.

Figure 1.21. Which p/q limb contains this baby Mandelbrot set? Off
of which sub-bulb of Bp/q does it live?

In your investigation of the antennae, bulbs, and limbs of M you may have also
noticed that some of the parameter plane pictures (specifically enlarged areas of the
tips of the antennae of M) look very much like some of the dynamic plane pictures
(specifically enlarged areas of the tips of certain Julia sets). In fact, these pictures
can look so much alike that in can be confusing which is which (see Figure 1.22).
This general phenomenon was proven in [20] where it was shown that zooming in the
parameter plane near a Misiurewicz point c (see Definition 1.96) will show a portion
of the Mandelbrot set which is a rotation of an enlargement of the Julia set of fc in
the dynamic plane near c. This fact is quite curious given that the parameter plane
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and the dynamic plane are, on the face of things, really different animals.17 Why do
parts of the Mandelbrot set seem identical to parts of certain Julia sets? The proof is
too complicated for these pages, but we will be sure to witness and admire examples
of it. Use the Parameter Plane and Julia Set Applet to zoom in very far on the point
c = 0.4711819+0.3541484i in both the parameter plane and the dynamic plane
(note that in the dynamic plane, c is the the first point in the critical orbit). Then
compare the portion of M near c to the portion of J(fc) near c. Up to a rotation it
seems that these images are indeed identical.

Figure 1.22. Which is part of the Mandelbrot set and which is part of
a Julia set?

1.5.7. Fixed points for fc(z) = z2 + c. In this section we make a few remarks
regarding the dynamics near the fixed points of fc(z) = z2 + c .

Example 1.124. Using the Parameter Plane and Julia Set Applet set c = −0.513+
0.5693i in the parameter plane and then choose seed z0 = −0.4034+0.2896i (very near
the main pinch point) in the dynamical plane. Zoom in close to the fixed point (with
the Plot fixed points box, you can color these purple to more easily identify them)
and then iterate this seed value one step at a time and observe the behavior. Try
iterating several other seeds near the pinch point to see the same behavior. From this
behavior we see that the main pinch point is a repelling fixed point whose multiplier
λ has argument very close to (2/5) ∗ 2π.

Exercise 1.125. Using paper and pencil (along with your calculator/computer)
solve for the fixed points of fc where c = −0.513 + 0.5693i as in Example 1.124.
Compute their multipliers and verify that the “pinch point” multiplier λ does indeed

17This reminds the author of a comic strip which said, in paraphrased form, “Most mathematical
discoveries are not accompanied by a shout of ‘Eureka!’, but rather a quietly spoken ‘Huh, now that’s
curious.’”
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have argument very close to (2/5)∗2π. Also, use the Complex Function Iterator Applet
or Global Complex Iteration Applet for Polynomials to iterate the map z 7→ λz for
various seed values near the repelling fixed point at the origin. Compare the dynamics
of z 7→ λz near the origin and z 7→ fc(z) near the “pinch point”. Try it out!

Exploration 1.126. Try investigating other c values in the 2/5 limb to see if it
is always the case that the repelling fixed point has a multiplier with argument very
close to (2/5) ∗ 2π. You can do this experimentally by checking the behavior of orbits
which start near the repelling fixed point (use the Plot fixed points feature in the
Parameter Plane and Julia Set Applet to locate the fixed points). Relate the argument
of the multiplier to the dynamics near the repelling fixed point, specifically, note how
this argument corresponds to the spiralling we see in K(fc) near the repelling fixed
point. How would this behavior change in other p/q limbs? Try it out!

Above we witnessed the role of the fixed point of fc which also serves as a main
“pinch point” in the set K(fc). What can you observe about the other fixed point? In
what way does it appear to be different from the main “pinch point”? Does it have a
special dynamic role? Can you prove anything or make a conjecture about this fixed
point?

1.5.8. Concluding remarks about the family of maps fc(z) = z2+c. Though
we have witnessed and discussed many aspects of the Mandelbrot set there are many
more things to know. We encourage the reader to delve deeper into the topics we
discussed here and certainly pursue your own line of questions. There are many fas-
cinating things left to discover in this infinite playground of mathematics. Go enjoy
it!

We end this section with a remark about one of the goals we stated in the intro-
duction to this chapter. This goal is to introduce, investigate, and understand what
we can about chaotic dynamical systems. Systems involving the weather, the stock
market, or the motion of all the heavenly bodies in the Milky Way galaxy are easy
to believe to be chaotic. There are so many uncontrollable variables in these systems,
and changing one, even just a little, will impact all the other variables. However, what
we see with this family of maps fc(z) = z2 + c is also chaos. But with the family
fc(z) = z2 + c , chaos ensued without a hundred unknown variables or any random
processes. This simple system of one complex variable and one complex parameter
turns out to produce chaotic behavior of an unimaginable wide and rich sort. This
gives us small taste of what is truly a global phenomenon – chaos is all around us, even
in what seems like the simplest of systems. For a wonderful and non-technical layman’s
look at some history of chaos, chaos theory, and the chaoticians who investigate it, we
recommend the book CHAOS: MAKING A NEW SCIENCE by James Gleick [15].

1.5.9. Other Uni-critical families of polynomials. In this section we inves-
tigate the dynamics of polynomials of the form Pc(z) = zd + c where d = 2, 3, 4, . . .
(noting that we have already extensively studied the d = 2 case). Since these maps also
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have only one finite critical point (at the origin), we can analyze the parameter space of
these maps in much the same way as we did for the maps fc(z) = z2 +c . In particular,
we will define the d-th degree Mandelbrot sets to be Md = {c ∈ C : P n

c (0) 9∞},
where it is understood that polynomial P is of fixed degree d. As we were told for the
Mandelbrot set, the condition that the critical orbit {P n

c (0)} tends to ∞ is equivalent

to the condition that some point in this orbit escape 4(0, 2). Steps to prove this, and
more, are given in Additional Exercise 1.194.

The reader is encouraged to explore the dynamics of each such family of maps using
the Parameter Plane and Julia Set Applet. Where the function z2 + c appears, use the
drop down menu to select zd + c, and then enter in any integer d > 2. Immediately,
you will notice that the parameter plane and the dynamic plane exhibit certain sym-
metries (see Additional Exercise 1.195). Furthermore, you will recognize Md as the
connectedness locus for this new family as well (see Additional Exercise 1.196).

Large Project 1.127. Investigate these families of maps using the Parameter
Plane and Julia Set Applet in the same way as as we did for the family fc(z) = z2 + c.
Try to find patterns and relationships in the bulbs and antennae. Develop your own
questions, make conjectures, and describe Md.

1.6. Transcendental Dynamics

In this section we investigate the dynamics of three different families of maps
Ec(z) = cez, Sc(z) = c sin z, and Cc(z) = c cos z, where again c ∈ C \ {0} is a pa-
rameter. We first consider the dynamic properties of these maps for fixed c, then we
study the parameter plane, that is, we investigate what changes occur in the dynamics
when the parameter c is varied. These functions all have one very striking difference
from the maps Pc(z) = zd + c studied above. They are transcendental entire maps,18

and as such they not only fail to have an attracting fixed point at ∞, they fail to
even be defined at ∞. In fact, these maps have an essential singularity at ∞ which,
among other things, means that they cannot be defined at ∞ in any continuous way
(see Example B.12). However, it turns out that ∞, or more specifically the basin of
∞, still plays a central role. In fact, it turns out that instead of the basin of ∞ being
in the Fatou set like we have for polynomials, we have quite the opposite.

Proposition 1.128. For each of the maps Ec(z) = cez, Sc(z) = c sin z, and Cc(z) =
c cos z, where c ∈ C \ {0}, the Julia set is equal to the closure of the attracting basin

of ∞, e.g., J(Ec) = AEc(∞).

The reader should pause for a moment to take in the striking difference asserted
by this proposition between polynomial dynamics and the dynamics of the given tran-
scendental maps. Though the proof of this is beyond the scope of this text, we will
make use of this result (see [5, 8] as a general references on the dynamics of Ec). In

18A transcendental entire map map is defined to be a map which is analytic on all of C (entire), but
which is not a polynomial.
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particular, we use this fact to program the computer to attempt to illustrate the Julia
sets of these maps. However, in order to do so, we must first understand how, or
rather in what direction, a point z0 can iterate to ∞ under each of these maps. We
first investigate the map Ec(z) = cez.

Remark 1.129. For those readers who are familiar with Picard’s Theorem (see [1],
p. 242), we give some idea why the Julia set of certain transcendental entire functions
is related to the closure of the points which iterate to ∞. Picard’s Theorem says that
given any entire map g with an essential singularity at∞ and given any neighborhood
U of ∞ (no matter how small), g will map U \ {∞} infinitely often onto the entire
complex plane C minus at most one point. This means that with the exception of at
most one point w ∈ C, there are infinitely many points z ∈ C such that g(z) = w.19

Hence, there must be a very high degree of sensitive dependence as some points very
near ∞ must have very different orbits even in the first application of the map (let
alone after repeated iteration of the map).

1.6.1. Exponential dynamics. In this section we investigate the dynamics of
the complex exponential maps Ec(z) = cez. Recall that Ec(z) = cez = cexeiy where
x = Re z and y = Im z, and so |Ec(z)| = |c|ex. Hence we see that Ec(z) is very
large, and thus close to ∞, when x = Re z is large. In particular, if Re z > 50, then
|Ec(z)| > |c|e50 is extremely large indeed (for any c that is not so small that a computer
would recognize it as 0). We use this to justify the algorithm implemented in the
Parameter Plane and Julia Set Applet, for drawing J(Ec) (select cez from the function
drop down menu). In particular, a point is colored based on how many iterates it takes
to “escape”, by which we mean have its real part become greater than 50. Thus the
colored points represent AEc(∞), which by Proposition 1.128, must visually look the
same as the Julia set.20 Points colored black do not escape, at least not after iterating
the number of times set in the Dynamic plane max iterations box, and so these
points represent the Fatou set. Since En

c (z0)→∞ if and only if ReEn
c (z0)→ +∞ (see

Additional Exercise 1.197), we say that points that iterate to∞, do so in the direction
of the positive real axis.

Example 1.130. We show that for c = 0.2 the Julia set J(E0.2) is what we will
call a Cantor Bouquet. We note here that our proof will not make use of the applet,
nor of its algorithm, but will employ only the notion of sensitive dependence on initial
conditions. However, we will find it useful to get a visual by first viewing the Julia set
as drawn by the Parameter Plane and Julia Set Applet (see Figure 1.23).

19As an example, consider the map ez which has such an exceptional value at w = 0, but also is easily
seen to have infinitely many preimages of any point in C \ {0}.
20According to the algorithm just described a point z may be identified to be in the Julia set when
in truth it is not. However, one can show that if such were to occur, there would have to be a point
very close, depending on the parameter settings of the applet, to z which does truly lie in the Julia
set (see Additional Exercise 1.198). Hence for the purpose of creating a visual representation of the
Julia set, this technical issue does not pose a serious concern.
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Recalling that points in black do not escape and other points iterate to ∞ (in
the direction of the positive real axis), we see that the colored set depicts J(E0.2). It
appears from the picture that J(E0.2) contains large open sets, but it turns out that
this is simply an artifact of our algorithm’s inability to iterate infinitely many times.
Were we able to set the Dynamic plane max iterations equal to infinity we would
not find any open sets in J(E0.2). We explain why in a moment, but first use the
zooming feature to see that what appears to be tiny “fingers” in J(E0.2) are actually
made of tinier fingers, which are themselves made of even tinier fingers and so on. Try
it out! So we see self similarity again. We now explain why the picture of J(E0.2)
shows these fingers inside of fingers.

Figure 1.23. A portion of the Julia set of E0.2 shown for 0 ≤ x ≤ 10
and −10 ≤ y ≤ 10.

We begin by showing that E0.2 has a real attracting fixed point. Using the In-
termediate Value Theorem we note that E0.2 has a fixed point p for some real value
0 < p < 1 since the E0.2(x)− x is positive for x = 0 and negative for x = 1. Also, we
see that p is attracting since |E ′0.2(p)| < 1.

We now proceed to show that the half plane H = {Re z < 1} is contained in the
attracting basin AE0.2(p). Set η = |E ′0.2(1)| = 0.2e and note that |E ′0.2(z)| < η < 1
for all z ∈ H. Thus, for all z ∈ H, we have |E0.2(z) − p| = |E0.2(z) − E0.2(p)| =
|
∫ z
p
E ′0.2(s) ds| ≤ η|z − p|, where the straight line path is used in the integral. Hence
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the action of E0.2 is to move points in H closer to p by a factor of at least η.21 Formally
using induction, along with the fact that E0.2(H) ⊂ H (verify), the reader can show
that for all z ∈ H we have En

0.2(z)→ p, i.e., H ⊂ AE0.2(p).
The technique just employed which shows how a bound on the derivative can be

used to show “contraction” of a map is a general, and very useful, one. We interrupt
our proof of the Cantor bouquet result in order to state this as a lemma for future use
(whose proof is left to the reader in Additional Exercise 1.199).

Lemma 1.131. (Contraction Lemma) Let f be analytic and map convex 22 do-
main D into itself. Suppose that |f ′(z)| < η < 1 for all z ∈ D. Then f contracts
distances by a factor of at least η on D, i.e., |f(z)− f(w)| < η|z −w| for all z, w ∈ D.
Furthermore, |fn(z)− fn(w)| < ηn|z − w| for all z, w ∈ D. Hence, if a ∈ D is a fixed
point of f , then D ⊂ Af (a).

Returning to the proof that J(E0.2) is a Cantor bouquet we now consider E−1
0.2(H) =

{z ∈ C : E0.2(z) ∈ H}. The reader should use the transformation properties of the
exponential map to justify the picture in Figure 1.24, in that C \ E−1

0.2(H) consists
of infinitely many components, which we call fingers. In particular, we label these
fingers by Ck for each k ∈ Z, noting that each Ck is just a translate by 2πik of C0. We
also note that H ⊂ E−1

0.2(H).
We note that each Ck is mapped conformally23 onto the half plane {Re z ≥ 1},

and thus each Ck must contain a preimage under E0.2 of each Cj for all j ∈ Z. These
preimages, shown in red in Figure 1.25, are each sub-fingers of Ck with what we infor-
mally call gaps (in black) in between. We note that these gaps, just as in Figure 1.24,
extend all the way to ∞ (in the direction of the positive x-axis).

We continue to take inverse images of H to see that, for any n ∈ N, the set E−n0.2 (H)
has a complement C \ E−n0.2 (H) consisting of fingers inside of fingers inside of fingers,
and so on. More precisely, we make the following definition.

Definition 1.132. We call each component of C \ E−n0.2 (H) a stage n finger.

For example, Figure 1.24 depicts stage 1 fingers in red and the bottom picture
in Figure 1.25 depicts stage 2 fingers in red. The gaps (in black) are then portions
of E−2

0.2(H) which separate the fingers from each other. We encourage the reader to
investigate these stage n fingers more closely using the Parameter Plane and Julia
Set Applet by setting both the Dynamic plane max iterations and the Dynamic
plane min iterations to n, while setting the Escape criterion to Re z > 1. Note

21Using the Parameter Plane and Julia Set Applet with E0.2(z) = 0.2ez, the reader can see this
contraction in action. In the Dynamic Plane window with −2 ≤ Re z ≤ 2 and −2 ≤ Im z ≤ 2 (which
will be all black), pick any two points and iterate the map one step at a time. You can clearly see
that after each step the new points are much closer together.
22A set D is called convex if for any points z, w ∈ D, the line segment connecting z and w is a subset
of D.
23Recall, that a conformal map is one-to-one and analytic.
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C0

C−1

C1

Figure 1.24. In this window of the complex plane, the set E−1
0.2(H) is

colored in black with components of its complement in red for −2 ≤ x ≤
18 and −10 ≤ y ≤ 10. For reference, the unit circle is also shown in
white.

that each stage n finger is contained in a stage n− 1 finger (for n ≥ 2). Also note that
the boundary of each stage n finger (for n ≥ 2) is mapped by E0.2 onto the boundary
of some stage n−1 finger and thus is mapped by En

0.2 onto the vertical line {Re z = 1}.
It will be important to understand how “thick” these fingers can be and so we make

the following definition.

Definition 1.133. Let F be a stage n finger. We define the thickness of F to be
the special value of t such that F cannot contain an open disk with diameter strictly
larger than t, but for any value s < t, the set F does contain an open disk with
diameter s.24

Exercise 1.134. Use the mapping properties of the exponential map and the def-
inition of stage 1 finger to prove that the thickness of each stage 1 finger Ck is π. Try
it out!

24Those familiar with the concept of supremum may recognize that t = sup{2r > 0 : ∆(z, r) ⊂
F for some z ∈ F}, the supremum of the diameters all open disks contained in F .
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C0

Figure 1.25. On top you can see the tip of the finger C0 and on bottom
you can see a portion of E−2

0.2(H) = E−1
0.2(E−1

0.2(H)) for 1 ≤ x ≤ 6 and
−2 ≤ y ≤ 2. The red sub-fingers each sit well inside of C0.

Note that the set Fn = C \ E−n0.2 (H) is the union of all stage n fingers and because
each stage n finger is contained in a stage n− 1 finger we see that F1 ⊃ F2 ⊃ . . . , and
in particular, F1 ∩F2 ∩ · · · ∩Fn = Fn. Thus in some loose sense we can regard ∩∞n=1Fn
as the union of all of the stage “infinity” fingers. It is these stage “infinity” fingers
together with the point at ∞ that comprise the Julia set, a proposition we state as
follows.

Proposition 1.135. The Julia set J(E0.2) = ∩∞n=1Fn ∪ {∞} = C \ AE0.2(p).

We set J = ∩∞n=1Fn∪{∞} and outline the proof as follows. First, note the following
facts, whose proof we leave to the exercises: (a) any two fingers are always separated
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by an infinitely long gap (of black) points in AE0.2(p) (see Additional Exercise 1.200),
and (b) the thickness of the stage n fingers shrink to zero as n goes to infinity (see
Additional Exercise 1.201). Facts (a) and (b) can then show that the set J cannot
contain any open set (see Additional Exercise 1.202). Hence for any point z ∈ J we see
that there are are points arbitrarily close which lie in ∪∞n=1E

−n
0.2 (H), and thus iterate to

p. Since the orbit of every z ∈ J lies forever in {Re z ≥ 1} by the definition of J (and
thus is quite different from an orbit which converges to p), we get that z is sensitive
to initial conditions and so z ∈ J(E0.2). Likewise, for a point not in J , it and all the
nearby points which also lie in the open set AE0.2(p) have the same dynamic behavior
(in that they all iterate towards p), placing such a point in the Fatou set F (E0.2).
Hence we have shown J = J(E0.2) as desired.

Exploration 1.136. Use the Parameter Plane and Julia Set Applet to track the
orbit of nearby points in J(E0.2) to witness this sensitivity to initial conditions. It is
a bit difficult to pick points that stay in the viewing window after more than a few
steps, but by looking at the data in the orbit tabs at the bottom, you can see the orbits
separate from each other. You can also zoom in on the picture so that you can choose
your initial seed values very close to each other, and then zoom out to see their orbits.
Try it out!

1.6.2. Hairs and endpoints. Thinking again about this construction of J(E0.2)
we now describe this “Cantor Bouquet” by describing the “hairs” (previously called
the stage “infinity” fingers) which make up this set. This section is not crucial to
moving forward with the rest of the text, and we will not provide all of the details
here to prove everything claimed, but we won’t let that get in the way of discussing
some very fascinating aspects of what we have stumbled upon in the above example.
This section is more about “points of interest” that may inspire the motivated reader
to pursue such ideas further.

Pick a stage 1 finger Ck1 and from the infinite number of sub-fingers within Ck1
pick one sub-finger Ck1k2 . Then from the infinite number of sub-sub-fingers within that,
pick one sub-sub-finger Ck1k2k3 . Continuing on in this fashion so that each Ck1k2...kn
is a stage n finger which lives in Ck1k2...kn−1 . We see that ∩∞n=1Ck1k2...kn must, by (b)
above, be infinitely thin (i.e., contain no open disk of any radius), but which also
stretches to∞ in the positive x-direction. We call this intersection γ a hair, and note
that there are infinitely many (actually uncountably many) of these hairs in J(E0.2).
It turns out that each hair γ is actually a curve, that is, an image of a continuous
map hγ : [0,∞) → C such that h(t) → ∞ as t → ∞. We call the point h(0) the
endpoint of the hair γ. There are a few important details to be shown to prove all
this. In particular, an important detail we have yet to address at all is: how do we
know that there is anything left in the set γ = ∩∞n=1Ck1k2...kn , or even in the larger set
in ∩∞n=1Fn? Perhaps, the left “tips” of the stage n fingers move farther and farther to
the right in a way that the set ∩∞n=1Fn is actually empty. We leave it to the interested
reader to pursue these matters in [5]. However, we do have another way to see that
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we have infinitely many hairs (clearly shown to have finite endpoints) in J(E0.2) and
the interested reader can pursue this in Additional Exercise 1.203.

As one can see in the construction above, each hair is separated from any other
hair by an infinite (though possibly very thin) gap which stretches out to ∞ in the
direction of the positive x-axis. Thus in the plane C we would say these hairs are all
separated from each other. However, by including∞, where all these hairs “meet,” we
produce a set J(E0.2) ∪ {∞} which is a connected subset of the sphere C.

We conclude this section with remarks about two truly fascinating properties of the
Cantor Bouquet J(E0.2). In order to discuss this properly we will need the following
more general definition of what it means for a (not necessarily open or closed) subset
of C to be connected.

Definition 1.137. A set C is connected in C if one cannot find open subsets U and
V of C such that (i) U ∩C 6= ∅, (ii) V ∩C 6= ∅, (iii) C ⊂ U ∪V and (iv) U ∩V ∩C = ∅.
Another, perhaps more intuitive definition is as follows: A set C ⊂ C is connected in
C if we cannot we break up (disconnect) C into a disjoint union of non-empty sets A
and B (thus C = A ∪ B) such that no sequence from one set converges to a point in
the other set.

We can now present (without proof) two startling properties of the Cantor Bouquet
J(E0.2).

Property 1. Let E denote the set of all endpoints of all the hairs in J(E0.2). Then
the set E∗ = E ∪ {∞} is connected in C. Informally, this says that these endpoints
together with ∞ are somehow bunched up together so tightly in such a way that it is
impossible to disconnect this set in the manner described in Definition 1.137. However,
and here comes the strange part, it turns out that removing∞ from E∗ creates a totally
disconnected set E (i.e., the only connected subsets of E are sets which contain just a
single point). In fact, we can show this second part quite easily by noting that between
any two hairs there is a gap in F (E0.2) between them, thus showing that the endpoints
of these hairs cannot both lie in the same connected subset of E . This gap, however,
extends to ∞ and so cannot be used to create a disconnection of E∗. However, it still
remains to be shown that no other method of disconnecting E∗ can work either. Since
this is too complicated for the present text we leave the interested reader to view the
details in [21].

Property 2. The Hausdorff dimension is a concept that allows one to assign a number
to each set in C which relates to the “size” of the set. The number is defined (see [11]
for further details) in such a way that it shares many of the properties of our usual
notion of dimension and so we refer to it as a “dimension” even though it need not be
an integer. In particular, the Hausdorff dimension of a set measures, in some sense,
“how much space the set fills up”. With this, the Hausdorff dimension of any smooth
curve, in particular, any hair in J(E0.2) (which are shown to be smooth in [4]), has
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dimension 1, whether the endpoint is included or not. Let H denote the union of all
open hairs, that is each hair with its endpoint removed. Thus H = J(E0.2) \ E∗.
These hairs, as you will recall, are each separated by gaps that prevent them from
accumulating too much and “filling up” a lot of space. So, at least heuristically, it
seems plausible that H has Hausdorff dimension equal to 1, which it turns out it does.
What is astounding is that the set of endpoints E has dimension equal to 2. Thus the
endpoints seem to bunch up in a strange fashion so that the set of all of them “fills
up” two dimensions worth of space. Since for each infinitely long hair there is only one
endpoint, it seems impossible that the set of endpoints could be larger than the set of
open hairs (as measured by Hausdorff dimension). But this is exactly what happens.
The interested reader should see [18, 19] for the details.

1.6.3. Critical orbits, Exploding Julia sets, Parameter space for Ec(z) =
cez. As we have seen, the role of critical points dictates much about the overall dy-
namics of a rational map, especially for the family of polynomials fc(z) = z2 + c. The
exponential maps Ec, however, have no critical points (verify), but each such map does
have 0 as what we call an asymptotic value and this will play a critical role very much
like a critical point for a rational map does.

Definition 1.138. An asymptotic value for an entire function f is a value a ∈ C
such that there exists a curve γ : [0,+∞) → C tending to ∞ (i.e., γ(t) → ∞ as
t→ +∞) such that f(γ(t))→ a as t→ +∞.

We note that for the case of Ec we may choose the curve to be the negative real
axis, along which the values Ec(z) → 0 since Re z → −∞. The following theorem,
whose proof can be found in [5], is a result which parallels Theorems 1.87 and 1.91
given for rational maps.

Theorem 1.139. Let f be a transcendental entire map. Then the immediate basin
of each (super) attracting cycle of f contains either a critical point of f or an asymptotic
value of f .

From this result we see that the orbit {En
c (0)}∞n=1 plays a very special role and so

we call it the critical orbit.

Fact 1. Any attracting cycle of Ec must attract the critical orbit {En
c (0)}∞n=1.

Fact 1 follows from Theorem 1.139. This next fact, however, has a proof beyond
the scope of this text, but we shall nonetheless make frequent use of it.

Fact 2. If the critical orbit En
c (0)→∞, then J(Ec) = C.

Note that Fact 2 is strikingly different from anything we have yet seen. In fact, due
to the super attracting fixed point at ∞ for any polynomial we know that we could
never have such a Fatou set be empty.

Fact 2 also leads us to discover the fascinating exploding Julia sets we can see when
we vary the parameter c in the map Ec. As we saw in Example 1.130, J(E0.2) is a
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Cantor Bouquet of hairs and F (E0.2) consists of exactly the attracting basin of a finite
attracting fixed point p ≈ 0.26. However, if we increase c from c = 0.2 to c = 0.5 we
see that En

0.5(0)→ +∞ and so, by Fact 2, we must have J(E0.5) = C. Hence some real
value c∗ between c = 0.2 and c = 0.5 must be a bifurcation point where the dynamics
drastically change. What we see is that as c grows from being smaller than c∗ to larger
than c∗ the Julia set goes from being confined to {Re z ≥ 1} to exploding to be all of
C (see Additional Exercise 1.204).

So we see that we get very different dynamic behavior for Ec depending on whether
or not the critical orbit escapes to ∞. We use this dichotomy to color the parameter
plane based on how many iterates it takes for the critical orbit to escape (that is, have
real part become greater than 50), leaving the c parameter black if the critical orbit does
not escape. You can view and investigate this parameter space using the Parameter
Plane and Julia Set Applet. Using this applet, set the window in the Parameter plane
to show [−3.2, 3.2]× [−3, 3] to find a cardioid shape region, with many bulbs attached.
You will likely want to set the Parameter plane max iterations value to 40, 60,
80, or 100 to see this cardioid in more detail. However, due to the computing power
needed to compute the complex exponential iterates, each picture may take a little
while for the applet to complete.

Exploration 1.140. Take some time to experiment with this applet to see if you
can guess the dynamical significance of this cardioid and some of the attached bulbs.
Try it out!

Let’s investigate this exponential parameter plane much like we did for the family
fc(z) = z2 + c by calculating the set L1 of c values for which Ec has an attracting
fixed point p. In order for p to be an attracting fixed point we require Ec(p) = p
and |E ′c(p)| < 1. The first condition yields cep = p which used with the second gives
|p| = |cep| < 1. Notice in this case p is both the fixed point and the multiplier. Thus
we are looking for c such that c = pe−p for |p| < 1. By letting p move around the unit
circle, the corresponding c values trace out the cardioid-like set in the parameter plane
pictured in Figure 1.26.

This cardioid has many similarities with the cardioid K1 found in the Mandelbrot
set. For example, one can find p/q bulbs attached to its boundary. (Note that the
letter p when used to refer to an attracting fixed point of Ec is a complex number,
whereas the p used in the numerator of p/q to denote a particular bulb is always a
positive integer (as is q). Context will always make it clear which is which and so no
confusion should arise.) These p/q bulbs may not be located where you first expect.
For example, the 1/3 bulb in the Mandelbrot set M was found at the top of the cardioid
K1 whereas the top of L1 has the 2/5 bulb attached.

Exploration 1.141. Use the Parameter Plane and Julia Set Applet to investigate
the “new” locations of the p/q bulbs. One way to determine the location of these p/q
bulbs is to experiment long enough to find a pattern (can you use Farey addition here
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Figure 1.26. This cardioid-like shape is the boundary of L1, the set
of c parameters which give rise to an attracting fixed point for the map
Ec(z) = cez.

too?). Another way is to use the multiplier map, or more precisely, the inverse of the
multiplier map (see Additional Exercise 1.205). Try it out!

Exploration 1.142. Where is the 1/2 bulb located? Does it have a sub-bulb
which corresponds to attracting 4-cycles? Try it out!

Exercise 1.143. Whether or not you think you can solve it, try to come up with an
interesting mathematical question about what you see in the dynamics of exponentials.
Try to draw parallels, or show where parallels do not hold, with the family fc(z) = z2+c
. Try it out!

1.6.4. The Trigonometric maps. Recall that sin z = −i
2

(eiz − e−iz) and cos z =
1
2
(eiz+e−iz), and set Sc(z) = c sin z and Cc(z) = c cos z. We leave it to the reader to use

these facts to show that orbits under the maps Sc(z) and Cc(z) “escape” to ∞ in the
direction of the positive or negative imaginary axis (see Additional Exercise 1.206).

Thus, using Proposition 1.128 to note J(Sc) = ASc(∞) and J(Cc) = ACc(∞), the
algorithm in the Parameter Plane and Julia Set Applet for creating the Julia sets
for the exponential maps Ec(z) = cez can easily be modified. In particular, an orbit
under either Sc or Cc is deemed to limit to ∞ if any point in the orbit has imaginary
part larger than 50 in absolute value. It is known that neither Sc nor Cc has a finite
asymptotic value (see Additional Exercise 1.207), however, both have infinitely many
critical points. At first glance this may appear to provide us with considerable difficulty,
since a map having more than one critical orbit would pose a real challenge to coloring
and analyzing the parameter space as easily as we have done for the maps zd + c and
cez. However, as we ask you to verify in Additional Exercise 1.208, each map Sc and
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Cc has just one critical orbit. In particular, {Snc (c)}∞n=1 is the critical orbit for Sc and
{Cn

c (c)}∞n=1 is the critical orbit for Cc.
As in the exponential case we have key facts that will greatly aid in our under-

standing of the dynamics of these Trigonometric functions.

Fact 1. Any attracting cycle of Sc must attract its critical orbit {Snc (c)}∞n=1.

Fact 2. Any attracting cycle of Cc must attract its critical orbit {Cn
c (c)}∞n=1.

Fact 3. If the critical orbit Snc (c)→∞, then J(Sc) = C.

Fact 4. If the critical orbit Cn
c (c)→∞, then J(Cc) = C.

Because the orbit {Snc (c)}∞n=1 is critical to the dynamics of the map Sc, we can then
draw the parameter plane much like we did for the family of maps Ec. In particular,
the Parameter Plane and Julia Set Applet will color each c parameter based on how
many iterates it takes for the critical orbit to escape, in this case in the direction of
the positive or negative imaginary axis. As before, the c parameter is left black if the
critical orbit does not escape. As always, we must heed the usual warnings that the
computer is illustrating only an approximation (hopefully a good one) to the actual
dynamics we are trying to study. The applet for Cc works similarly. Use this applet
now to experiment and investigate the dynamics you find with the functions Sc and
Cc. If you look closely in the parameter planes, you will find a familiar friend. Try it
out!

1.7. The Mandelbrot Set is Universal

You have probably noticed that the parameter planes for the maps fc(z) = z2 +
c, Cc(z) = c cos z, and Sc(z) = c sin z drawn by the Parameter Plane and Julia Set
Applet all show show black regions that contain sets which resemble the Mandelbrot
set M . See Figure 1.27.

The appearance of copies of the Mandelbrot set in all of these diverse settings
is quite unexpected. Why should the Mandelbrot set, a picture of the fundamental
dichotomy in the study of the parameter space of quadratic maps fc(z) = z2 + c , have
anything to do with the parameter space of the transcendental maps Cc(z) = c cos z
and Sc(z) = c sin z? It turns out that the Mandelbrot set, or at least various “copies”
of it appear in so many parameter planes that it is truly a fundamental mathematical
object (much like the numbers π and e) which arises in many unexpected places. Just
like we saw that baby Mandelbrot sets are dense in the full Mandelbrot set M , so too
are they dense in many parameter spaces. The main reason behind all of this, which
we can only state loosely in this text, is that very often iterates of maps have dynamic
behavior very much like the dynamic behavior of iterates of a quadratic polynomial,
when these maps are considered on relatively small domains. Thus as a parameter is
changed, we see the same type of changing behavior in the parameter plane of this
family of maps as we do in in the original family fc(z) = z2 + c corresponding the
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Figure 1.27. The original Mandelbrot set M (upper left), a “copy” of
M containing c = 3.2 in the parameter space for c cos z (upper right),
a “copy” of M containing c = 2.17 + 1.3i in the parameter space for
c sin z(lower left), and a “copy” of M containing ρ = 0.906 + 0.423i in
the parameter space for Newton’s method applied to the map pρ(z) =
z(z − 1)(z − ρ).

original Mandelbrot set. The interested reader can look to [22] where it is shown that
small Mandelbrot sets are dense in the bifurcation locus for what are called holomorphic
families of rational maps.

1.8. Concluding remarks and new directions

We have investigated the chaos that arises through a number of different complex
dynamical systems. We saw how Newton’s method can (and very often must) produce
very chaotic behavior, represented by beautiful fractal images. In order to investigate
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such chaos in a more general setting, we turned our eyes to iteration of analytic maps
that were not necessarily generated as the Newton map of some polynomial. There
we found that even in the seemingly simple class fc(z) = z2 + c there was a richness
and complexity we could not have imagined. Many of these features were also present
in the dynamics of the entire maps Ec(z) = cez, Sc(z) = c sin z, and Cc(z) = c cos z,
though some new phenomena also appeared. Throughout, an important part of our
investigations was to track, if we could, how the behavior of these systems changed
when the maps were changed. We did this with the above families by varying the
parameter c. In some sense, however, these were really mild perturbations of the maps
since many of the salient features of the maps (such as the super attracting fixed point
at ∞ for fc(z) = z2 + c or the essential singularity at ∞ for the transcendental maps)
persisted no matter how the c values were changed.

1.8.1. Perturbation with a pole. There are, however, many ways to perturb a
map that warrant our attention and can pique our interest in what turns out to also
produce very beautiful mathematics. For example, the maps Fc(z) = zd + c/zm with
fixed d,m ∈ N are, for c ∈ C \ {0}, perturbations of the dynamically well understood
map z 7→ zd. Unlike the fc(z) = z2 + c perturbations of z 7→ z2, however, these maps
Fc add a whole new dimension to the analysis due to the pole appearing at the origin.
In particular, for c very small, the map Fc behaves very much like z 7→ zd, but only
as long as z is sufficiently far from the origin. Near the origin the presence of the
pole changes the dynamics considerably from z 7→ zd. It turns out that such systems
leads to much fascinating mathematics that can sometimes be represented by pictures
such as Figure 1.28 showing features not observed in any of the systems studied in this
chapter.

Large Project 1.144. Investigate the dynamics of the maps of the form Fc(z) =
zd + c/zm. You can use the Parameter Plane and Julia Set Applet to do this, as well
as your own paper and pencil analytic techniques. Note that we have not described
how the parameter plane is being drawn. It is up to you to determine this as well as
figure out what you can on your own. Out of all the maps mentioned in this chapter,
these are the newest and least studied. There is a lot of new territory waiting to be
discovered.

1.8.2. Random Dynamics. In each of the examples of perturbed maps through-
out this chapter, even though the perturbation could be mild by changing a simple
parameter or more severe by adding a pole as in Fc, there was one fundamental as-
sumption always made regarding the perturbed system – once the map was perturbed,
this map was fixed and iterated again and again to create the dynamics. A new way
to perturb a system, however, is to allow the map to change at every step in the orbit.

For example, suppose we start with two maps f and g. The usual iteration dynamics
says we consider the orbit generated by either fn(z0) or by gn(z0). However, it is natural
to ask what happens if at each stage of the orbit either map f or g can be applied? In

76



Figure 1.28. A Sierpinski curve Julia set for the function F (z) = z3 +
0.13i/z3. The regions of various shades of orange are in AF (∞) and the
remaining points in yellow represent J(F ).

some cases the dynamics can be much more uncivilized (and more fun). Such dynamics
investigates the behavior of orbits hi1(z0), hi2(hi1(z0)), hi3(hi2(hi1(z0))), . . . where the
maps hi are chosen to be either f or g. If one chooses each map hi at random at each
stage of the orbit, then one enters the research area of so-called random dynamics. Such
systems are directly connected to the study of what are known as “iterated functions
systems” and their attractors sets (see [7]), such as the van Koch curve and Sierpinski
triangle.

Instead of investigating such attractor sets, we look in another direction. We in-
vestigate what we call a random basin of attraction as follows. Fix a point z0 ∈ C
and randomly select the map h1 to be either f or g (each with probability 1/2).
Then set z1 = h1(z0). Now randomly select the map h2 to be either f or g and set
z2 = h2(z1) = h2(h1(z0)). Continue in this fashion to produce what we call a random
orbit z0, z1, z2, . . . . Now we consider whether or not such a random orbit can have a
particular limit, and what the probability is of having that limit.

Example 1.145. (Devil’s Staircase) Let f(x) = 3x and g(x) = 3x − 2 be de-
fined on the real line R. Now consider for each x0 ∈ R generating a random orbit
x0, x1, x2, . . . as described above. Let P (x0) denote the probability that this random
orbit converges to +∞. Note that here we do distinguish between convergence of this

77



random orbit to +∞ and −∞. It is not hard to believe that if x0 > 1, then we must
have P (x0) = 1 since no matter what choices of f and g we make at each step of the
orbit, we will always have the orbit points growing larger (and positive). Similarly, one
can believe that if x0 < 0, then we must have P (x0) = 0 since both maps f and g force
the orbit points to grow larger (and negative). What happens for 0 ≤ x0 ≤ 1, however,
is much more interesting, and we show the graph of P , called the Devil’s Staircase, in
Figure 1.29.

Figure 1.29. The “Devil’s Staircase” is the graph of the probability
P (x) that a random orbit generated by the maps f(x) = 3x and g(x) =
3x− 2 tends to +∞.

An interesting property of this graph is that between any two steps (which we
define to be the horizontal sections of the graph, i.e., intervals where P ′(x) = 0), we
have infinitely many steps in between. Also, the sum of the lengths of all the steps
between 0 and 1 is exactly 1 (for this reason we say that this graph is almost always
flat, i.e., almost always has P ′(x) = 0). However, this function is both continuous and
increases (not strictly) from y = 0 to y = 1 as x goes from 0 to 1.

Exercise 1.146. Prove the following aspects of the function P (x), the Devil’s
Staircase function, in Example 1.145.

(a) Show that P (x) = 0 for x < 0 and P (x) = 1 for x > 1.
(b) Show that P (0) = 0 and P (1) = 1.
(c) Show that P (x) is increasing (not strictly), i.e., x < y implies P (x) ≤ P (y).
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(d) Show that on the open interval (1/3, 2/3) both P (x) = 1/2 and P ′(x) = 0.
(e) Show that on the open interval (1/9, 2/9) both P (x) = 1/4 and P ′(x) = 0.
(f) Find where P (x) = 3/4.
(g) In parts (d)-(f), you have located the largest step (corresponding to (1/3, 2/3)),

and the two next largest steps. Describe the four next largest steps, and then
describe the pattern relating all steps.

(h) Sum the lengths of all the steps to show this sum is 1.
(i) Show that P (x) is continuous.

Example 1.147. (Devil’s Colosseum) The Devil’s Colosseum is a higher dimen-
sional analog of the Devil’s Staircase, and is also understood through random dynamics.
Instead of functions defined on just the real line, we consider the complex valued maps
g1(z) = z2/4 and g2(z) = z2 − 1, and then using the second iterates of these maps set
f(z) = g2

1(z) and g(z) = g2
2(z).

We now investigate the random basin of attraction for ∞ as follows. Fix a point
z0 ∈ C. Consider the random orbit z0, z1, z2, . . . generated as described above, and
let P (z0) be the probability that this random orbit zn tends to ∞. Note that for z0

large (|z0| > 10 will do), we have P (z0) = 1 since no matter what choices of f or g we
make at each step, the orbit zn will go to ∞. Though it is not as simple, one can also
show P (z0) = 0 for z0 near zero. In between, however we get some very interesting
behavior. In fact, this function P (z) has a graph given in Figure 1.30 called the Devil’s
Colosseum, and it has many properties similar to those of the Devil’s Staircase. In
particular, if you started from the bottom and tried to climb out, you would have to
walk a path very much like the Devil’s Staircase.

Figure 1.30. The left picture shows the Devil’s Colosseum, the graph
of the probability P (z) that a random orbit as defined above tends to∞.
The picture on the right is the inverted Devil’s Colosseum, sometimes
call a fractal wedding cake. The first pictures of these objects were
created by, and carefully studied by, Hiroki Sumi (see [24]).
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We can describe the dynamics which underlie the Devil’s Colosseum in terms of
stability of orbits, and in doing so will introduce the following extensions of the notions
of the Fatou and Julia sets. Let F (〈f, g〉) denote the Fatou set of the random system
described above, which we define to be those points z0 ∈ C such that every randomly
generated sequence of maps hin produces a stable orbit (in the sense that all nearby
seed values will have similar orbits when the sequence of maps hin is used). We then
define the Julia set of this random system to be J(〈f, g〉) = C \F (〈f, g〉). We can thus
describe the oddity of the Devil’s Colosseum like so. The function P is continuous on
all of C, yet it is constant on each component of the Fatou set, even though the Julia
set contains no open set (see [24]). It is these components of the Fatou set which make
up the various horizontal levels (or steps) you see in Figure 1.30. The Julia set then
the set on which P (z) varies (since P (z) does not vary, i.e., it is flat, on F (〈f, g〉)). We
see this Julia set pictured in Figure 1.31.

Figure 1.31. Julia set J(〈f, g〉) in C. This is the the set on which P (z) varies.

Remark 1.148. We note that the random dynamics displayed in the Devil’s Colos-
seum produced something that can not happen with the usual iteration dynamics. For
example, given a polynomial f(z), consider defining a function P (z0) to be the proba-
bility of an orbit with seed z0 tending to ∞. Of course, since there is only one map to
choose, there is no randomness involved at all, and so we see that P (z0) must be either
0 or 1. In particular, we have P (z) = 1 for z ∈ Af (∞) and P (z) = 0 for z ∈ K(f). The
function P is then discontinuous at every point z ∈ ∂Af (∞) = ∂K(f) = J(f). Thus
we see that the random dynamics behind Devil’s Colosseum where P (z) is continuous
on all of C is a real change from iteration dynamics.

Exercise 1.149. The reader is encouraged to investigate such random dynamical
systems visually by generating their own pictures similar to the Devil’s Colosseum.
Sample code is provided in Appendix 1.C.

There is a very large world of chaotic phenomena to explore. Whether you stay
only within the confines of the topics mentioned in this book or venture into new areas,
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there remains an infinite amount of mathematics to discover. We encourage you to go
and explore and make your own contributions to mathematics.
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1.A. Appendix - Definitions and Properties of the Julia and Fatou sets

Here we present the formal definitions of the Fatou set and Julia set of a rational
or entire map. We also a provide the statement of Montel’s theorem, a major tool
in complex dynamics, along with a proposition stating some of the properties of the
Fatou and Julia sets.

Recall that σ(z, w) denotes the spherical distance between the points z, w ∈ C (see
Appendix Section B.2).

Definition 1.150. Let f be a rational or entire map. The Fatou set is the set
F (f) = {z ∈ C : for every ε > 0 there exists δ > 0 such that σ(z, w) < δ implies
σ(fn(z), fn(w)) < ε for all n ∈ N}.

Thus, if z ∈ F (f) and ε is small, then for w to have an orbit ε-similar to the
orbit of z (by which we mean that corresponding orbit points are never more than ε
apart) we just need to choose w close enough to z, i.e., within a distance δ. Another
way to interpret this definition is to say that F (f) is the set of points z such that for
any ε > 0 there exists δ > 0 such that fn(4σ(z, δ)) ⊂ 4σ(fn(z), ε)) for all n ∈ N, i.e.,
a “tiny” neighborhood of z (of size δ measured with the spherical metric) will have an
orbit that “stays tiny” (of size no greater than ε measured with the spherical metric)
along the entire orbit (see Figure 1.32). The reader should reflect on how this fails to
happen with the map f(z) = z2 for any neighborhood of a point on C(0, 1) and also
compare this definition to your own definition given earlier.

A major tool used in dynamics is Montel’s theorem (see [2], p. 9, where it is stated
in terms of the notion of normal families), which we state without proof in a setting
most easily applied to the dynamics of interest to us here.

Theorem 1.151. (Montel’s theorem) Let U ⊂ C be an open set in the domain
set of a rational or entire map f . If the family of maps {fn : n ∈ N} omits any three
given points z, w, v ∈ C, i.e., fn(U) ∩ {z, w, v} = ∅ for all n ∈ N, then U ⊂ F (f). In
particular, if f(U) ⊂ U and C \ U contains three or more points, then U ⊂ F (f).

Montel’s theorem can the make it very quick to show that f(z) = z2 has F (f) =

C \ C(0, 1) = ∆(0, 1) ∪ (C \ ∆(0, 1)). Since f(∆(0, 1)) ⊂ ∆(0, 1), Montel’s theorem

gives ∆(0, 1) ∈ F (f). Similarly, one can show C \ ∆(0, 1) ⊂ F (f). Thus, from our
work in Section 1.3.2 or by considering the above definition of Fatou set, we know
that C(0, 1) does not contain any points in the Fatou set F (f). Hence, we conclude
F (f) = C \ C(0, 1).

Remark 1.152. Though its proof is too advanced for this text, it is true that
if f is a rational or entire map and z0 ∈ F (f), then there exists r > 0 such that
∆σ(z0, r) ⊂ F (f), i.e., F (f) is an open set. However, if f is not rational or entire, then
the set F (f) need not be open. To see this, consider the map f(z) which is defined
to be zero when z = x + iy with both x, y ∈ Q and f(z) = z otherwise. In this case
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Figure 1.32. This picture illustrates how, for a point z0 ∈ F (f), a tiny
neighborhood ∆σ(z0, δ) has a forward image that stays tiny (within an ε
neighborhood of each orbit point zn) for the entire orbit. We illustrated
this up to the fifth iterate, but the reader should take note of the last
arrow with the dots indicating that this happens for all iterates fn.

fn = f for all n ∈ N and F (f) = {0}. See also Additional Exercise 1.209 for such an
example where f is continuous.

Definition 1.153. The Julia set of a rational or entire map f is defined to be

J(f) = C \ F (f).

Hence, for a point z to be in J(f) there must be points w which are arbitrarily
close to z, but which fail to have orbits similar to the orbit of z. More precisely, for a
point z to be in J(f) there must be some ε > 0 such that for every δ > 0, there exists
a point w within a distance δ of z such that the orbit of w is NOT ε-similar to the
orbit of z.

Directly from the definitions and discussion above one can show the following
properties (a)-(d) (see Additional Exercise 1.210). Properties (e) and (f), however,
requires some tools from complex analysis which are a bit beyond the level of this text
(see [1], p. 68 and p. 148, and [23], p. 38).
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Proposition 1.154 (Properties of the Julia and Fatou sets). Let f be a
rational or entire map. Then we have the following:

(a) F (f) is an open set and thus J(f) is a closed set.
(b) F (f) is completely invariant, i.e., if f(F (f)) ⊂ F (f) and f−1(F (f)) ⊂ F (f).
(c) J(f) is completely invariant, i.e., if f(J(f)) ⊂ J(f) and f−1(J(f)) ⊂ J(f).
(d) J(f) contains an open set if and only if J(f) = C.
(e) The set of repelling periodic cycles of f is dense in J(f). That is, each repelling

periodic cycle of f is in J(f) and for every open set U which intersects J(f), there
is a repelling periodic point z which lies in U .

(f) Let A be the set of z in J(f) such that the orbit of z is dense in J(f) (i.e., for
every open set U which intersects J(f), there is an orbit point zn which lies in U).
Then A is dense in J(f) (i.e., for every open set V which intersects J(f), there is
a point z ∈ A which lies in V ).

Remark 1.155. Additional Exercises 1.211 and 1.174 illustrate properties (e) and
(f) explicitly for the map f(z) = z2. Reflecting for a moment, we see, both in the
f(z) = z2 example and in general, the Julia set contains a dense set of points which in
some sense are the ultimate in regular behavior. These are the periodic points - nothing
could be more regular and predictable than to have the orbit follow the same finite
set of points over and over again. However, the Julia set also contains points with a
dense orbit in J(f) which means that it never settles into any type of regularity. Thus
we see that inside the sensitive dependence which defines chaos (and thus defines the
Julia set J(f)) there lies a strange interwoven mix of regularity and unpredictability.

1.B. Appendix - Global Conjugation and Möbius map dynamics

In this appendix we show that global conjugation (see Section 1.2.6) can be used
to quickly classify and understand the dynamics of any Möbius map, i.e., a map of the
form f(z) = az+b

cz+d
where ad − bc 6= 0. The classification depends on the number and

type of fixed points of f and so we begin with the following proposition.

Proposition 1.156. Non identity Möbius maps can only have exactly one or ex-
actly two fixed points in C.

Proof. Let f(z) = az+b
cz+d

be a non identity Möbius map. First suppose that f(∞) 6=
∞, i.e, c 6= 0. Solving for fixed points of f , i.e., solving the equation f(z) = z yields
the equation cz2 + (d− a)z− b = 0, which has two distinct roots or one double root in
C. If c = 0, then f is a linear map which must have one fixed point at∞ and possibly
a second fixed point in C. �

We now describe the dynamics of a non identity Möbius map f based on how many
fixed points it has.

Case 1: Suppose f(z) fixes only ∞. Then one can quickly show that f has the
form f(z) = z + β for some β ∈ C \ {0}. Thus fn(z) = z + nβ, and hence fn(z)→∞
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as n → ∞ for all z ∈ C much in the same way as Example 1.49. We also see that
J(f) = {∞} in this case.

Case 2: Suppose f(z) fixes only w ∈ C. Let ψ(z) = 1
z−w and define g(z) =

ψfψ−1(z), noting that g is also Möbius. Furthermore, the map g(z) has only one fixed
point at ∞ (see Exercise 1.30). So from Case 1 we see that g(z) = z + α for some
α ∈ C \ {0} and gn(z)→∞ for all z ∈ C. Hence fn(z) = ψ−1gnψ(z)→ ψ−1(∞) = w
for all z ∈ C. So, if f is Möbius with unique fixed point w, then fn(z) → w for all
z ∈ C and J(f) = {w}.

Case 3: Suppose that f fixes 0 and ∞.
Then f(z) = kz for some k ∈ C \ {1} (verify) and thus fn(z) = knz. We now have

the following categories based on |k|.
(1) If |k| < 1, then fn(z)→ 0 for all z ∈ C \ {∞} and J(f) = {∞}.
(2) If |k| > 1, then fn(z)→∞ for all z ∈ C \ {0} and J(f) = {0}.
(3) If |k| = 1, then f is simply a rotation z 7→ eiθz for some θ ∈ (0, 2π) whose

dynamics are easy to understand. In particular, F (f) = C.

Case 4: Suppose that f fixes w1 and w2. Defining ψ(z) = z−w1

z−w2
and setting

g(z) = ψfψ−1(z), we see that g falls into Case 3. As in Case 2, we can now understand
the dynamics of f as a change of coordinates of the simple dynamics of g by noting
that fn(z) = ψ−1gnψ(z). In particular, we have one of the following:

(1) fn(z)→ w1 for all z ∈ C \ {∞} and J(f) = {w2}.
(2) fn(z)→ w2 for all z ∈ C \ {∞} and J(f) = {w1}.
(3) f is conjugate to a rotation z 7→ eiθz for some θ ∈ (0, 2π), and thus F (f) = C.

Remark 1.157. In Cases 2 and 4, we see that the Möbius map ψ(z) was used to
move the fixed points of f to more convenient locations so that the simple dynamics of
Cases 1 and 3 could be related to the dynamics of f . This is one of the great advantages
to using global conjugation; it allows us to reposition special points in more convenient
places before we do our analysis. Not only can this technique be used to simplify the
analysis of Möbius map dynamics, but we can also use it with higher degree maps as
well. See Section 1.2.7 where a conjugation of the Newton map of a quadratic function
greatly simplifies the analysis. Also see Additional Exercises 1.168–1.171.

1.C. Appendix - Code for drawing random dynamics pictures

Because its complexity, the following computationally heavy algorithm is not well
suited for an applet. However, we provide the code for Matlab, which one could use
to quickly generate pictures like the Devil’s Colosseum in Figure 1.30. These four files
main.m, f.m, g.m, and proced2.m need to be created separately, but stored in the same
folder. When main.m is compiled using Matlab, a picture will be generated.

% ********* This begins the file main.m *********************
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% This file requires the files (functions) g.m, f.m, and proced2.m to be

% in the same folder when this file is compiled. Upon compilation

% this file will generate a graph of the probability that a random orbit

% generated by the maps f and g will escape to infinity

h = 0.1; %Determines step size in mesh of points to be plotted

Maxd = 10; % Determines how many random steps can be taken

cntx = 0; %Counter for x coordinate

clear x1;

for x = -5:h:5

cntx = cntx + 1;

cnty = 0; %Counter for y coordinate

clear y1;

for y = -5:h:5

cnty = cnty + 1;

n = 0;

x1(cntx) = x;

y1(cnty) = y;

[z(cntx,cnty), n] = proced2(x, y, 1, n, Maxd);

end

end

% % Uncomment the following lines to export/save data sets containing

% % the x(i) coordinates, y(j) coordinates, and z(i,j) values which

% % when plotted make up the graph. These data sets can then be imported

% % into another application (such as Maple or Mathematica) and plotted and otherwise

% % manipulated there.

%

% save DevilDataX3.dat x1 -ASCII;

% save DevilDataY3.dat y1 -ASCII;

% save DevilDataZ3.dat z -ASCII;

figure

surfc(x1, y1, z)

lighting phong

shading interp %flat %interp

clear;

% ********* This ends the file main.m *********************

% ********* This begins the file f.m *********************
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function z = f(x,y)

z1 = [x*x-y*y-1,2*x*y];

z = [z1(1)*z1(1)-z1(2)*z1(2)-1,2*z1(1)*z1(2)];

% ********* This ends the file f.m *********************

% ********* This begins the file g.m *********************

function z = g(x,y)

z1 = [(x*x-y*y)/4,x*y/2];

z = [(z1(1)*z1(1)-z1(2)*z1(2))/4,z1(1)*z1(2)/2];

% ********* This begins the file g.m *********************

% ********* This begins the file proced2.m *********************

% This recursively defined procedure/function will compute the value

% s which for proced2(x, y, 1, n, Maxd) (here I used q=1) represents the

% probability that the point (x,y) will have a random orbit

% escape (have modulus > K) in the first M steps of the orbit.

function [s, n] = proced2(x, y, q, n0, M)

n = n0 + 1;

p = 0.5; % Probability that map f is chosen at each step

K = 10; % Escape radius for random orbit

s = 0.0;

z=f(x,y); % file f.m must be in folder next to this file

w=g(x,y); % file g.m must be in folder next to this file

if n < M % M is the max number of recursion steps allowed

if z(1)*z(1)+z(2)*z(2) > K*K

s = s + p*q;

else

[d, n] = proced2(z(1), z(2), p*q, n, M);

s = s + d;

end

if w(1)*w(1)+w(2)*w(2) > K*K

s = s + (1-p)*q;

else

[d, n] = proced2(w(1), w(2), (1-p)*q, n, M);

s = s + d;

end

end

% ********* This ends the file proced2.m *********************
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1.D. Additional Exercises

Orbits, Examples, and Fixed Points
Exercise 1.158. Prove fn(x) → +∞ for all x ∈ R when f(x) = ex. In fact, the

advanced reader can actually show that the convergence is uniform25, i.e., given any
M > 0, there exists an integer N > 0 such that n > N implies fn(x) > M for all
x ∈ R.

Exercise 1.159. For f(x) = sinx where x ∈ R is given in radians prove that
fn(x) → 0 for all x ∈ R. Hint: Show that | sinx| ≤ |x| for all x ∈ R. The advanced
reader can actually show that the convergence is uniform25, i.e., given any ε > 0, there
exists an integer N > 0 such that n > N implies |fn(x)− 0| < ε for all x ∈ R.

Exercise 1.160. For f(x) = cosx where x ∈ R is given in radians prove that
fn(x) → 0.739085.... for all x ∈ R where x∗ = 0.739085.... is the number such that
cosx∗ = x∗. The advanced reader can actually show that the convergence is uniform25,
i.e., given any ε > 0, there exists an integer N > 0 such that n > N implies |fn(x)−
x∗| < ε for all x ∈ R.

Exercise 1.161. For g(z) = sin z, show that gn(±iε) → ∞ for any ε > 0. Hint:
First show that g(iy) is purely imaginary and |g(iy)| > |y| for each real y 6= 0.

Complex Newton’s method

Exercise 1.162. What Newton’s method can “find”.

(a) Prove that if Newton’s method (applied to a polynomial f(z)) converges to a finite
point a ∈ C, then f(a) = 0.

(b) However, show that it is always the case that F (∞) =∞ and so we see that it is
necessary that we consider only finite points in part (a).

Exercise 1.163. Prove that that the Newton map of f(z)/f ′(z) (as opposed to
the Newton map of f(z)) always has super attracting fixed points at the roots of f
regardless of the order of the root of f . Hint: Given a root α of f of order k, determine
the order of the root of f(z)/f ′(z).

Exercise 1.164. Construct examples of analytic maps f to justify the statement
that there is no universal r∗ > 0 such that 4(α, r∗) ⊂ AF (α) for all analytic maps f
with a root at α. Here, as usual, F denotes the Newton map for f .

Exercise 1.165. Radius of Convergence for polynomials.
Let p(z) = (z−α)k(z−α1) . . . (z−αs) be a polynomial of degree n = k+ s, where

the αj need not be distinct. Follow the steps below to show that r = d(2k−1)
2n−1

is a radius
of convergence for the Newton map F at α, where d = minj=1,...,s |α−αj| (the distance
from α to the nearest other root of p).

25Uniform convergence is not critical the to development of the text and so may be safely disregarded.
However, advanced students should try to understand the concept in the given context.
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(a) For the Newton map F (z) = z − p(z)
p′(z)

, we wish to show that |z − α| < r implies

|F (z) − α| < |z − α|. Note that this last inequality says that the action of F is
to move points in the disk ∆(α, r) closer to α. Show that such an inequality then
implies that F n(z)→ α as n→∞ when |z − α| < r.

(b) Show that |F (z)− α| < |z − α| is equivalent to |F (z)−α|
|z−α| =

∣∣∣1− p(z)
(z−α)p′(z)

∣∣∣ < 1.

(c) Show that
∣∣1− 1

w

∣∣ =
∣∣w−1
w

∣∣ =
∣∣w−1
w−0

∣∣ < 1 holds if and only if Re w > 1/2.

(d) Justify the following. The term w = (z−α)p′(z)
p(z)

= (z − α)
[

k
z−α +

∑s
j=1

1
z−αj

]
=

k+
∑s

j=1
z−α
z−αj . Thus Re w > 1

2
exactly when Re

∑s
j=1

z−α
z−αj >

1
2
− k, which holds,

in particular, when
∑s

j=1

∣∣∣ z−αz−αj

∣∣∣ < k − 1
2
.

(e) Show that if |z − α| < r, we then have |z − αj| > d− r, where d = minj |α − αj|.
Hence

∑s
j=1

∣∣∣ z−αz−αj

∣∣∣ < s r
d−r = (n− k) r

d−r .

(f) Combine all the above to reach the desired conclusion. Also, note that for z ∈
∆(α, r) we have |F (z)−α| < |z−α|, which is, in general, a much stronger statement
than merely saying that ∆(α, r) ⊂ Af (α). For this reason, some may call the value

r = d(2k−1)
2n−1

a radius of contraction for Newton’s method at α.

Small Project 1.166. Fix an integer n ≥ 2 and let f(z) = zn − 1. Express the
value for r found in Exercise 1.165 in terms of only n. See if you can improve upon
this value for the radius of contraction by carefully investigating the above proof as
applied to this select class of maps f(z) = zn − 1. You might (or might not) wish to
to calculate an r∗ > 0 such that |F ′(z)| < 1 on 4(α, r∗) for each root α of f , and then
applying the Contraction Lemma 1.131.

Small Project 1.167. This is an open ended project to investigate whether the
value for r found in Exercise 1.165 can be improved if we know something about the
geometry of the roots of p. See if you can improve upon this value for the radius of con-
traction by carefully investigating the proof in Exercise 1.165 for specific polynomials
f of degree 3 with distinct roots αp, βp, γp. If the roots, all lie on a line, can you squeeze
more from that proof? What if the roots form an equilateral triangle? Are there some
geometric configurations of the roots that allow for better results than what is given
in Exercise 1.165? Can you generalize this to higher degree polynomials? What if you
allow for multiple roots of f? If a paper and pencil result is too hard, provide a con-
jecture based on examples you considered with the Complex Newton Method Applet.
Whether or not you can answer them, come up with some related questions that one
might consider. Remember, asking questions is important, even if you can’t
answer them.

Comment: You might (or might not) wish to to calculate an r∗ > 0 such that
|F ′(z)| < 1 on 4(α, r∗) for each root α of f , and then applying the Contraction
Lemma 1.131.
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Global Conjugation

Exercise 1.168. Prove that if ab 6= 0, then the maps z 7→ az and z 7→ bz are
globally conjugate if and only if either a = b or a = 1/b.

Exercise 1.169. Prove that if ab 6= 0, then the maps z 7→ z+ a and z 7→ z+ b are
globally conjugate.

Exercise 1.170. Prove that any quadratic map f(z) = az2 + bz + d is globally
conjugate to one and only one map of the form z 7→ z2 + c.

Exercise 1.171. Prove that a rational map R is globally conjugate to a polynomial
if and only if there exists w ∈ C with R−1({w}) = {w}.

Analysis of the Newton map of a cubic polynomial

Exercise 1.172. Prove that the attracting basin of an attracting fixed point of a
rational or entire map is an open set in C, which, in particular, does not contain any
of its boundary points. Hint: Use Theorem 1.18 together with the fact that if f is a
continuous map, then f−1(U) is open whenever U is open.

Exercise 1.173. Use the Complex Newton Method Applet to investigate the be-
havior of Newton’s method applied to f1(z) = z ∗ (z − 1) ∗ (z − 0.908 − 0.423i) and
f2(z) = z ∗ (z − 1) ∗ (z − 0.913− 0.424i). Describe the behavior you see, especially for
the black seed values where Newton’s method fails.

Iteration of an Analytic Function

Exercise 1.174. Dense orbit in J(f).

(a) Show that for the map f(z) = z2 there is a point z0 ∈ C(0, 1) whose orbit is dense

on C(0, 1), that is, {fn(z0) : n ∈ N} = C(0, 1). Hint: Note that on C(0, 1), we have
f(ei2πθ) = ei4πθ, that is, the angle θ ∈ [0, 1) is doubled (mod 1). Consider θ0 ∈ [0, 1)
given in binary form as θ0 = 0.0 1 00 01 10 11 000 001 010 011 100 101 110 111 0000 . . .
where spaces have been included in this binary expansion to help illustrate the pat-
tern.

(b) Use (a) to justify the second claim in Remark 1.46.
(c) Notice, however, that due to computer limitations, any point you choose on C(0, 1)

will have a computed orbit that eventually becomes periodic (although it might take
a very large number of orbit points to see this). Justify this statement.

Exercise 1.175. In this exercise you are asked to complete the proof of Theo-
rem 1.48.

(a) Use Schwarz’s Lemma (see Theorem A.20) to show that an attracting fixed point
a ∈ C of an analytic map f must have |f ′(a)| < 1. Hint: Consider a small disk
4(a, r) where f is attracting and then investigate the map g : 4(0, 1) → 4(0, 1)

defined by g(z) = f(rz+a)−a
r

.
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(b) Use the fact that f is locally one-to-one with a locally defined inverse to show that
a repelling fixed point a of an analytic map f must have |f ′(a)| > 1. Hint: Since
|f ′(a)| ≥ 1 (else a would be attracting), we must have that f is locally one-to-
one (see Section A.6.1.1 regarding the Open Mapping Theorem and the Inverse
Function Theorem A.23). Letting h be f−1 defined on some small disk 4(a, r),
show that a is an attracting fixed point for h (since it was repelling for f) and then
apply part (a) to h. Then use this to argue for your desired conclusion.

Exercise 1.176. Let f be a map that is analytic at ∞ such that f(∞) = ∞.
Consider the multiplier λ = 1/f ′(∞). Prove that if |λ| < 1, then ∞ is an attracting
fixed point according to Definition 1.16. Also, prove that if |λ| > 1, then ∞ is a
repelling fixed point according to Definition 1.44. Hint: Noting that the map k(z) =
1/f(1/z) has a fixed point at the origin also with multiplier λ (see Lemma B.19), study
how the map φ(z) = 1/z transfers information about k at the origin to information
about f at ∞.

Exercise 1.177. Let g(z) be a polynomial of degree greater than or equal to two
(which must then have a super attracting fixed point at ∞). Prove that ∂Ag(∞) =
∂K(g), and then note that by Theorem 1.59 we have J(g) = ∂Ag(∞) = ∂K(g).

Exercise 1.178. The Multiplier map and its Inverse.

(a) Provide an explicit formula for the multiplier map on K1 (see Section 1.3.3).
(b) Find the c value such that fc has an attracting fixed point pc with multiplier

λ = 0.7eπi/4.
(c) Find the c value such that fc has an indifferent fixed point pc with multiplier

λ = eπi/3.
(d) Find a general formula for the inverse of the multiplier map.

Exercise 1.179. Convergence toward an attracting fixed point depends on the
multiplier.

(a) For c = −0.467 + 0.513i determine the attracting fixed point pc of fc.
(b) Write the multiplier λ for pc in polar form.
(c) Use the Global Complex Iteration Applet for Polynomials to iterate a seed z0 near

pc one step at a time (use the zoom feature to get a better look) to notice the
way in which the orbit approaches pc. The way this orbit approaches pc is directly
related to the multiplier λ. Describe this connection in your own words.

(d) Use the Complex Function Iterator Applet or Global Complex Iteration Applet for
Polynomials to iterate the map z 7→ λz for various seed values near the attracting
fixed point at the origin. Describe the convergence.

(e) Compare (c) and (d), explaining in as much mathematical detail as you can what
you find. Hint: Consider the Taylor series of fc expanded around the point pc.

(f) Choose various c in K1 and then study the convergence of orbits to the attracting
fixed point using the applet. Use this picture to approximate the argument of the
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multiplier. Note: some c values will be easy to work with here, while others are
not as easy.

Exercise 1.180. Convergence toward the attracting 2-cycle.

(a) For c = −0.92568 + 0.22512i determine the attracting 2-cycle {uc, vc} of fc.
(b) Write the multiplier λ for {uc, vc} in polar form.
(c) Use the Global Complex Iteration Applet for Polynomials to iterate a seed z0

near one of the cycle points uc one step at a time (use the zoom feature to get a
better look) to notice the way in which every other orbit point approaches uc. The
way this orbit approaches uc is directly related to the multiplier λ. Describe this
connection in your own words.

(d) Use the Complex Function Iterator Applet or Global Complex Iteration Applet for
Polynomials to iterate the map z 7→ λz for various seed values near the attracting
fixed point at the origin. Describe the convergence.

(e) Compare (c) and (d), explaining in as much mathematical detail as you can what
you find. Hint: Consider the Taylor series of the iterate f 2

c expanded around the
point uc.

(f) Choose any c in K2 and then study the convergence of orbits to the attracting
2-cycle using the applet. Use this picture to approximate the argument of the
multiplier. Note: some c values will be easy to work with here, while others are
not as easy.

Exercise 1.181. Multiplier map for attracting 2-cycles of fc. Determine the exact
form of the multiplier map on K2. This map λ : K2 → 4(0, 1) map each c ∈ K2 to
the multiplier of the attracting 2-cycle of the map fc. Also show that this map can be
extended to a map λ : K2 →4(0, 1) which is continuous, one-to-one, and onto.

Exercise 1.182. Without appealing to Theorem 1.78, prove that if fc0 has an
attracting n-cycle, then for all c close to c0, the map fc also has an attracting n-cycle.
Conclude that Kn is an open set. Hint: One may use Rouché’s Theorem (see [1], p. 294)
to prove a general result that if the coefficients of the polynomial P are sufficiently
close to the corresponding coefficients of the polynomial Q of the same degree, then
the roots of P and the roots of Q are close. Then apply this result to the polynomials
of P1(z) = fnc0(z)− z and Q1(z) = fnc (z)− z.

Exercise 1.183. Mathematically justify Footnote 14 in Section 1.3.6.

Critical Points and Critical Orbits

Exercise 1.184. Let f(z) = z3 − 1 and let F denote the corresponding Newton
map. Show that F cannot have an attracting cycle of any order other than the fixed
points at the roots of f . Hint: Check the behavior of each critical point of F and
consider Theorem 1.87.

Note: More can be said about this situation. It is true that Newton’s method fails
to find a root of f only for seed values from ∂AF (1) = ∂AF (e2πi/3) = ∂AF (e−2πi/3). In
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fact, we have C = AF (1) ∪ AF (e2πi/3) ∪ AF (e−2πi/3) ∪ ∂AF (1). The method of proof is
along the same lines as above, however, it uses a more powerful set of results. These
results imply that if Newton’s method fails for all seed values in an open set of points,
then there must be a critical point of F whose orbit does not converge to any of the
roots of f . The key ingredients to this proof are Sullivan’s No Wandering Domains
Theorem, the Classification of forward invariant components of Fatou sets, and the
role of critical points in parabolic domains, Siegel disks, and Herman rings. All of
these results can be researched by the interested reader in [1].

Exercise 1.185. Show that the periodic points for the map f(z) = z2 are exactly
those points of the form ei2πp/q where p, q ∈ N with p/q in lowest terms and q odd.
Show that the pre-periodic points have the same form, but for q even. Hint: Show
that if p/q = n

2k−1
for some integers k ≥ 1, n ≥ 1, then ei2πp/q has a period of k or

some divisor of k. Then use the fact that every rational number p/q with q odd can
be expressed in this form (which can be proved by using the fact that the element 2 in
the multiplicative group consisting of those elements of Zq which are relatively prime
to q has a finite multiplicative order which we call k).

Exercise 1.186. Symmetry in M . One feature of the Mandelbrot set which stands
out is that it is symmetric about the x-axis. Prove this by showing that c ∈M if and
only if c̄ ∈M . Hint: Compare the critical orbits {fnc (0)} and {fnc̄ (0)}.

Exercise 1.187. Prove that the Mandelbrot set M has no “holes” (i.e., its comple-
ment C\M is connected) by appealing directly to its definition. Hint: Suppose that U
is a bounded domain of C\M such that ∂U ⊂M . Now apply the Corollary A.18 to the
Maximum Modulus Theorem to the maps Qn on U used in the proof of Lemma 1.101.

Exploring the Mandelbrot Set M

Exercise 1.188. Let P be a polynomial of degree n ≥ 2. Show that the Filled-in-
Julia set K(P ) has infinitely many points as follows.

(a) Show that P (z) has a fixed point z0 by applying the Fundamental Theorem of
Algebra.

(b) Show that if z0 is such that P−1({z0}) = {z0}, then P (z) = z0 + a(z − z0)n for

some a 6= 0 from which it can be shown that K(P ) = ∆(z0, r) where r = |a|1/(1−n).
(c) Show that if P−1({z0}) 6= {z0}, then there exists an infinite sequence of distinct

points z−n such that . . . 7→ z−n 7→ z−n+1 7→ . . . 7→ z−2 7→ z−1 7→ z0. Hence,
{z−n} ⊂ K(P ).

We note that it is true that J(P ) must contain uncountably many points, but to show
this requires considerably more effort (see [1], p.95).

Exercise 1.189. Prove that for all c ∈ C, we have z ∈ Afc(∞) if and only if
−z ∈ Afc(∞). Do the same for the sets J(fc) and K(fc).
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Exercise 1.190. Find an explicit formula for c(p/q), the root of the p/q bulb, in the
Mandelbrot set. Hint: Relate the appropriate fixed point of fc to c and then consider
the condition on the multiplier at this point. See also Additional Exercise 1.178.

Exercise 1.191. Since the root c(p/q) of the p/q bulb in the Mandelbrot set lies
on the boundary of two hyperbolic components (namely K1 and Bp/q), we see that
Theorem 1.78 implies that there are two multiplier maps that are defined at c(p/q).
In particular, the map λ : K1 → 4(0, 1) can be extended to be defined at c(p/q), but
also the map λp/q : Bp/q → 4(0, 1) can be extended to be defined at c(p/q). Does
λ(c(p/q)) = λp/q(c(p/q))? What does is mean if these values are the same? different?

Exercise 1.192. Find a c value in B5/32. Formal proof is not required.

Exercise 1.193. Farey addition.

(a) Experiment with the Parameter Plane and Julia Set Applet to determine what
Farey fraction should be used to represent the cusp of the main cardioid K1 in the
Farey procedure for finding child bulbs. Keep in mind that we are to treat the
cusp like a Farey parent which is larger than all other bulbs.

(b) It is true (though not so easy to prove) that starting with Farey parents B1/2 and
the cusp one can compute through Farey addition all of the p/q bulbs attached
to the upper half of the main cardioid K1. Illustrate this by producing a Farey
“family” tree which contains the lineage of B5/32 all the way up to the ancestors
B1/2 and the cusp of the main cardioid K1.

(c) Use Exercise 1.113 and part (b) to show that all of the p/q bulbs attached to the
main cardioid K1 can now be identified through Farey addition.

Other Uni-critical families of polynomials

Exercise 1.194. For the maps Pc(z) = zd + c with d = 2, 3, 4, . . . show the
following:

(a) If |z| ≥ |c| and |z| > 2, then there exists ε > 0 such that |Pc(z)| > |z|(1 + ε).
(b) Use induction to show that if |z| ≥ |c| and |z| > 2, then P n

c (z)→∞.
(c) Apply (b) to prove P n

c (0) → ∞ (as n → ∞) if and only if |P n
c (0)| > 2 for some

n ∈ N. In particular, Md ⊂ 4(0, 2).

(d) Prove that the filled in Julia set of Pc is contained in 4(0, 2) when |c| ≤ 2. Also
show by example that this statement does not necessarily hold when |c| > 2, i.e.,
it is not the case that for all c we have P n

c (z)→∞ whenever |z| > 2.

Exercise 1.195. Symmetries in the family Pc(z) = zd + c.

(a) Use the Parameter Plane and Julia Set Applet to explore the parameter plane for
the family Pc(z) = zd+c, and then identify and prove the symmetry you see there.

(b) Use the Parameter Plane and Julia Set Applet to explore the Julia sets of maps
in the family Pc(z) = zd + c, and then identify and prove the symmetry you see
there.
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Exercise 1.196. For fixed integer d > 2, prove Md is the connectedness locus for
the family of maps Pc(z) = zd + c, i.e., show that Md = {c ∈ C : J(Pc) is connected}.

Transcendental Dynamics

Exercise 1.197. Carefully prove that En
c (z0)→∞ if and only if ReEn

c (z0)→ +∞,
where Ec(z) = cez and c ∈ C \ {0}.

Large Project 1.198. Accuracy of the Exponential Julia set applet pictures.
This large project is open ended and should only be attempted after all of Section 1.6.1
has been covered.

As mentioned in Footnote 20 on p. 64, the algorithm used to illustrate the Expo-
nential Julia set J(E0.2) can color some seed values z0 non-black (which it does when
at least one of the orbit points E0.2(z0), . . . , E20

0.2(z0) lands in the set {Re z > 50}), but
which is actually not in J(E0.2). For example, consider any point z0 which maps to
E0.2(z0) = 51 + πi. Such a z0 will not be left black. However, we see that E2

0.2(z0) =
−0.2e51 ∈ H = {z : Re z < 1} ⊂ AE0.2(p), which implies z0 ∈ AE0.2(p) = F (E0.2). The
goal of this project is to estimate how close such points like z0 are to actual points in
J(E0.2). This is in some sense a measure of the error in the algorithm.

One method to approach this problem is to consider an open rectangle R centered at
z0 and consider its expanded image E0.2(R). If this expanded image meets some point
which truly does have an orbit which tends to ∞, then there must be a corresponding
point in R which lies in J(E0.2). So one must consider how much such an R gets
expanded, and how big this expansion needs to be before we are guaranteed that
expanded image E0.2(R) contains some point with an orbit which tends to ∞. Hint:
Consider the open interval (q,+∞) and its 2πik-translates where q is the repelling
fixed point for E0.2.

Also, one should consider what similar estimates one can get if w0 is a point such
that ReE0.2(w0) < 50, but E2

0.2(w0) = 51 + πi. Thus, such a point w0 takes two steps
before the algorithm gives it a non-black color, as opposed to z0 above which used only
one step. As above, w0 is also not in J(E0.2), but there are points nearby which are.
Can you estimate how nearby these points are?

Some related questions are: Is there a relationship between the size of the viewing
window and the accuracy of our pictures? Can you quantify this either in general or
in specific cases? How does this relationship depend on the value 50 that was chosen
to determine our escape criterion or on the value 20 that determined how many orbit
points might be checked? If we set the Dynamic plane min iterations to 2 (which
means that a seed value is iterated twice before the escape condition is tested, i.e., a
seed z0 is given a non-black color only if at least one of the points z2, . . . , z20 has real
part greater than 50), do we get a more accurate or less accurate picture?

This is a very technical project. The reader may wish to see [10] where some of
these questions are addressed.

Exercise 1.199. Contracting and Expanding maps.
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(a) Prove Lemma 1.131, the Contraction Lemma. Hint: Consider the argument made
just preceding the statement of Lemma 1.131.

(b) Show that if f is a one-to-one analytic function such that |f ′(z)| > γ > 1 for
all z in some domain D, and f(D) is convex, then f is “expanding” on D, i.e.,
|f(z)− f(w)| ≥ γ|z − w| for all z, w ∈ D. Hint: Consider f−1.

Exercise 1.200. Prove that any two fingers (of any stage) constructed in Exam-
ple 1.130 are always separated by an infinitely long gap (of black) points in AE0.2(p).

Exercise 1.201. Follow the steps below to prove that the thickness of each stage
n finger (see Example 1.130 and Definition 1.133) is no greater than π/γn−1 where
γ = ln 2 > 1.

(a) Prove that any stage 1 finger is contained in the right half plane {Re z ≥ ln 5}.
(b) Prove that any stage 2 finger is contained in the right half plane {Re z ≥ ln(5 ln 5)}.
(c) Prove that if4(z0, r) is contained in a stage n finger (for n ≥ 2), then4(E0.2(z0), γr)

is contained in some stage (n − 1) finger. Hint: Consider defining a branch L
of the inverse of E0.2 on {Re z ≥ ln 2} such that L(E0.2(z0)) = z0 (given by
L(z) = Log z + ln 5 + 2πin for some n ∈ Z). Then show that L is a contrac-
tion mapping on {Re z ≥ ln 2} and apply Lemma 1.131, the Contraction Lemma.

(d) Use Exercise 1.134 and induction to complete the proof.

Exercise 1.202. Prove that the set J in Example 1.130 cannot contain any open
set.

Exercise 1.203. Follow the steps below to construct infinitely many (though not
all) of the “hairs” in J(E0.2). Recall that each hair is the image of some continuous
map h : [0,∞)→ C such that h(t)→∞ as t→∞.

(a) Prove that there exists a repelling fixed point q ∈ R such that for any x > q we
have E0.2(x) > x and therefore En

0.2(x) → +∞. Use this to conclude that the
interval h0 = [q,+∞) is a hair in J(E0.2) (which we call a straight hair since it
extends to ∞ in a straight line).

(b) Use the 2πi periodicity of E0.2 to show that for each k ∈ Z the set hk defined to
be the k2πi translate of h0, is also a hair in J(E0.2). We call each hk a stage 1 hair
(which could be called the “main” hair in the stage 1 finger).

(c) Argue that inside of the stage 1 finger C0, there exist infinitely many hairs h0,k in
J(E0.2) such that E0.2(h0,k) = hk. Note that no h0,k is a straight hair (except for
h0,0 which equals h0 = [q,+∞)).

(d) Use the 2πi periodicity of E0.2 again to show that for each j, k ∈ Z the set hj,k
defined to be the j2πi translate of h0,k, is also a hair in J(E0.2). We call each hj,k
a stage 2 hair.

(e) Repeat the above arguments to argue that there must exist infinitely many stages
of hairs in J(E0.2).

(f) We remark that if we let Hn denote all the stage n hairs generated as above, then
∪∞n=1Hn ∪ {∞} is not quite all of J(E0.2). However, with a bit of more careful
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analysis one can show that J(E0.2) = ∪∞n=1Hn ∪ {∞} by showing that each point
in the hairs described in Section 1.6.2 is a limit of points from the collection of
stage n hairs generated as above.

Exercise 1.204. Determine the exact real bifurcation value c∗ between c = 0.2
and c = 0.5 for the family of maps Ec. Also, show that for c < c∗ we have {Re z <
1} ⊂ F (Ec), but for c > c∗ we have F (Ec) = ∅.

Exercise 1.205. For each c ∈ L1, the map Ec(z) = cez has an attracting fixed
point with a corresponding multiplier λ(c) (see Figure 1.26). Thus we have a multiplier
map λ : L1 →4(0, 1).

(a) Find the inverse of the multiplier map.
(b) Use the inverse of the multiplier map to find the c value where the 7/13 bulb

attaches to the cardioid L1. Hint: What kind of fixed point will there be at this c
value.

Exercise 1.206. Show that orbits under the maps Sc(z) = c sin z, and Cc(z) =
c cos z “escape” to ∞ in the direction of the positive or negative imaginary axis by
showing the following.

(a) Show that Snc (z)→∞ if and only if | ImSnc (z)| → +∞.
(b) Show that Cn

c (z)→∞ if and only if | ImCn
c (z)| → +∞.

Exercise 1.207. Show that neither Sc(z) = c sin z nor Cc(z) = c cos z has a finite
asymptotic value by following the steps below.

(a) Examine | sin(x + iy)| to show that if Sc were to have a finite asymptotic value,
then the curve γ (along which Sc has a finite asymptotic value) would have to be
vertically bounded, that is, live in some horizontal strip {| Im z| ≤M}.

(b) Show that sin z maps the imaginary axis into itself.
(c) Show that sin z maps the vertical line {π/2 + iy : y ∈ R} into [1,+∞).
(d) Use the fact that sin z is 2π periodic along with parts (a), (b) and (c) to show that

sin z cannot have a finite asymptotic value.
(e) Show that Sc cannot have a finite asymptotic value since sin z does not.
(f) Show that Cc cannot have a finite asymptotic value since Cc(z) = Sc(z + π/2).

Exercise 1.208. Trig functions with one critical orbit.

(a) Explain in what sense {Snc (c)} is the only critical orbit of the map Sc.
(b) Explain in what sense {Cn

c (c)} is the only critical orbit of the map Cc.

Definitions and Properties of the Julia and Fatou sets

Exercise 1.209. Let an and bn for n ≥ 0 be sequences of positive real numbers
such that 1 = a0 > b0 > a1 > b1 > . . . and an → 0 (which also implies bn → 0).

(a) Construct a strictly increasing function g : [0,+∞) → [0,+∞) such that g is
differentiable on (0,+∞) and we have g(an) = an and g(bn) = bn with g′(an) = 0
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and g′(bn) = 2. Furthermore, construct g so that g does not fix any points other
than the an and bn and 0. Hence each an is a super attracting fixed point of g
and each bn is a repelling fixed point of g. Sketch a graph of such a g to convince
yourself that this can be done.

(b) Define a function f : C → C given by f(reiθ) = g(r)eiθ. Consider the dynamics
of points both on and near the circles |z| = an and |z| = bn to see that each
“repelling” circle |z| = bn, which is fixed by f , must lie in J(f).

(c) Show that 0 ∈ F (f). Hint: Use the fact that f(∆(0, an)) ⊂ ∆(0, an) for each
n ≥ 0.

(d) Show that (b) and (c), together with the fact that bn → 0, implies that 0 is not in
the interior of F (f).

Exercise 1.210. Use the definitions of Fatou and Julia set to prove the statements
in Proposition 1.154 parts (a)-(d). Hint: For the complete invariance statements, you
can use the fact that, when it is non-constant, f is an open map, i.e., if U is an open
set in the domain of f , then the image f(U) is also an open set in C. For (d), use
Montel’s theorem 1.151 and part (c).

Exercise 1.211. Show that the set of repelling cycles for the map f(z) = z2 is
dense in J(f) = C(0, 1) by explicitly solving for the set of p periodic points for each
p ∈ N.
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CHAPTER 2

Minimal Surfaces

Michael Dorff (text), Jim Rolf (applets)

2.1. Introduction

Minimal surfaces are beautiful geometric objects with interesting properties that
can be studied with the help of computers. Some standard examples of minimal sur-
faces in R3 are the plane, Enneper’s surface, the catenoid, the helicoid, and Scherk’s
doubly periodic surface (see Figure 2.1; note that the images shown are just part of
these surfaces and that each surface actually continues on forever).

Enneper surface catenoid

helicoid Scherk’s doubly periodic surface

Figure 2.1. Examples of some minimal surfaces
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Minimal surfaces are related to soap films that result when a wire frame is dipped in
soap solution. To get a sense of this connection, consider the following problem.

Steiner Problem: Four houses are located so that they form the vertices of a
square that has sides of length one mile. These neighbors want to connect their houses
with a road of least length. What should the shape of the road be?

Figure 2.2. What is the shortest path connecting these 4 vertices?

Some possible solutions include the following:

Length = 3 Length = 3 Length ≈ 3.41 Length ≈ 2.83

However, none of these is the solution. The correct solution has a length of 1+
√

3 ≈ 2.7
miles (see Figure 2.3). For more information about Steiner problems see [5] or [13].

Figure 2.3. The shortest path connecting these 4 vertices.

How can we generalize this problem? One way is to have n-vertices. So the problem
becomes, given n cities find a connected system of straight line segments of shortest
total length such that any two of the given points can be joined by a polygon consisting
of segments of the system.
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Another way to generalize this idea is to move up a dimension. What is the analogue of
the Steiner problem in one dimension higher? The Steiner Problem minimizes distance
(1-dimensional object) in a plane (2-dimensional object). Soap film minimizes area (2-
dimensional object) in space (3-dimensional object).

The answer to Steiner problems in the plane is related to the shape of a soap film.
The soap film formed by dipping a cube frame into soap solution is shown in Figure
2.4. The projection of this soap film onto the plane suggests the solution to the Steiner
problem above with 4 vertices.

Figure 2.4. Soap film formed by a cube.

What is the connection between “minimization” problems such as a Steiner problem
and soap films? Water molecules exert a force on each other. Near the surface of the
water there is a greater force pulling the molecules toward the center of the water. This
force creates surface tension which tends to minimize the surface area of the shape.
Soap solution has a lower surface tension than water and this permits the formation of
soap films which also tend to minimize geometric properties such as length and area.
For more information along this line see [21].

Minimal surfaces can be created by dipping wire frame into soap solution. All of
the minimal surfaces in Figure 2.1 can be formed by dipping a wire frame into soap
solution.
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Example 2.1. By dipping a wire frame of a “slinky” (or helix) with a straw in the
middle connected to the ends of the “slinky” into soap solution we can create part of
the minimal surface known as the helicoid.

Figure 2.5. The wire frame of a slinky can be used to create part of the helicoid.

Example 2.2. By dipping a 3-dimensional version of the wire frame shown below (a
box frame missing two parallel edges on the top and two parallel edges on the bottom)
into soap solution we can create part of the minimal surface known as Scherk’s doubly
periodic surface.

Figure 2.6. The wire frame of a box missing 4 edges can be used to
create part of Scherk’s doubly periodic surface.

Exploration 2.3. Each of the minimal surfaces shown in Figure 2.1 can be formed
by dipping a wire frame in soap solution. Determine the shape of the wire frame that
creates: (a) Enneper’s surface; and (b) the catenoid.

Try it out!

Remark 2.4. To get a soap film of the part of Enneper’s surface shown in Figure
2.1, we can dip a wire frame that matches the seams along a baseball. In fact, dipping
such a wire frame in soap solution produces two minimal surfaces. The first is one half
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of the sphere of a baseball and the other is the complementary half of the “baseball.”
What is interesting is that if you start with one, you can deform it into the other by
slightly and carefully blowing air into the soap film. There is a third, mysterious and
unseen minimal surface one passes through while doing this, and this minimal surface is
unstable. In other words, it cannot actually exist or remain in existence–disturbances
cause it to pop or “wiggle” into another surface.

One area of minimal surface theory that has seen a lot of interest and results recently
is the study of complete embedded minimal surfaces. Basically, these are minimal sur-
faces that are boundaryless (complete) and have no self-intersections (embedded). The
plane, the catenoid, the helicoid, and Scherk’s doubly periodic surface are examples of
complete embedded minimal surfaces. However, the Enneper surface is not embedded,
because it has self-intersections as its domain increases (see Exploration 2.11).

To begin to understand minimal surfaces, we need some tools from differentiable
geometry and these are discussed in Section 2. Section 3 uses material from the pre-
vious section to define a minimal surface and discuss some examples and properties
of minimal surfaces. Section 4 brings in complex analysis to study minimal surfaces
and introduces the Weierstrass representation formula to efficiently describe and study
properties of minimal surfaces. These three sections are fundamental and should be
read first. In Sections 5 - 7, we begin to explore ideas that lead to beginning research
problems for students. Section 5 and Section 6 are independent of each other. In
Section 5 we present the Weierstrass representation in the form of the Gauss map and
height differential which is the basis for much of the current research about minimal
surfaces in R3. Section 6 connects ideas about minimal surfaces with planar harmonic
mappings in geometric function theory (i.e., the study of complex analysis from a geo-
metric viewpoint). Section 7 is a new area of investigation that combines the ideas of
the previous two sections and has several problems that can be explored by beginning
students. In this chapter, there are four applets used and they can be accessed online
at http://www.jimrolf.com/explorationsInComplexVariables/chapter2.html:

• DiffGeomTool is used to visualize and explore basic differential geometry con-
cepts in R3 such as the graph of a parametrization of a surface, curves on a
surface, tangent planes on a surface, and unit normals on a surface.
• MinSurfTool is used to visualize and explore minimal surfaces in R3 by using

various forms of the Weierstrass representation.
• ComplexTool is used to plot the image of domains in C under complex-valued

functions.
• LinComboTool is used to plot and explore the convex combination of complex-

valued harmonic polygonal maps.

Each section of this chapter contains examples, exercises, and explorations that involve
using the applets. You should do all of the exercises and explorations many of which
present surfaces and concepts that will be used later in the chapter (there are additional
exercises at the end of the chapter). In addition, there are short projects and long
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projects that are suitable as research problems for undergraduates to explore. The
goal of this chapter is not to give a comprehensive or step-by-step approach to this
topic, but rather to get the reader engaged with the general notions, questions, and
techniques of the area – but even more so, to encourage the reader to actively pose as
well as pursue their own questions. To better understand the nature and purpose of
this text, the reader should be sure to read the Introduction before proceeding.

2.2. Differential Geometry

Our goal is to develop the mathematics necessary to investigate minimal surfaces
in R3. Such minimal surfaces minimize area locally and can be thought of as saddle
surfaces. At each point, the bending upward in one direction is matched with the
bending downward in the orthogonal direction. Such bending is known mathematically
as curvature. So, to initially understand and investigate minimal surfaces we need to
be able to understand the mathematics of curvature which comes from differential
geometry, a field of mathematics in which the ideas and techniques of calculus are
applied to geometric shapes.

We will begin our discussion of differential geometry by looking at a surface in
R3. Every point on a surface M ⊂ R3 can be designated by a point, (x, y, z) ∈ R3,
but it can also be represented by two parameters. Let D be an open set in R2.
Then the surface M can be represented by a function x : D → R3, where x(u, v) =
(x1(u, v), x2(u, v), x3(u, v)) (that is, M is the image of x(D)). We will require that
x be differentiable. That is, each coordinate function xk(u, v) has continuous partial
derivatives of all orders in D. Such a function or mapping is called a parametrization.

v

u

D ⊂ R2

x(u, v) = (x1(u, v), x2(u, v), x3(u, v))

z

y

x M ⊂ R3

Figure 2.7. The parameterization of a surface

Let’s consider two examples.

Example 2.5. The Enneper surface is a minimal surface formed by bending a disk
into a saddle surface. It can be parametrized by

x(u, v) =

(
u− 1

3
u3 + uv2, v − 1

3
v3 + u2v, u2 − v2

)
,
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where u, v are in a disk of radius r. We can use the applet, DiffGeomTool, to graph
this parametrization of the Enneper surface (see Figure 2.8). Open DiffGeomTool and
enter the coordinate functions of the parametrization as

X(u, v) = u− 1/3 ∗ u ∧ 3 + u ∗ v ∧ 2

Y (u, v) = v − 1/3 ∗ v ∧ 3 + u ∧ 2 ∗ v
Z(u, v) = u ∧ 2− v ∧ 2

into the appropriate boxes. In the gray part in the bottom right, click on Circular

grid with radius min: 0.0, radius max: 1.0, theta min: 0.0, and theta max: 2∗ pi. This
is because we want our u, v values to be the unit disk. Then click the Graph button.
To rotate the graph, place the cursor arrow on the image of the surface, and then click
on and hold the left button on the mouse as you move the cursor. To increase the size
of the image of the surface click on the left button on the mouse; to decrease the size,
click on the right mouse button.

Figure 2.8. The Enneper surface.

Example 2.6. If a heavy flexible cable is suspended between two points at the same
height, then it takes the shape of a curve that can be described mathematically by the
function x2 = a cosh(x1/a). Such a curve is called a catenary from the Latin word that
means “chain”. A catenoid is a surface that is generated by rotating a catenary on its
side about the x3-axis (see Figure 2.9). A catenoid is also a minimal surface. How do
we parametrize this catenoid? If we let x1 = a cosh v (−∞ < v < ∞) and x3 = av,
then r(v) = (a cosh v, av) is a parametrization of the catenary curve on its side in the
x1x3-plane. Rotating a line about an axis is a circular motion, and a circle can be
parametrized by (cosu, sinu). So, we can parametrized this rotation of the catenary
curve about the x3-axis by multiplying a cosh v by cosu for the x1-coordinate function,
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x1

x2

x3

Figure 2.9. Creating a catenoid by rotating a catenary.

and multiplying a cosh v by sinu for the x2-coordinate function. Hence, we get the
following parametrization for this catenoid surface:

x(u, v) =
(
a cosh v cosu, a cosh v sinu, av

)
.

Using DiffGeomTool, we can graph this parametrization of a catenoid with a = 1,
clicking on Rectangular grid, and setting the boxes to 0 <= u <= 2 pi and -2pi/3
<= v <= 2pi/3 (see Figure 2.10). Note that cosh v, cosu, and sinu should be entered
as cosh(v), cos(u), and sin(u), respectively.

Figure 2.10. The catenoid.

Check out what happens if you change the u, v values. For example, try:

(a) pi <= u <= 2pi, -2pi/3 <= v <= 2pi/3;
(b) 0 <= u <= 2pi, 0 <= v <= 2pi/3;
(c) 0 <= u <= 2pi, -pi/4 <= v <= pi/4;

108



(d) 0 <= u <= 2pi, -pi <= v <= pi;

Exercise 2.7. A torus is a surface (but not a minimal surface) that can be formed
by rotating a circle in the x1x3-plane about the x3-axis. Let this be a circle of radius
b and whose center is a distance of a from the origin.

x1

x2

x3

b

a

Figure 2.11. Creating a torus by rotating a circle.

Then the parametrization of this torus is

x(u, v) =
(

(a+ b cos v) cosu, (a+ b cos v) sinu, b sin v
)
,

where a, b are fixed, 0 < u < 2π, and 0 < v < 2π.

(a) Show how to derive this parametrization for a torus.
(b) Use DiffGeomTool to sketch the graph of this torus when a = 3 and b = 2;

use Rectangular grid with 0 < u < 2π, and 0 < v < 2π.

Try it out!

In pre-calculus, we talk about a function of one variable y = F (x) as one that
satisfies the vertical line test. The graph of F (x) is a 1-dimensional object, living
in R2, that can be parametrized by (u, F (u)). Analogously, we speak of a function
of two variables z = f(x, y), where the points (x, y) lie in a two-dimensional domain
and f satisfies the vertical line test (here a line is vertical when it is parallel to the
z-axis). The graph of f(x, y) is a two-dimensional surface living in R3 with a height of
z = f(x, y) at a point (x, y) in its domain. An example of such a graph is the minimal
surface known as Scherk’s doubly periodic surface. It can be parametrized by

x(u, v) =

(
u, v, ln

(cosu

cos v

))
.

Exercise 2.8.

(a) In this parametrization of Scherk’s doubly periodic surface, what are the re-
strictions on the u and v values in the domain?
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(b) Use DiffGeomTool and your answer from part (a) to sketch a graph of Scherk’s
doubly periodic surface with -0.48 pi <= u,v <= 0.48 pi.

(c) Scherk’s doubly periodic surface is a particular example of the graph of a
function. Now, let f(x, y) be any function. Find a parametrization of the
graph of f in general.

Try it out!

Exercise 2.9. Let r be a differentiable curve whose derivative does not vanish
(i.e., r′(v) 6= 0 for all values v in the domain) and let r lie in some plane in R3. A
surface of revolution is a surface that forms by rotating r about an axis in that plane
such that the curve does not intersect the axis. The catenoid and torus are examples
of this. For this exercise, let r(v) = (f(v), 0, g(v)) be such a curve in the x1x3-plane.

(a) Find a parametrization for the surface of revolution generated by rotating this
curve about the x3-axis.

(b) Check that your answer to part (a) matches the parametrizations of the
catenoid and the torus given above.

Try it out!

Exploration 2.10. Consider the torus Ta,b whose parametrization is given in
Exercise 2.7. Use DiffGeomTool to plot T3,2 again. Describe what happens to the shape
of the torus Ta,b as as a gets smaller and b gets larger (Hint: in DiffGeomTool, plot each
of the following tori: T(2.7, 2), T(2.4, 2), T(2, 2), T(3, 2.4), T(3, 2.7), and T(3, 3). What
happens when a < b? Explain this in terms of how we derived the parametrization of
the torus.

Try it out!

Exploration 2.11. As mentioned earlier, the Enneper surface is not embedded;
that is, it has self-intersections. Use DiffGeomTool and the parametrization given in
Example 2.5 to graph the Enneper surface with the domain being a disk of radius 1.

(a) What happens to the Enneper surface as the radius r of the disk increases?
(b) Estimate the largest value of r for which the Enneper surface has no self-

intersections.
(c) Assuming that the intersection occurs on the x3-axis, prove your result from

part (b).

Try it out!

So far we have discussed how a function (i.e., a parametrization) models a surface.
Our goal is to determine the bending or curvature of curves on a surface. To do this,
we next will need to use the parametrization of a surface to discuss the concepts of
a tangent plane and a normal vector at a point on the surface. Suppose x(u, v) is a
parametrization of a surface M ⊂ R3. If we fix v = v0 and let u vary, then x(u, v0)
depends on one parameter and is known as a u-parameter curve. Likewise, we can fix
u = u0 and let v vary to get a v-parameter curve x(u0, v) (see Figure 2.12). Tangent
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vectors for the u-parameter and v-parameter curves are computed by differentiating
the component functions of x with respect to u and v, respectively. That is, xu and
xv are the tangent vectors defined by

xu =

(
∂x1

∂u
,
∂x2

∂u
,
∂x3

∂u

)
, xv =

(
∂x1

∂v
,
∂x2

∂v
,
∂x3

∂v

)
.

v

(u, v0)

u

D ⊂ R2

(u0, v)

x(u, v)
xv

xu

v-param.
curve

M ⊂ R3

u-param.
curve

Figure 2.12. The u-parameter and v-parameter curves

Whenever we have a parametrization of a surface, we will require that xu and xv be
linearly independent (i.e., not constant multiples of each other). Because of this, the
span of xu and xv (i.e., the set of all vectors that can be written as a linear combination
of xu, xv) forms a plane called the tangent plane.

Definition 2.12. The tangent plane of a surface M at a point p is

TpM = {v
∣∣v is tangent to M at p}.

Definition 2.13. The unit normal to a surface M at a point p = x(a, b) is

n(a, b) =
xu × xv∣∣xu × xv

∣∣
∣∣∣∣∣
(a,b)

.

Not every surface has a well-defined choice of a unit normal n. Such surfaces are called
non-orientable. An example of a non-orientable surface is given in Exercise 2.150. Note
that the unit normal, n, is orthogonal to the tangent plane at p (see Figure 2.13). Also,
if the surface M is oriented, then geometrically there are two unit normals at each point
p ∈ M – an outward pointing normal and an inward pointing normal. However, the
definition of n automatically chooses one of these normals.

Example 2.14. Consider a torus parametrized by

x(u, v) =
(

(3 + 2 cos v) cosu, (3 + 2 cos v) sinu, 2 sin v
)
,
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n
xv

TpM

M ⊂ R3

xu

Figure 2.13. A tangent plane, TpM , and unit normal vector, n

where 0 < u, v < 2π. For v0 = π
3
, the u-parameter curve is

x

(
u,
π

3

)
= (4 cosu, 4 sinu,

√
3).

For u0 = π
2
, the v-parameter curve is

x

(
π

2
, v

)
= (0, 3 + 2 cos v, 2 sin v).

Notice

xu(u, v) = (−(3 + 2 cos v) sinu, (3 + 2 cos v) cosu, 0)

xv(u, v) = (−2 sin v cosu,−2 sin v sinu, 2 cos v).

Now the u-parameter curve, x
(
u, π

3

)
, and the v-parameter curve, x

(
π
2
, v
)
, intersect on

the torus at p = x
(
π
2
, π

3

)
. Then the tangent vectors to the u- and v-parameter curves

at the point p are

xu

(
π

2
,
π

3

)
= (−4, 0, 0)

xv

(
π

2
,
π

3

)
= (0,−

√
3, 1).

These two vectors span the tangent plane, TpM , at p. We compute that

xu

(
π

2
,
π

3

)
× xv

(
π

2
,
π

3

)
= (−4, 0, 0)× (0,−

√
3, 1) = (0, 1, 4

√
3).

Hence,

n

(
π

2
,
π

3

)
=

(
0,

1

7
,
4
√

3

7

)
.

We can use DiffGeomTool to display this u-parameter curve, v-parameter curve, xu,
xv, and n. Enter the parametrization in this example for the torus. Then click Curves.
A Point location box along with a fixed u and a fixed v boxes will appear. In
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the Point location box, enter pi/2 into the first box (i.e., the fixed u value) and
pi/3 into the second box (i.e., the fixed v value). Click the fixed u box and click on
the Graph button. The v-parameter curve will appear. If you now click the track

fixed u curve box, a slider will appear. Moving the slider with the cursor will move
the point along the v-parameter curve on the torus. By clicking on the track fixed

v curve box and clicking the Graph button again, the same can be done for the u-
parameter curve. Next, click on each of the following boxes separately followed by the
Graph button: Tangent vectors box, Tangent plane box, and Normal vector box.
This will cause these geometric objects to appear. You should convince yourself that
the images of the vectors at (u, v) = (π

2
, π

3
) match the computed values done earlier in

Example 2.14.

Figure 2.14. The torus with specific u, v-parameter curves, the tangent
vectors, the tangent plane, and the normal vector.

Exercise 2.15. For a surface of revolution (see Exercise 2.9) parametrized by

x(u, v) =
(
f(v) cosu, f(v) sinu, g(v)

)
the u-parameter curves are called parallels and are the curves formed by horizontal
slices, while the v-parameter curves are called meridians and are the curves formed by
vertical slices. Describe the parallels and meridians for the catenoid in Example 2.6
and the torus in Exercise 2.7.

Try it out!

Exercise 2.16. Recall the parametrization of a catenoid

x(u, v) =
(

cosh v cosu, cosh v sinu, v
)
,

with 0 < u < 2π and −2π
3
< v < 2π

3
.
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(a) Use DiffGeomTool to sketch the u-parameter curve, x(u, 0), and the v-parameter
curve, x(0, v) on the catenoid. Also, sketch the vectors xu(0, 0), xv(0, 0), and
n(0, 0).

(b) Compute the vectors xu(0, 0), xv(0, 0), and n(0, 0).

Try it out!

Exercise 2.17. Recall the parametrization of Scherk’s doubly periodic surface

x(u, v) =

(
u, v, ln

(cosu

cos v

))
,

with −0.48π < u, v < 0.48π.

(a) Use DiffGeomTool to sketch the u-parameter curve, x
(
u, π

4

)
, and the v-parameter

curve, x
(
π
4
, v
)

on Scherk’s doubly periodic surface (make sure you use−0.48π <

u, v < 0.48π). Also, sketch the vectors xu
(
π
4
, π

4

)
, xv

(
π
4
, π

4

)
, and n

(
π
4
, π

4

)
. Note

that you can slide these vectors by clicking the track fixed u curve box.
This collection of vectors, xu, xv, n), are known as a moving frame or Frenet
frame of a curve. The way these vectors vary in R3 as the frame moves along
the curve describes how the curve twists and turns in R3. For more details,
see [17] or [20].

(b) Compute the vectors xu
(
π
4
, π

4

)
, xv

(
π
4
, π

4

)
, and n

(
π
4
, π

4

)
.

Try it out!

Now that we have discussed the normal vector n, we are ready to explore the idea
of the curvature of a curve on a surface. This idea will help us later define minimal
surfaces. Notice that any plane containing the normal n will intersect the surface M
in a curve, α. For each curve α, we can compute its curvature, which measures how
fast the curve pulls away from the tangent line at p. So let’s now consider some ideas
about the curvature of a curve. Any curve in R3 can be parametrized by a function
of one variable, say α(t), where α : [a, b] → R3. However, this parametrization is not
unique.

Exercise 2.18. Find two different parametrizations of the unit circle in the x1x2-
plane.

Try it out!

This lack of uniqueness can cause difficulties in exploring the concept of curvature. To
eliminate these difficulties we will standardize our parametrization by requiring it to
be a unit speed curve.

Definition 2.19. A curve α is a unit speed curve if
∣∣α′(t)∣∣ = 1.

If our parametrization of our regular curve α(t) is not of unit speed, we can always
reparametrized it by arclength to form a unit speed curve α(s). Because of this, we
will assume that the curves we will be discussing are unit speed curves α(s). This
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assumption means that we are only interested in the geometric shape of a regular
curve since reparametrizing does not change its shape.

Given a curve α, we want to discuss its curvature (or bending). The amount of
bending of the curve is demonstrated by the measure of how rapidly the curve pulls
away from the tangent line at p. In other words, it measures the rate of change of the
angle θ that neighboring tangents make with the tangent at p. Thus, we are interested
in the rate of change of the tangent vector (i.e., the value of the second derivative).

Definition 2.20. The curvature of the unit speed curve α at s is
∣∣α′′(s)∣∣.

Example 2.21. Consider a torus parametrized by

x(u, v) =
(

(3 + 2 cos v) cosu, (3 + 2 cos v) sinu, 2 sin v
)
,

where 0 < u, v < 2π. Let’s compute the curvature for the u-parameter curves and the
v-parameter curves. All the v-parameter curves (or meridians) are the curves formed
by vertical slices of the torus, and hence are circles of radius b = 2. To compute
the curvature of these v-parameter curves, we start with the parametrization of these
curves

x(v) = x(u0, v) =
(

(3 + 2 cos v) cosu0, (3 + 2 cos v) sinu0, 2 sin v
)
,

where u0 is a fixed value. We next need to reparametrize x(v) so that it is a unit speed
curve. Differentiating x(v) with respect to v we get

x′(v) =
(
− 2 sin v cosu0,−2 sin v sinu0, 2 cos v

)
.

Thus, |x′(v)| = 2. To make x′(v) into a unit speed curve, we replace v with s
2
. So, our

reparametrized curve is

x(s) =

(
− 2 sin

(s
2

)
cosu0,−2 sin

(s
2

)
sinu0, 2 cos

(s
2

))
.

Then we compute

x′(s) =

(
− sin

(s
2

)
cosu0,− sin

(s
2

)
sinu0, cos

(s
2

))
x′′(s) =

(
− 1

2
cos
(s

2

)
cosu0,−

1

2
cos
(s

2

)
sinu0,−

1

2
sin
(s

2

))
.

Hence, the curvature of the v-parameter curves is∣∣x′′(s)∣∣ =
1

2
.

The u-parameter curves (or parallels) are the curves formed by horizontal slices of the
torus, and so are circles of radius 3 + 2 cos v0, where v0 ∈ (0, 2π) is fixed; note that
these radii vary between 1 and 5. These curves are parametrized by

x(u) = x(u, v0) =
(

(3 + 2 cos v0) cosu, (3 + 2 cos v0) sinu, 2 sin v0

)
,

115



which are reparametrized to the unit speed curve

x(s) =

(
(3 + 2 cos v0) cos

( s

3 + 2 cos v0

)
, (3 + 2 cos v0) sin

( s

3 + 2 cos v0

)
, 2 sin v0

)
.

Finally, computing the curvature of these u-parameter curves yields∣∣x′′(s)∣∣ =
1

3 + 2 cos v0

.

So, the curvature of the these curves varies between 1
5

and 1.

curvature = 1

curvature = 1
5

curvature = 1
2

Figure 2.15. The curvature of the meridians and parallels on a torus.

Exercise 2.22. Compute the curvatures of the meridians and parallels of the
catenoid parametrized by

x(u, v) =
(
a cosh v cosu, a cosh v sinu, av

)
.

Try it out!

Exercise 2.23. The curve parametrized by α(t) = (a cos t, a sin t, bt) is known as
a helix which is a spiral that rises with a pitch of 2πb on the cylinder x2 + y2 = a2.

Figure 2.16. A helix in a cylinder.

We can create a surface by connecting a line from the axis (0, 0, bt) through the helix
(a cos t, a sin t, bt). This ruled surface is a minimal surface known as a helicoid. All
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minimal surfaces including the helicoid can be parametrized in several ways. For our
purposes, we will use the following parametrization of the helicoid:

x(u, v) =
(
a sinh v cosu, a sinh v sinu, au

)
.

(a) Compute the curvatures of the u-parameter curves and v-parameter curves of
this helicoid (note: making the v-parameter curve into a unit speed curve is
not easy, so in doing this computation you may need to be creative).

(b) Use DiffGeomTool to graph this helicoid with a = 1.

Try it out!

Exercise 2.24. From the results of Example 2.21 you may have conjectured that

the curvature of a circle of radius r is
1

r
. This conjecture is correct. Prove this.

Try it out!

Now let’s return to surfaces. Suppose we have a curve σ(s) on a surface M . We
can determine the unit tangent vector, w of σ at p ∈M and the unit normal, n of M
at p ∈M . Note that w × n forms a plane P that intersects M creating a curve α(s).

n plane P

σ wM ⊂ R3

α(s)

Figure 2.17. The normal curvature

Definition 2.25. The normal curvature in the w direction is

k(w) = α′′ · n.

Recall α′′ ·n =
∣∣α′′∣∣∣∣n∣∣ cos θ, where θ is the angle between n and α′′. Hence α′′ ·n is the

projection of α′′ onto the unit normal (hence, the name normal curvature). Intuitively,
the normal curvature measures how much the surface bends towards n as you travel
in the direction of the tangent vector w starting at point p. As we rotate the plane
through the normal n, we will get a set of curves on the surface each of which has a
value for its curvature. Let k1 and k2 be the maximum and minimum curvature values
at p, respectively. The directions in which the normal curvature attains its absolute
maximum and absolute minimum values are known as the principal directions.
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Definition 2.26. The mean curvature (i.e., average curvature) of a surface M at
p is

H =
k1 + k2

2
.

It turns out that k1 and k2 come from two orthogonal tangent vectors. The mean
curvature depends upon the point p ∈ M . However, it can be shown that H does
not change if we choose any two orthogonal vectors and use their curvature values to
compute H at p. Also, we will use the convention that if kj is bending toward the unit
normal n, then kj > 0 and if it is bending away from n, then kj < 0.

Example 2.27. At any point on a sphere of radius a, all the curves α are circles of
radius a and hence have the same curvature value which can be computed to be 1/a.
Since these curves are bending away from n, k1 = −1/a = k2. So the mean curvature
is −1/a.

Exercise 2.28. Determine the mean curvature at all points on the cylinder parametrized
by x(u, v) = (a cosu, a sinu, bv).

Try it out!

Exercise 2.29. Determine if there are points on the torus x(u, v) =
(
(a+b cos v) cosu, (a+

b cos v) sinu, b sin v
)

where H > 0, H = 0, and H < 0.
Try it out!

In the next section of this chapter we will define a minimal surface in terms of mean
curvature. Right now, we have mean curvature as given in Definition 2.26. However,
this definition is not practical for determining the mean curvature of a surface since
Definition 2.26 depends upon a specific point on the surface. Fortunately, there is a
more useful formula for mean curvature using the coefficients of the first and second
fundamental forms for a surface. Recall that α is a unit speed curve. Hence

1 =|α′|2 = α′ · α′

=(xu du+ xv dv) · (xu du+ xv dv)

=xu · xu du2 + 2xu · xv dudv + xv · xv dv2

=E du2 + 2F dudv +Gdv2.(2)

The terms E = xu · xu, F = xu · xv, and G = xv · xv are known as the coefficients of
the first fundamental form. These describe how lengths on a surface are distorted as
compared to their usual measurements in R3.
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Next, recall k(w) = α′′ ·n. Note that α′ ·n = 0, and so (−α′ ·n)′ = 0, which implies
α′′ · n + α′ · n′ = 0, and thus α′′ · n = −α′ · n′. Similarly, −xu · nu = xuu · n. So

k(w) =− α′ · n′

=− (xu du+ xv dv) · (nu du+ nv dv)

=− xu · nu du2 − (xu · nv + xv · nu) dudv − xv · nv dv2

= xuu · n du2 + 2xuv · n dudv + xvv · n dv2

= e du2 + 2f dudv + g dv2.

The terms e = xuu · n, f = xuv · n, and g = xvv · n are called the coefficients of the
second fundamental form. These describe how much the surface bends away from the
tangent plane.

Example 2.30. Recall that a catenoid can be parametrized by

x(u, v) =
(
a cosh v cosu, a cosh v sinu, av

)
.

Using this parametrization, we compute that

xu = (−a cosh v sinu, a cosh v cosu, 0)

xv = (a sinh v cosu, a sinh v sinu, a).

So, the coefficients of the first fundamental form are:

E =xu · xu = a2 cosh2 v;

F =xu · xv = 0;

G =xv · xv = a2 cosh2 v.

What do these values for E, F , and G tell us? Let (u0, v0) ∈ D be a point in the domain
and let’s take a small square with a vertex at this point. Because xu · xv = F = 0,
we know that the orthogonal lines from the u-parameter curve and the v-parameter
curve will remain orthogonal on the catenoid. That is, small squares will be mapped
to small rectangles. Next, because E = G, adjacent sides of the image rectangle will
have the same length. So, in fact, small squares in the domain D will be mapped
to small squares on the catenoid. Now suppose for simplicity sake that a = 1. Then
E = G = cosh2 v. When v = 0, E = G = 1 and as v gets farther away from 0, E and G
get larger. This means that a small square containing the u-parameter curve v = 0 will
get mapped to a small square of the small size on the catenoid. But as v gets farther
away from 0, the size of the side lengths of the image square will increase by a factor
of cosh2 v. This can be seen in Figure 2.18 (note that when the u-parameter curve
with v = 0 gets mapped to a parallel on the neck of the catenoid, and the u-parameter
curve with v = 2π

3
gets mapped to the edge of the catenoid as displayed in the figure).
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Figure 2.18. The catenoid.

In order to compute the coefficients of the second fundamental form, we need to com-

pute n =
xu × xv
|xu × xv|

. Now,

xu × xv = (a2 cosh v cosu, a2 cosh v sinu,−a2 cosh v sinh v),

and so

|xu × xv| = a2 cosh2 v.

Hence

n =

(
cosu

cosh v
,

sinu

cosh v
,− sinh v

cosh v

)
.

Also, we can compute that

xuu =(−a cosh v cosu,−a cosh v sinu, 0)

xuv =(−a sinh v sinu,−a sinh v cosu, 0)

xvv =(a cosh v cosu, a cosh v sinu, 0)

Therefore, the coefficients of the second fundamental form are:

e =n · xuu = −a;

f =n · xuv = 0;

g =n · xvv = a.

What do these values for e, f , and g tell us? Again, let (u0, v0) ∈ D be a point in the
domain, and let p ∈M be the image of (u0, v0) on the surface. Then at p, the vectors
xu and xv create the tangent plane TpM and the unit normal n. For this catenoid,
the u-parameter curve is bending away from n while the v-parameter curve is bending
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toward n. However, both curves are bending the same amount away from the tangent
plane. This is represented by the fact that e = −g in this example.

Exercise 2.31. A torus has the parametrization

x(u, v) =
(

(a+ b cos v) cosu, (a+ b cos v) sinu, b sin v
)
.

(a) Compute the coefficients of the first and the second fundamental forms.
(b) Open DiffGeomTool and enter this parametrization for the torus with a = 2

and b = 1. Use the Rectangular grid with 0 <= u <= 2∗ pi and 0 <=
v <= 2∗ pi. And set the # u points: to 20 and the # v points: to 20.
Describe how the results from part (a) match with the image of the torus in
DiffGeomTool.

Exercise 2.32. Compute the coefficients of the first and the second fundamental
forms for Scherk’s doubly periodic surface parametrized by

x(u, v) =

(
u, v, ln

(
cosu

cos v

))
.

Try it out!

Now we want to express the mean curvature H in terms of these coefficients of the
first and second fundamental forms. In particular, we will show that

H =
Eg +Ge− 2Ff

2(EG− F 2)
.

Proof. There is an elegant way to derive this formula. This approach requires
some concepts that are interesting but beyond the scope of what we will need. So
instead we will use a straightforward calculation that is in Oprea ([21], pp. 40-42).
Although this calculation does not give much insight into the formula, it does provide
a straightforward proof of this important formula. For a discussion involving the more
advanced approach, see [3] or [17].

Let w1,w2 be any two perpendicular unit vectors. Let k1, k2 be their normal
curvatures using the curves α1, α2 with parameters u1(s), v1(s) and u2(s), v2(s). Let’s
denote p1 = du1 + idu2 and p2 = dv1 + idv2. Then

2H = k1 + k2 = e(du2
1 + du2

2) + 2f(du1dv1 + du2dv2) + g(dv2
1 + dv2

2)

= e(p1 p1) + f(p1 p2 + p1p2) + g(p2 p2).

We want to further simplify this so that it does not have p1 and p2. Recall eq (2):

1 = E du2 + 2F dudv +Gdv2.
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Now consider

Ep2
1 + 2Fp1p2 +Gp2

2 = E
[
du2

1 − du2
2 + i2du1du2

]
+ 2F

[
du1dv1 − du2dv2 + i(du1dv2 + du2dv1)

]
+G

[
dv2

1 − dv2
2 + i2dv1dv2

]
= 2i

[
Edu1du2 + F (du1dv2 + du2dv1) +Gdv1dv2

]
+
[
Edu2

1 + 2Fdu1dv1 +Gdv2
1

]
−
[
Edu2

2 + 2Fdu1dv2 +Gdv2
2

]
= 0 + 1− 1

= 0.

Thus,

p1 =
−2Fp2 ±

√
4F 2p2

2 − 4EGP 2
2

2E
=

(
− F

E
± i
√
EG− F 2

E

)
p2

p1 =

(
− F

E
∓ i
√
EG− F 2

E

)
p2.

And so

p1 p1 =

(
F 2

E2
+ EG− F 2E

)
p2 p2 =

G

E
p2 p2(3)

p1 p2 + p1p2 = −2F

E
p2 p2.(4)

Now we have

2H = k1 + k2 = e(p1 p1) + f(p1 p2 + p1p2) + g(p2 p2)

=

[
e
G

E
+ f

(
−2F

E

)
+ g

]
p2 p2.

We just need to get rid of p2 p2. Again using eq (2), we have

Ep1 p1+F (p1 p2 + p1p2) +Gp2 p2

= E(du2
1 + du2

2) + 2F (du1dv1 + du2dv2) +G(dv2
1 + dv2

2)

= 1 + 1 = 2.

Using eqs (3) and (4),we derive

2 = E

(
G

E
p2 p2

)
+ 2F

(
−2F

E
p2 p2

)
+Gp2 p2

⇒ 2 =

[
2G− 2F 2

E

]
p2 p2

⇒ p2 p2 =
E

EG− F 2

122



Therefore,

H =
1

2

[
e
G

E
+ f

(
−2F

E

)
+ g

]
p2 p2 =

Eg + eG− 2Ff

2(EG− F 2)
.

�

2.3. Minimal Surfaces

Now that we have a foundation of some essential ideas from differential geometry,
we can begin to explore minimal surfaces. Earlier we mentioned that minimal surfaces
can be thought of as saddle surfaces. That is, at each point the bending upward in
one direction is matched with the bending downward in the orthogonal direction. This
picture can be described mathematically with the following definition.

Definition 2.33. A minimal surface is a surfaceM with the mean curvatureH = 0
at all points p ∈M .

Make sure that you understand how this definition fits with the picture of a surface
bending upward in one direction while also bending downward in the orthogonal di-
rection. At this point we can use the results from the previous section. First, we can
use the formula

(5) H =
Eg +Ge− 2Ff

2(EG− F 2)
.

to show that a surface with a specific parametrization is minimal.

Example 2.34. We will use eq (5) to show that the catenoid is a minimal surface.
Recall that a catenoid can be parametrized by

x(u, v) =
(
a cosh v cosu, a cosh v sinu, av

)
.

From Example 2.30

E =xu · xu = a2 cosh2 v,

F =xu · xv = 0,

G =xv · xv = a2 cosh2 v,

and

e =n · xuu = −a,
f =n · xuv = 0,

g =n · xvv = a.

Hence

H =
eG− 2fF + Eg

2(EG− F 2)
= 0.

And so the catenoid is a minimal surface.
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Exercise 2.35. Using the parametrization for the helicoid

x(u, v) = (a sinh v cosu, a sinh v sinu, au),

prove that the helicoid is a minimal surface. Using DiffGeomTool we display the graph
of this helicoid when a = 1 (see Figure 2.19).

Figure 2.19. Helicoid.

Try it out!

Exercise 2.36. Using the parametrization for the torus

x(u, v) =
(
(a+ b cos v) cosu, (a+ b cos v) sinu, b sin v

)
,

prove that it is not a minimal surface.
Try it out!

Exercise 2.37. Suppose a surface M is the graph of a function f(x, y) of two
variables (see the paragraph before Exercise 2.8). Then M can be parametrized by

x(x, y) =
(
x, y, f(x, y)

)
,

where its domain is formed by the projection of M onto the xy-plane.

(a) Compute the coefficients of the first and second fundamental forms for M .
(b) A minimal graph is a minimal surface that is a graph of a function. Prove

(6) M is a minimal graph ⇐⇒ fxx

(
1 + f 2

y

)
− 2fxfyfxy + fyy

(
1 + f 2

x

)
= 0.

Try it out!
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In the paragraph before Exercise 2.8, we stated that Scherk’s doubly periodic sur-
face is a minimal graph. We will now use eq (6) to prove that. Applying this equation is
usually not easy, because solving explicitly for f can be complicated. However, one case
in which we can do this is when f can be separated into two functions each of which is
dependent upon only one variable. In particular, suppose f(x, y) = g(x) + h(y). Then
the minimal surface equation becomes:

g′′(x)[1 + (h′(y))2] + h′′(y)[1 + (g′(x))2] = 0.

This is a separable differential equation and hence can be solved. To do so, separate
all the terms with the x variables from those with the y variables by putting them on
opposite sides. This yields:

(7) −1 + (g′(x))2

g′′(x)
=

1 + (h′(y))2

h′′(y)
.

What does this mean? If we fix y, the right side remains constant even if we change x
in the left side. The same is true if we fix x and vary y. The only way such a situation
can occur is if both sides are constant. So we have:

−1 + (g′(x))2

g′′(x)
= k =⇒ 1 + (g′(x))2 = −kg′′(x).

To solve this, let φ(x) = g′(x). Then dφ
dx

= g′′(x) and so∫
dx = −k

∫
dφ

1 + φ2

=⇒ x = −k arctanφ+ C

=⇒ φ = − tan

(
x+ C

k

)
.

For convenience, let C = 0 and k = 1. Since φ = g′, we can integrate again to get:

g(x) = ln[cos x].

Completing the same calculations for the y-side of eq (7) yields:

h(y) = − ln[cos y].

Hence

f(x, y) = g(x) + h(y) = ln

[
cosx

cos y

]
which is an equation for Scherk’s doubly periodic surface. Using DiffGeomTool we
display the graph of Scherk’s doubly periodic surface (see Figure 2.20).
Notice that −π

2
< x, y < π

2
and so this surface is defined over a square with side lengths

π centered at the origin. By a theorem known as the Schwarz Reflection Principle, we
can fit pieces of Scherk’s doubly periodic surface together horizontally and vertically
to get a checkerboard domain (See Figure 2.21). Because one piece of this surface can
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Figure 2.20. Scherk’s doubly periodic surface.

be repeated or tiled in two directions, it is called a doubly periodic surface. This is
really an exciting idea!

Figure 2.21. A tiling of Scherk’s doubly periodic surface.

The following is a list of parametrizations for some minimal surfaces:

(1) The plane:
x(u, v) = (u, v, 0).

(2) The Enneper surface:

x(u, v) =
(
u− 1

3
u3 + uv2, v − 1

3
v3 + u2v, u2 − v2

)
.

(3) The catenoid:
x(u, v) = (a cosh v cosu, a cosh v sinu, av).

(4) The helicoid:
x(u, v) = (a sinh v cosu, a sinh v sinu, au).

126



(5) Scherk’s doubly periodic surface:

x(u, v) =

(
u, v, ln

(cosu

cos v

))
.

(6) Scherk’s singly periodic surface:
x(u, v) = (arcsinh(u), arcsinh(v), arcsin(uv)).

(7) Henneberg surface:
x(u, v) = (−1 + cosh(2u) cos(2v),− sinh(u) sin(v)− 1

3
sinh(3u) sin(3v),

− sinh(u) cos(v) + 1
3

sinh(3u) cos(3v)).
(8) Catalan surface:

x(u, v) = (1− cos(u) cosh(v), 4 sin(u
2
) sinh(v

2
), u− sin(u) cosh(v)).

In addition to the Enneper surface, the Henneberg surface and the Catalan surface are
not embedded.

Before we proceed further, let us mention an interesting geometric result about
minimal surfaces.

Theorem 2.38. Any nonplanar minimal surface in R3 that is also a surface of
revolution is contained in a catenoid.

As we have seen, determining if a surface is minimal basically involves solving
second order differential equations. We can simplify these equations if we use a specific
type of parametrization of a surface known as an isothermal parametrization.

Definition 2.39. A parametrization x is isothermal if E = xu · xu = xv · xv = G
and F = xu · xv = 0.

What does this mean? Recall that E, F , and G describe how lengths on a surface
are distorted as compared to their usual measurements in R3. So if F = xu · xv =
0 then the vectors xu and xv are orthogonal and if E = G, then the amount of
distortion is the same in these two orthogonal directions. Thus, we can think of
an isothermal parametrization as mapping a small square in the domain to a small
square on the surface. Sometimes, an isothermal parametrization is called a conformal
parametrization, because the angle between a pair of curves in the domain is equal to
the angle between the corresponding pair of curves on the surface.

M ⊂ IR3D

x

Figure 2.22. An isothermal parametrization maps small squares to
small squares.
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Example 2.40. The parametrization

x(u, v) = (a cosh v cosu, a cosh v sinu, av)

for the catenoid is isothermal, because in Example 2.34 we derived that E = a2 cosh2 v =
G and F = 0. We can get a geometric sense that this parametrization is isothermal
by using DiffGeomTool to graph this parametrization of the catenoid. Open DiffGe-
omTool and enter this parametrization with a = 1. Using the Rectangular grid, set
-pi <= u <= pi and -pi <= v <= pi. Also, set the # u points: to 20, and the # v
points: to 20. This will make the domain a grid of squares that map onto the catenoid.
Then click the Graph button. Notice that the grid of squares in the domain are pretty
much mapped to a grid of squares as predicted above (see Figure 2.23).

Figure 2.23. This parametrization of the catenoid is isothermal.

Example 2.41. The parametrization

x(u, v) =
(
(a+ b cos v) cosu, (a+ b cos v) sinu, b sin v

)
for the torus is not isothermal. This is because in Exercise 2.31, you derived that

E =(a+ b cos v)2,

F =0,

G =b2.

Because F = 0, the vectors xu and xv are orthogonal on the torus. But E ≥ G with
equality only when v = π+2πk, (k ∈ Z). Thus the image of squares in the domain will
be nonsquare rectangles whenever v 6= π + 2πk. Again, open DiffGeomTool and enter
this parametrization for the torus with a = 2 and b = 1. Set the Rectangular grid

values to 0 <= u <= 2∗ pi and 0 <= v <= 2∗ pi. And set the # u points: to 20 and
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the # v points: to 20. Notice that the grid of squares in the domain are mapped to a
grid of mostly nonsquare rectangles as mentioned above. The ratio, length

height
, of the sides

of the rectangles is largest for the part of the torus farthest away from the origin. This
occurs when v = 0 (or v = 2π) resulting in E = 4 while G = 1. On the other hand, the
rectangles are squares for the part of the torus closest to the origin. This occurs when
v = π resulting in E = 1 while G = 1. This helps us see why this parametrization of
the torus is not isothermal (see Figure 2.24).

Figure 2.24. This parametrization of the torus is not isothermal.

Exercise 2.42. Using Definition 2.39 determine which of the following parametriza-
tions of minimal surfaces is isothermal:

(a) The Enneper surface parametrized by

x(u, v) =
(
u− 1

3
u3 + uv2, v − 1

3
v3 + u2v, u2 − v2

)
;

(b) Scherk’s doubly periodic surface parametrized by

x(u, v) =
(
u, v, ln

(cosu

cos v

))
;

(c) The helicoid parametized by
x(u, v) = (a sinh v cosu, a sinh v sinu, au).

Try it out!

Exploration 2.43. Use DiffGeomTool to check the reasonableness of your answers
in Exercise 2.42 by graphing each parametrization in that exercise as was done in
Examples 2.40 and 2.41. Set the # u points: to 20 and the # v points: to 20, and use
the following values for the U/V domain boxes:

(a) Enneper surface:
−π

3
<= u,v <= π

3
;
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(b) Scherk’s doubly periodic surface:
−π

2
+ 0.1 <= u <= π

2
− 0.1 and 0.1 <= v <= π − 0.1;

(c) Helicoid:
−π <= u,v <= π.

Try it out!

From Exercise 2.42 and Exploration 2.43 you have seen there are parametrizations
of minimal surfaces that are not isothermal. However, requiring minimal surfaces
to have an isothermal parametrization is not a restriction because of the following
theorem.

Theorem 2.44. Every minimal surface in R3 has an isothermal parametrization.

Remark 2.45. In fact, every differentiable surface has an isothermal parametriza-
tion. This is a very interesting result. Unfortunately, a proof of this is beyond the
scope of this text, but if you are interested, a proof is given in [2], pp 15-35.

Recall that in Example 2.34, we derived that the isothermal parametrization for
the catenoid

x(u, v) =
(
a cosh v cosu, a cosh v sinu, av

)
has

e = −g.
In general, we have the following result.

Theorem 2.46. Let M be a surface with isothermal parametrization. Then M is
minimal ⇐⇒ e = −g.

Exercise 2.47. Prove Theorem 2.46.

Exploration 2.48. Recall that e = −g for the coefficients of the 2nd fundamental
form represents that the u-parameter curve and the v-parameter curve are bending the
same amount away from the normal n but in different directions. Use DiffGeomTool in
connection with Theorem 2.46 to geometrically verify which of the following surfaces
are minimal:

(a) Enneper surface:

x(u, v) =
(
u− 1

3
u3 + uv2, v − 1

3
v3 + u2v, u2 − v2

)
;

(b) Cylinder:
x(u, v) =

(
cosu, sinu, v

)
;

(c) Helicoid:
x(u, v) = (a sinh v cosu, a sinh v sinu, av).

Now, here is an interesting and important result that brings in an idea from complex
analysis. Recall from complex analysis, that if f(z) = x(u, v) + iy(u, v) is an analytic
function, then the Cauchy-Riemann equations hold for f . That is,

xu = yv, xv = −yu.
130



In such a case, y is called the harmonic conjugate of x. Also, if f is analytic, then

(8) f ′(z) = xu + iyu.

This concept allows us to relate a minimal surface to another minimal surface, known
as its conjugate minimal surface.

Definition 2.49. Let x and y be isothermal parametrizations of minimal surfaces
such that their component functions are pairwise harmonic conjugates. That is,

(9) xu = yv and xv = −yu.

In such a case, x and y are called conjugate minimal surfaces.

Example 2.50. Let’s find the conjugate surface of the catenoid parametrized by

x(u, v) = (a cosh v cosu, a cosh v sinu, av).

Let y(u, v) be the parametrization of this conjugate surface. By the first part of eq
(9), we know

yv = xu = (−a cosh v sinu, a cosh v cosu, 0).

Integrating this with respect to v yields

y = (−a sinh v sinu+ F1(u), a sinh v cosu+ F2(u), F3(u)),

where each Fk(u) is a function independent of v. Similarly, by the second part of eq
(9), we derive

y = (−a sinh v sinu+G1(v), a sinh v cosu+G2(v),−au+G3(v)).

Equating these two expressions for y we get that

y = (−a sinh v sinu+K1, a sinh v cosu+K2,−au+K3).

Using the substitution u = ũ − π
2
, v = ṽ, and letting K1 = 0, K2 = 0, and K3 = aπ

2
,

does not affect the geometry of this minimal surface, and yields the parametrization
of a helicoid

y(ũ, ṽ) = (a sinh ṽ cos ũ, a sinh ṽ sin ũ,−aũ)

given in Exercise 2.23 (Note that the negative sign in the third component function just
has the effect of reflecting the surface through the x1x2-plane). Hence, the conjugate
surface of this catenoid is a helicoid.

This idea of conjugate minimla surfaces gets really interesting. It turns out that
any two conjugate minimal surfaces can be joined through a one-parameter family of
minimal surfaces by the equation

z = (cos t)x + (sin t)y,

where t ∈ R. Note that when t = 0 we have the minimal surface parametrized by x,
and when t = π

2
we have the minimal surface parametrized by y. So for 0 ≤ t ≤ π

2
,

we have a continuous parameter of minimal surfaces known as associated surfaces. In
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other words, we can continuously “morph” one minimal surface into another minimal
surface so that all the in-between surfaces are also minimal.

In Example 2.50, we saw that the helicoid and the catenoid are conjugate surfaces.
Images of them and certain associated surfaces are shown in Figure 2.25.

Figure 2.25. The helicoid, some associated surfaces, and the catenoid.

This is neat, but it is just the beginning. The rest of this section will explore
properties of conjugate surfaces.

Exercise 2.51. Find the conjugate minimal surface for the Enneper surface

x(u, v) =

(
u− 1

3
u3 + uv2, v − 1

3
v3 + u2v, u2 − v2

)
.

Try it out!

If we try to determine the conjugate minimal surface for Scherk’s doubly periodic
surface with the parametrization

x(u, v) = x(u, v) =
(
u, v, ln

(cosu

cos v

))
,

this method will not work, because this parametrization is not isothermal. However,
later we will see that Scherk’s doubly periodic surface does have a conjugate surface.
It is Scherk’s singly periodic surface (see Figure 2.26).

Exploration 2.52. You can see the associated surfaces that occur between Scherk’s
doubly periodic surface and Scherk’s singly periodic surface by using another applet
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Figure 2.26. Scherk’s singly periodic surface.

for this chapter. This applet is called MinSurfTool, and it can be used to visualize and
explore minimal surfaces in R3. Now open MinSurfTool. On the right-hand side near
the top, there is a set of tabs for different features of this applet. For this exploration,
we want to use the W.E.(p,q) feature, so make sure that the W.E.(p,q) tab is on top
(it should be a different color than the other tabs). In the Pre-set functions window,
choose p(z) = 1/(1 − z4), q(z) = z ∗ e ∧ (i ∗ theta). Click on the Graph button, and
one piece of Scherk’s singly periodic surface will appear. Then move the slider arrow,
that is above the Graph button, to the right to see how Scherk’s singly periodic is
transformed by way of the associated surfaces into Scherk’s doubly periodic surface.

Try it out!

Recall that individual pieces of Scherk’s doubly periodic surface can be put together
in the x1x2-plane in a checkerboard fashion. So, these pieces repeat (or are periodic)
in two directions, x1 and x2. Individual pieces of Scherk’s singly periodic surface can
fit together creating a tower in the x3 direction. You can visualize adding two pieces
together by taking one piece of Scherk’s singly periodic surface and adding it to another
piece that has been reflected across the x1x2-plane and shifted up in the x3 direction.
By continuing to do this, you can create a tower of several pieces (see Figure 2.27).
Note that the helicoid is a singly periodic surface too.

Earlier in Example 2.30 we saw that the coefficients of the first fundamental form for
the given parametrization of a catenoid are E = a2 cosh2 v, F = 0, and G = a2 cosh2 v.
In Exercise 2.153 it can be shown that for the given parametrization of Enneper’s
surface these coefficients are E = (1 + u2 + v2)2, F = 0, and G = (1 + u2 + v2)2.
Clearly, the E’s and G’s do not match up. However, for any two conjugate minimal
surfaces and their associated minimal surfaces, the coefficients of the first fundamental
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Figure 2.27. Scherk’s singly periodic surface.

form are always the same. The following exercise will help you prove this surprising
result.

Exercise 2.53.

(a) Prove that given two conjugate minimal surfaces, x and y, all surfaces of the
one-parameter family

z = (cos t)x + (sin t)y

have the same fundamental form: E = xu ·xu = yu ·yu, F = 0, G = xv ·xv =
yv · yv.

(b) Prove that all the surfaces in the one-parameter family z from part (a) are
minimal for all t ∈ R.

Try it out!

Finally, recall that the normal vector n at a point on a surface points orthogonally
away from the surface. Since different minimal surfaces have different shapes, there
is no reason to suspect that the normal vectors on one surface will be related to the
normal vectors on another surface. However, for conjugate minimal surfaces and their
associated minimal surfaces there is a strong connection. It turns out that for any
point in the domain, the corresponding surface normal points in the same direction on
all these minimal surfaces. The next theorem establishes this idea.

Theorem 2.54. Let x,y : D → R3 be isothermal parametrizations of conjugate
minimal surfaces. Then for each (u0, v0) ∈ D, the corresponding surface unit normal
is the same for all the associated surfaces.

Proof. Let (u0, v0) ∈ D. Let nx and ny represent the surface normal for x and
for y, respectively. Then by the definition of conjugate surfaces, x and y have the
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same unit normal, because

nx =
xu × xv∣∣xu × xv

∣∣ =
yv ×−yu∣∣yv ×−yu

∣∣ =
yu × yv∣∣yu × yv

∣∣ = ny.

To show that this is true for the associated surfaces , let z = (cos t)x + (sin t)y be the
parametrization of the associated surfaces. Then

zu × zv =
(

cos txu + sin tyu
)
×
(

cos txv + sin tyv
)

= cos2 t
(
xu × xv

)
+ cos t sin t

(
xu × yv

)
+ cos t sin t

(
yu × xv

)
+ sin2 t

(
yu × yv

)
= cos2 t

(
xu × xv

)
+ cos t sin t

(
xu × xu

)
+ cos t sin t

(
− xv × xv

)
+ sin2 t

(
− xv × xu

)
= cos2 t

(
xu × xv

)
+ cos t sin t

(
0
)

+ cos t sin t
(
0
)

+ sin2 t
(
xu × xv

)
=xu × xv.

�

The following example and exploration helps us visualize this idea.

Example 2.55. Using DiffGeomTool we can graph the catenoid and its conjugate
surface, the helicoid, whose parametrizations are given in Example 2.50. If we plot the
normal n at the point (2π

3
,−π

4
) on these conjugate surfaces, we see that both normals

point in the same direction as guaranteed by Theorem 2.54 (see Figure 2.28 and Figure
2.29).

Figure 2.28. The catenoid with n at (2π
3
,−π

4
).

Exploration 2.56. Open two separate windows of DiffGeomTool. In one plot the
catenoid parametrized by

x(u, v) = (cosh v cosu, cosh v sinu, v),
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Figure 2.29. The conjugate helcoid with n at (2π
3
,−π

4
).

where 0 ≤ u ≤ 2π and −2π
3
≤ v ≤ 2π

3
. In the other plot its conjugate surface, the

helicoid, with parametrization

y(u, v) =

(
− sinh v cosu, sinh v sinu,−u+

π

2

)
,

where −π
2
≤ u ≤ 2π− π

2
and −2π

3
≤ v ≤ 2π

3
(Note that the u values for the helicoid are

different than the values for the catenoid because we used the substitution u = ũ− π
2

in Example 2.50). Then plot the following unit normals, n, on each surface at the
following points and observe that n points in the same direction as prescribed by
Theorem 2.54:

(a) at (π
2
, 0), (b) at (π

4
,−π

2
), (c) at (5π

4
, π

2
).

2.4. Weierstrass Representation

At the end of the last section, we saw an application of complex analysis into
minimal surface theory with the conjugate surfaces. In this section we are now ready
to bring in more ideas from complex analysis. First, we will use the property of
isothermal parametrization to give us a necessary and sufficient condition for a surface
to be minimal. This condition is very important and useful. It will come as a corollary
to the following theorem.

Theorem 2.57. If the parametrization x is isothermal, then

xuu + xvv = 2EHn,

where E is a coefficient of the first fundamental form and H is the mean curvature.
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Exercise 2.58 (Proof of Theorem 2.57). The set {xu,xv,n} forms a basis for R3.
Assume F = 0. Then the vector xuu can be expressed in terms of these bases vectors.
That is,

xuu = Γuuuxu + Γvuuxv + en,

where the coefficients, Γuuu and Γvuu, are known as Christoffel symbols and e comes from
the coefficient of the second fundamental form. That is, e = n · xuu.

(a) Show that Γuuu = Eu
2E

and Γvuu = −Ev
2G

by taking the inner product of xuu with
each of the basis vectors. In a similar manner, it can be shown that

xvv = −Gu

2E
xu +

Gv

2G
xv + gn.

(b) Use the mean curvature equation (5) and the results from (a) to show that if
the parametrization x is isothermal, then

xuu + xvv = 2EHn.

Try it out!

Now, where do we go from here? Recall that for a minimal surface, H ≡ 0. So
Theorem 2.57 tells us that xuu + xvv ≡ 0. But what does this last equation represent?
It is Laplace’s equation and relates to harmonic functions. Recall that ϕ(u, v) is a
real-valued harmonic function if ϕuu + ϕvv = 0 (for example, ϕ(u, v) = u2 − v2 is
harmonic). This leads us to our next result which is very important and useful. At
first, it may seem like this is a small result, because it is a brief corollary with a short
proof. However, do not be mislead. We have spent a lot of time laying the foundation,
and now we are fitting in the final pieces of the puzzle that will form the basis for
describing minimal surfaces by using the Weierstrass representation.

Corollary 2.59. A surface M with an isothermal parametrization x(u, v) =(
x1(u, v), x2(u, v), x3(u, v)

)
is minimal ⇐⇒ x1, x2, x3 are harmonic.

Make sure you understand the significance of this result. First, we need an isothermal
parametrization for our surface, but this is not a difficulty because of Theorem 2.44.
Then this result tells us we will have a minimal surface if and only if the coordinate
functions of that parametrization are harmonic functions. This will provide us another
way to create and to prove a surface is minimal.

Proof. (⇒) If M is minimal, then H = 0 and so by Theorem 2.57 xuu + xvv = 0,
and hence the coordinate functions are harmonic. (⇐) Suppose x1, x2, x3 are harmonic.
Then xuu + xvv = 0. So by Theorem 2.57 we have that 2(xu · xu)Hn = 0. But n 6= 0
and E = xu · xu 6= 0. Hence, H = 0 and M is minimal. �

Exercise 2.60. Given the parametrization for the Enneper surface

x(u, v) =

(
u− 1

3
u3 + uv2, v − 1

3
v3 + u2v, u2 − v2

)
,
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use Corollary 2.59 to prove that the Enneper surface is a minimal surface.
Try it out!

The importance of Corollary 2.59 is not in proving specific surfaces are minimal. In-
stead, it lies in establishing a general formula that will guarantee any surface created by
it will be minimal. This formula is known as the Weierstrass representation for minimal
surfaces. This is neat, because it will provide us with a simple way to construct a lot
of examples of minimal surfaces using functions from complex analysis. After stating
the Weierstrass representation in Theorem 2.65 we will use the rest of this section to
create more minimal surfaces. However, it turns out that not all minimal surfaces are
of equal interest. So in section 2.5 of this chapter we leave behind the idea of creating
arbitrary minimal surfaces and instead explore properties that make certain minimal
surfaces more interesting.

Now we will derive this important formula, the Weierstrass Representation, and
bring in the connection with complex analysis. Suppose M is a minimal surface with
an isothermal parametrization x(u, v). Let z = u+ iv be a point in the complex plane.
Recall that z = u − iv is the conjugate of z. Using these representations for z and z
we can solve for u, v in terms of z, z to get

u =
z + z

2
and v =

z − z
2i

.

Then the parametrization of the minimal surface M can be written in terms of the
complex variables z and z as:

x(z, z) =
(
x1(z, z), x2(z, z), x3(z, z)

)
.

Exercise 2.61. Let f(u, v) = x(u, v) + iy(u, v) be a complex function. Using the
notation u = z+z

2
and v = z−z

2i
, we can express f in terms of z and z instead of u and

v. That is, we have the function f(z, z). In this exercise you will prove the neat result
that f is analytic if and only if f can be written in terms of z = u+ iv alone without
using z = u− iv.

(a) Using the chain rule, derive the following formulas:

∂f

∂z
=

1

2

(
∂x

∂u
+
∂y

∂v

)
+
i

2

(
∂y

∂u
− ∂x

∂v

)
,

∂f

∂z
=

1

2

(
∂x

∂u
− ∂y

∂v

)
+
i

2

(
∂y

∂u
+
∂x

∂v

)
.

(b) Show that f is analytic ⇐⇒ ∂f
∂z

= 0.

Try it out!

Example 2.62. The function f1(z) = z2 is analytic, because ∂f1
∂z

(z2) = 0. However,

f2(z) = |z|2 = zz is not analytic, because ∂f1
∂z

= z 6= 0.

138



Exercise 2.63. Prove that

(10) 4

(
∂

∂z

(
∂f

∂z

))
= fuu + fvv.

Try it out!

The next theorem expands upon Corollary 2.59 to establish the Weierstrass repre-
sentation for minimal surfaces.

Theorem 2.64. Let M be a surface with parametrization x = (x1, x2, x3) and let
φ = (ϕ1, ϕ2, ϕ3), where ϕk = ∂xk

∂z
. Then x is isothermal⇐⇒ φ2 = (ϕ1)2+(ϕ2)2+(ϕ3)2 =

0. If x is isothermal, then M is minimal ⇐⇒ each ϕk is analytic.

Before we prove Theorem 2.64, let’s look at applying it to a specific example to help us
better understand what the theorem is saying. Suppose we have the parametrization
x = (x1, x2, x3) = (z− 1

3
z3,−i(z+ 1

3
z3), z2). Then ϕ1 = ∂x1

∂z
= 1−z2, ϕ2 = ∂x2

∂z
= −i(1+

z2), and ϕ3 = ∂x3
∂z

= 2z. Notice that φ2 = [1−z2]2 +[−i(1+z2)]2 +[2z]2 = 0. Thus, by
the theorem, the parametrization x is isothermal. Also, each ϕk is a polynomial and
hence analytic. So x is a parametrization of a minimal surface (in fact, it is Enneper’s
surface). Make sure you understand how this example relates to Theorem 2.64 before
you read the following proof of the theorem.

Proof. Applying the complex differential operator ∂f
∂z

from Exercise 2.61 to this

situation and then squaring the terms, we have (ϕk)
2 =

(
∂xk
∂z

)2
=
[

1
2
(∂xk
∂u
− i∂xk

∂v
)
]2

=
1
4

[
(∂xk
∂u

)2 − (∂xk
∂v

)2 − 2i∂xk
∂u

∂xk
∂v

]
. Also, recall that xu · xu = (∂x1

∂u
)2 + (∂x2

∂u
)2 + (∂x3

∂u
)2 =∑3

k=1(∂xk
∂u

)2 and similarly xv · xv =
∑3

k=1(∂xk
∂v

)2. Hence,

φ2 =(ϕ1)2 + (ϕ2)2 + (ϕ3)2

=
1

4

[ 3∑
k=1

(∂xk
∂u

)2

−
3∑

k=1

(∂xk
∂v

)2

− 2i
3∑

k=1

∂xk
∂u

∂xk
∂v

]
=

1

4

(
xu · xu − xv · xv − 2i(xu · xv)

)
=

1

4
(E −G− 2iF ).

Thus, x is isothermal ⇐⇒ E = G,F = 0 ⇐⇒ φ2 = 0.
Now suppose that x is isothermal. By Corollary 2.59, it suffices to show that for

each k, xk is harmonic⇐⇒ ϕk is analytic. Using eq (10) and Exercise 2.61 this follows
because

∂2xk
∂u∂u

+
∂2xk
∂v∂v

= 4

(
∂

∂z

(
∂xk
∂z

))
= 4

(
∂

∂z

(
ϕk

))
= 0.

�
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Note that if x is isothermal

|φ|2 =

∣∣∣∣∂x1

∂z

∣∣∣∣2 +

∣∣∣∣∂x2

∂z

∣∣∣∣2 +

∣∣∣∣∂x3

∂z

∣∣∣∣2 =
1

4

( 3∑
k=1

(∂xk
∂u

)2

+
3∑

k=1

(∂xk
∂v

)2
)

=
1

4

(
xu · xu + xv · xv

)
=

1

4
(E +G) =

E

2
.

So if |φ|2 = 0, then all the coefficients of the first fundamental form are zero and M
degenerates to a point. Similarly, we want |φ|2 to be finite.

Finally, we need to solve ϕk = ∂xk
∂z

for xk since the parametrization of the surface
is given as x = (x1, x2, x3). The difficulty is that xk is a function of two variables,
z and z, and we want to have a representation in which we only have to integrate
with respect to one variable. To overcome this difficulty, we will use some ideas about
differentials (see [25] for a nice introduction to differentials). First, since xk is also a
function of the two variables u and v, we can write

(11) dxk =
∂xk
∂u

du+
∂xk
∂v

dv.

Also, dz = du+ idv. Using Exercise 2.61 we have

ϕkdz =
∂xk
∂z

dz =
1

2

(
∂xk
∂u
− i∂xk

∂v

)
(du+ idv)

=
1

2

[
∂xk
∂u

du+
∂xk
∂v

dv + i

(
∂xk
∂u

dv − ∂xk
∂v

du

)]
,

ϕkdz = ϕkdz =
∂xk
∂z

dz =
1

2

(
∂xk
∂u

+ i
∂xk
∂v

)
(du− idv)

=
1

2

[
∂xk
∂u

du+
∂xk
∂v

dv − i
(
∂xk
∂u

dv − ∂xk
∂v

du

)]
.

Adding these two equations yields

(12)
∂xk
∂u

du+
∂xk
∂v

dv = ϕkdz + ϕkdz = 2 Re{ϕkdz}.

Combining eq (11) and eq (12), we have

dxk = 2 Re{ϕkdz}.

Therefore, xk = 2 Re
∫
ϕkdz + ck. Since adding ck just translates the image by a

constant amount and multiplying each coordinate function by 2 just scales the the
surface, these constants do not affect the geometric shape of the surface. Hence, we
do not need these constants and we will let our coordinate function be

xk = Re

∫
ϕkdz.
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Summary: We can find a formula for constructing minimal surfaces by determining
analytic functions ϕk (k = 1, 2, 3) such that

φ2 = 0 and |φ|2 6= 0 and is finite,

in which case, we have the parametrization

(13) x =
(

Re

∫
ϕ1(z)dz,Re

∫
ϕ2(z)dz,Re

∫
ϕ3(z)dz

)
.

For example, consider

ϕ1 =p(1 + q2)

ϕ2 =− ip(1− q2)

ϕ3 =− 2ipq.

Then

φ2 =[p(1 + q2)]2 + [−ip(1− q2)]2 + [−2ipq]2

=[p2 + 2p2q2 + p2q4]− [p2 − 2p2q2 + p2q4]− [4p2q2]

=0,

and

|φ|2 =|p(1 + q2)|2 + | − ip(1− q2)|2 + | − 2ipq|2

=|p|2[(1 + q2)(1 + q2) + (1− q2)(1− q2) + 4q q]

=|p|2[2(1 + 2q q + q2 q2)

=4|p|2(1 + |q|2)|2 6= 0 (note: if p = 0, then ϕk = 0 for all k).

Notice that p, pq2, and pq have to be analytic in order for each ϕk to be analytic. If
p is analytic with a zero of order 2m at z0, then q can have a pole of order no larger
than m at z0. This leads to the following result.

Theorem 2.65 (Weierstrass Representation (p,q)). Every regular minimal surface
has a local isothermal parametric representation of the form

x = (x1(z), x2(z), x3(z))

=
(

Re
{∫ z

a

p(1 + q2)dz
}
,

Re
{∫ z

a

−ip(1− q2)dz
}
,

Re
{∫ z

a

−2ipqdz
})
,
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where p is an analytic function and q is a meromorphic function in some domain Ω ⊂ C,
having the property that at each point where q has a pole of order m, p has a zero of
order at least 2m, and a ∈ Ω is a constant.

Example 2.66. For p(z) = 1, q(z) = iz, we get

x =
(

Re
{∫ z

0

(1− z2) dz
}
,Re

{∫ z

0

−i(1 + z2) dz
}
,Re

{∫ z

0

2z dz
})

=
(

Re
{
z − 1

3
z3
}
,Re

{
− i
(
z +

1

3
z3
)}
,Re

{
z2
})
.

Letting z = u+ iv, this yields

x(u, v) =

(
u− 1

3
u3 + uv2, v − 1

3
v3 + u2v, u2 − v2

)
which gives the Enneper surface.

You can use the applet, MinSurfTool, to graph an image of this surface using the
functions p and q. After opening MinSurfTool click on the W.E.(p,q) tab so it is on
top. In the appropriate boxes, put p(z) = 1 and q(z) = i ∗ z. Then click on the
Graph button. Remember that you can increase the size of the image of the surface
by clicking on the left button on the mouse, and you can decrease the size by clicking
on the right mouse button. Also, you can rotate the surface by placing the cursor
arrow on the image of the surface, then click on and hold the left button on the mouse
as you move the cursor.

Figure 2.30. Enneper surface using p(z) = 1 and q(z) = iz.

Example 2.67. Let p(z) = 1 and q(z) = 1/z on the domain C− {0}. Notice that
q is meromorphic with a pole of order 1 at z0 = 0 while p does not have a zero of
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order 2 at z0 = 0. This does not violate the conditions of Theorem 2.65, because the
domain is C − {0}. We will show that this generates a helicoid. Using Weierstrass
Representation (p,q) and letting z = u+ iv, we get x(u, v) = (x1, x2, x3), where

x1 = Re

∫ z

1

(
1 +

1

z2

)
dz = Re

(
z − 1

z

)
= u− u

u2 + v2

x2 = Re

∫ z

1

−i
(

1− 1

z2

)
dz = Im

(
z +

1

z

)
= v − v

u2 + v2

x3 = Re

∫ z

1

−2i
1

z
dz = 2 Im(log z) = 2 arg z = 2 arctan

(
v

u

)
.

Notice that this parametrization is different than the following parametrization we
have been using for the helicoid:

x̃(ũ, ṽ) = (x̃1, x̃2, x̃3) = (a sinh ṽ cos ũ, a sinh ṽ sin ũ, aũ).

To show that x also gives an image of the helicoid, we will find a substitution that will
change x into x̃. Note that

x2
1 + x2

2 = (u2 + v2)− 2 +
1

u2 + v2

x̃1
2 + x̃2

2 = a2 sinh2 ṽ = a2

(
eṽ − e−ṽ

2

)2

.

Equating the right hand side of these equations and letting a = 2, we get that

u2 + v2 = e2ṽ.

Also, with x3 = x̃3, we see that
v

u
= tan ũ.

Now, using these last two equations we can solve for u and v to get

u = eṽ cos ũ and v = eṽ sin ũ.

If we substitute these values for u and v into x(u, v) we get the parametrization x̃(ũ, ṽ)
for the helicoid.

Using the W.E.(p,q) tab in MinSurfTool with p(z) = 1 and q(z) = 1/z, we can get
a graph of the helicoid. Since the domain is C \ {0}, set the Disk domain: radius

min: box to 0.1.

Exercise 2.68. Show that the minimal surfaces generated by using p(z) = 1 and
q(z) = 0 on the domain C in the Weierstrass representation is the plane.

Try it out!
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Figure 2.31. The helicoid using p(z) = 1 and q(z) = 1
z
.

Exercise 2.69. Show that the minimal surfaces generated by using p(z) = 1 and
q(z) = i/z on the domain C − {0} in the Weierstrass representation is the catenoid.
Use MinSurfTool with the W.E.(p,q) tab to graph an image of this surface.

Try it out!

Exploration 2.70. Enneper’s surface can be constructed also with p(z) = 1 and
q(z) = z. Recall that it has four leaves (two pointing up and two pointing down). The
number of leaves can be increased.

(a) Using p(z) = 1 and q(z) = z2 on the domain C in the Weierstrass representa-
tion gives the Enneper surface with six leaves (see Figure 2.32). Compute the
parametrization x(u, v) for this surface.

(b) Use MinSurfTool with the W.E.(p,q) tab to conjecture the values of p and q
for the Enneper surface with n leaves.

Try it out!

Exploration 2.71. Use MinSurfTool with the W.E.(p,q) tab to graph an image
of the surface generated by p(z) = 1

1−z4 and q(z) = z.

(a) What minimal surface is this?
(b) Click on the box “Multiply q(z) by e∧(i theta)” and move the slider to generate

a family of minimal surfaces. These surfaces are associated surfaces (see the
paragraph after Definition 2.49). When θ = i you get the conjugate surface.
In this case, what is the conjugate surface?

(c) Experiment with MinSurfTool to view the associated family and find the con-
jugate surface of various minimal surfaces discussed above.

Try it out!

144



Figure 2.32. Enneper surface with 6 leaves using p(z) = 1 and q(z) = z2.

Exploration 2.72. Scherk’s doubly periodic surface is generated with p(z) = 1
1−z4

and q(z) = iz. Using MinSurfTool with the W.E.(p,q) tab, graph an image of the
surface generated by p(z) = 1

1−z2n and q(z) = izn−1 for various values of n = 2, 3, 4, . . .
on the domain the unit disk D in the Weierstrass representation.

(a) What happens to the surface as n increases?
(b) Notice that the surface has leaves that alternate between going up and going

down. How is n related to the number of leaves?
(c) What is the image of the projection of the surface onto the x1x2-plane for each

n?
(d) Using the previous parts conjecture how many leaves the surface would have

if p(z) = 1
1−z5 . Why could such a surface not exist?

Try it out!

Exploration 2.73. Using MinSurfTool with the W.E.(p,q) tab, graph an image
of the surface generated by p(z) = 1

(1−z4)2
and q(z) = iz3. This surface is known as the

4-noid (see Figures 2.33 and 2.34).

(a) Experiment with MinSurfTool to determine a p and q that will generate a
3-noid on the domain the unit disk D in the Weierstrass representation.

(b) Conjecture the values of p and q that will generate an n-noid.

Try it out!

While the Weierstrass Representation will generate a minimal surface, there is
no guarantee that the minimal surface will be embedded. Recall that a surface is
embedded if it has no self-intersections. The plane, the catenoid, the helicoid, and
Scherk’s doubly periodic surface are examples of embedded minimal surfaces. However,
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Figure 2.33. Image of the 4-noid minimal surface from the side.

Figure 2.34. Image of the 4-noid minimal surface from above.

Enneper’s surface is not embedded. In Exploration 2.11 you saw that Enneper’s surface
intersects itself when the domain contains a disk centered at the origin of radius R ≥√

3.

Exploration 2.74. Using MinSurfTool with the W.E.(p,q) tab, come up with
three sets of functions p and q defined on the domain D that create other minimal
surfaces that are not embedded.

Try it out!
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An important area in minimal surface theory is the study of complete (boundary-
less) embedded minimal surfaces. The following theorem tells us that any minimal
surface without boundary cannot be closed and bounded.

Theorem 2.75. If M is a complete minimal surface in R3, then M is not compact.

Proof. By Theorem 2.44, we can assume that M has an isothermal parametriza-
tion. Now, if M were compact, then each coordinate function would attain a maximum.
Since the real part of an analytic function is harmonic we see from Theorem 2.64, the
coordinate functions in this parametrization are harmonic. But harmonic functions
attain their maximum on the boundary of the set. So, M must have a boundary which
contradicts M being complete. �

2.5. The Gauss map, G, and height differential, dh

We can use other representations for φ = (ϕ1, ϕ2, ϕ3) to form different Weierstrass
representations as long as φ2 = 0 and |φ|2 6= 0 (see the Summary on page 141). An
important representation employs the functions known as the Gauss map, G, and the
height differential, dh. This representation is useful, because the functions G and dh
describe the geometry of the minimal surface. To develop this, we first need some
background about the Gauss map.

Recall that the curvature of a unit speed curve, α, at a point s is
∣∣α′′(s)∣∣. That

is, the curvature of a curve is described by the rate of change of the tangent vector.
Similarly, the curvature of a surface is related to the change of the tangent plane.
Since each tangent plane is essentially determined by its unit normal vector, n, we
can investigate the curvature of a surface by studying the variation of the unit normal
vector. This is the idea behind the Gauss map.

Definition 2.76. Let M : Ω → R3 be a surface with a chosen orientation (that
is, a differentiable field of unit normal vectors n). The Gauss map, np, translates the
unit normal on M at a point p to the unit vector at the origin pointing in the same
direction as the unit normal and thus corresponds to a point on the unit sphere S2.

Gauss
map

n

p

M ⊂ IR3

2S

np

Figure 2.35. The Gauss map.
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Example 2.77. Let’s determine the image of the Gauss map for the catenoid.
A meridian is a curve formed by a vertical slice on the surface (see Exercise 2.15).
Consider a meridian on the entire catenoid (remember that the image in Figure 2.36 is
just part of a catenoid and that it actually extends on forever). The Gauss map, np,
of this meridian will be a meridian on S2 from the north pole, (0, 0, 1), to the south
pole, (0, 0,−1), that excludes these end points. Note that (0, 0, 1) and (0, 0,−1) are
excluded, because no matter how far the catenoid extends, the unit normal n never
points exactly straight up or exactly straight down. Now, since the catenoid is a surface
of revolution if we revolve this meridian on S2, we get that the image of the Gauss
map for the catenoid is S2 \ {(0, 0, 1), (0, 0,−1)}.

2 S 

n p 

c M 

 

n1

n2

np1

Figure 2.36. Image of a meridian on a catenoid under the Gauss map.

Exercise 2.78. Describe the image of the Gauss map for the following surfaces:

(a) a right circular cylinder;
(b) a torus;
(c) Ennepers surface defined just on D;
(d) helicoid;
(e) Scherk’s doubly periodic surface.

Try it out!

Theorem 2.79. Let M be a minimal surface with an isothermal parametrization.
Then the Gauss map of M preserves angles.

While the Gauss map preserves angles, it reverses orientation. Such maps are known
as anticonformal. To help visualize the fact that the Gauss maps reverses orientation,
consider three points A, B, and C on a curved path near the neck of the catenoid (see
Figure 2.37). Since A is above the neck of the catenoid, the outward pointing unit
normal at A will be pointing downward and hence the Gauss map will put it below
the equator on S2 at the point A′. The point B is on the neck of the catenoid and so
the outward pointing unit normal at B will be horizontal. So, the Gauss map will put
it on the equator of S2 at the point B′. Similarly, the normal at C will get mapped to
C ′. Thus, following the curve path from A to B to C in the positive direction on the
catenoid gets sent by the Gauss map to a curve from A′ to B′ to C ′ in the negative
direction on S2. That is, we have an orientation-reversing map.
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A

2S

np

cM

B

C A′
B′

C′

Figure 2.37. np is orientation reversing.

Since the Gauss map associates a point on M with a point on S2, we can also
associate it with a point in the complex plane C by using stereographic projection.
Recall that stereographic projection, σ, takes a point on S2 to a point in the extended
complex plane, C ∪ ∞. To do this, we place the complex plane through the equator
of the sphere and take a line connecting the north pole, (0, 0, 1) ∈ S2, with the given
point (x1, x2, x3) ∈ S2. This line will intersect the extended complex plane at some
point, z = x+ iy. In such a setting the unit sphere is known as the Riemann sphere.

(x  , x  , x  )321

z = x + iy

C U {∞}I

(0, 0, 1)

Figure 2.38. Stereographic projection.

Exercise 2.80. Describe the projections of the following sets on the Riemann
sphere onto the extended complex plane:

(a) meridians;
(b) parallels;
(c) circles;
(d) circles that contain (i.e., touch) the point (0, 0, 1);
(e) antipodal points (i.e., diametrically opposite points).

Try it out!

Finally, let σ be the projection of (x1, x2, x3) ∈ S2 to the point x − iy ∈ C given
first by stereographic projection of (x1, x2, x3) to z = x + iy followed by reflection of
z = x+ iy across the real axis to z = x− iy. Note that σ is anticonformal.

Now, let G : D ⊂ C→ C be the map defined by G = σ◦n◦x. Note that G preserves
angles since σ, n, and x preserves angles and so the composition preserves angles. Also,
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G is orientation preserving, because both σ and n are orientation reversing and so their
composition is orientation preserving. Thus, G is a meromorphic function. It is also
called the Gauss map.

n

M ⊂ IR3

2S

p = x(u , v )0 0

(x  , x  , x  )321

(u , v )0 0

D ⊂ CI

u

v

x(u,v)

G

z = x - iy

np

σ

Figure 2.39. The map G.

Example 2.81. Using the geometry of Enneper surface, ME, we can determine
specific values of a Gauss map, G, on ME even though we do not know what function
G is. What is G(0)? Enneper’s surface is formed by bending a disk into a saddle
surface. The point 0 ∈ C should get mapped to the point in the center of the Enneper
surface. For simplicity sake, we will take the downward pointing normal n. Hence,
the unit normal at the center of ME points straight down, and thus mapping it to S2

under np gives the vector pointing at (0, 0,−1). Taking the stereographic projection,
σ, results in the point z = 0 ∈ C and reflecting this across the real axis does not change
0, so σ(0, 0,−1) = 0. Hence, G(0) = 0.

Next, what is G(r) when r ∈ [0, 1]? The points r get mapped under x to a curve
moving upward along one of the upward pointing leaves of the Enneper surface. The
corresponding downward pointing unit normal, nr, stays in the x1x3-half plane (where
x1 ≥ 0) also moving upward (i.e., the x3 value is increasing). As r approaches 1, nr
approaches being parallel to the x1 axis. Thus, mapping these unit normals to S2, the
curve {r ∈ D : 0 ≤ r < 1} traces a meridian on S2 from (0, 0,−1) to (1, 0, 0). The
stereographic projection of this onto the complex plane gives {r ∈ D : 0 ≤ r < 1} and
reflecting this across the real axis does not change the values. Hence, G(r) = r, where
0 ≤ r ≤ 1.
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Figure 2.40. The Enneper surface.

u

V

x

x3
x2

x1

n
Y

x
np σ

0 0

s2

ID (0, 0, 1) ID

ME

Figure 2.41. G(0) = 0 for the Enneper surface.

u

V

x

x3
x2

x1

n

Y

x
np σ1 1

s2

ID
(1, 0, 0)

ID

ME

Figure 2.42. G(1) = 1 for the Enneper surface.

Finally, what is G(eiθ) for 0 ≤ θ ≤ π
2
? If we restrict the domain of the Enneper

surface to D, these points get mapped to the edge of our image of the Enneper surface
in a positive direction. At θ = 0, the unit normal is pointing outward (i.e., away from
the opposite leaf) and under the Gauss map, np, this corresponds to (1, 0, 0) ∈ S2. As
θ moves from 0 to π

2
, the unit normal moves from pointing outward to pointing inward

(i.e., toward the opposite leaf). So that at θ = π
2
, the unit normal is mapped under

np to (0,−1, 0) ∈ S2 which projects under σ to −i ∈ C. Reflecting this across the
real axis gives σ(0,−1, 0) = −i = i. A similar argument shows that the same thing
happens for all θ ∈ [0, π

2
]. That is, G(eiθ) = eiθ, (0 ≤ θ ≤ π

2
).
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Figure 2.43. G(i) = i for the Enneper surface.

Example 2.82. Let’s determine some specific values for the Gauss map G for
the singly periodic Scherk surface with six leaves, MS. The domain used here is D.
Also, the leaves are centered at rays from the origin through each of the 6th roots of
unity (i.e., eiπk/3, (k = 0, ..., 5)) with the leaf centered at the positive real axis pointing
upward and the subsequent leaves alternating between downward pointing and upward
pointing (see Figure 2.44).

Figure 2.44. The singly periodic Scherk surface with six leaves.

As in the previous example we will use the downward pointing unit normal, and
so G(0) = 0. Next, because the leaves are centered at the 6th roots of unity (i.e.,
eiπk/3, (k = 0, ..., 5)), let’s look at G(eiπk/3), where (k = 0, ..., 5). First, the point 1
gets mapped under x to the “edge” of MS above the positive real axis. By looking
at the graph of MS, we see that this is in the middle of an upward pointing leaf,
and the corresponding unit normal n lies above the positive real axis and pointing
away from the origin. Also, it lies in a plane parallel to the horizontal x1x2-plane.
Mapping this normal under np and then σ, results in the point 1. Hence, G(1) = 1.
Now, consider G(eiπ/3). The point eiπ/3 gets mapped to the “edge” of MS above the
line reiπ/3, r > 0. Since the leaves alternate between pointing upward and pointing
downward, this is in the middle of a downward pointing leaf and points toward the
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origin. Mapping this normal under np and then σ, results in the point ei4π/3 = ei2π/3.
Hence, G(eiπ/3) = ei2π/3.

In a similar way, we get the following values:

G (1) = 1, G
(
ei
π
3

)
= ei

2π
3 , G

(
ei

2π
3

)
= ei

4π
3 ,

G (−1) = 1, G
(
ei

4π
3

)
= ei

2π
3 = ei

8π
3 , G

(
ei

5π
3

)
= ei

4π
3 = ei

10π
3 .

Exercise 2.83. A picture of the half catenoid on its side defined on D is shown in
Figure 2.45 with the positive real axis on the right.

Figure 2.45. A view of the half catenoid on its side.

For this catenoid on its side determine:

(a) G(0); (b) G(1); (c) G(−1); (d) G(i); (e) G(−i).

Try it out!

Exercise 2.84. For the 4-noid (see Figures 2.33 and 2.34), determine:

(a) G(0); (b) G(1); (c) G(−1); (d) G(i); (e) G(−i).

Try it out!

We will use the Gauss map, G, to form another Weierstrass representation of a
parametrized minimal surface. In doing so, we will also need the height differential,
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dh, which is called such because it is locally (though not globally) the differential of
the height coordinate. We will not get into the definition of differential forms; if you
are interested in learning about differential forms, check out [25]. However, it is worth
mentioning that at points where the Gauss map is vertical (i.e., G = 0 or G = ∞),
the height function ought to have local minimums and maximums. Hence, dh ought
to have a zero at these points (for example, see Figure 2.41).

Theorem 2.85 (Weierstrass Representation (G,dh)). Every regular minimal sur-
face has a local isothermal parametric representation of the form

x = Re

∫ z

a

(
1

2

(
1

G
−G

)
,
i

2

(
1

G
+G

)
, 1

)
dh,(14)

where G is the Gauss map, dh is the height differential, and a ∈ Ω is a constant.

Proof. From the Summary on page 141, we need

φ2 = 0 and |φ|2 6= 0 and be finite.

Comparing eq (14) and eq (13), we have that

ϕ1 =
1

2

(
1

G
−G

)
dh, ϕ2 =

i

2

(
1

G
+G

)
dh, ϕ3 = dh.

In Exercise 2.86 you will show that

φ2 = 0 and |φ|2 6= 0.

�

Exercise 2.86. Prove that φ2 = 0 and |φ|2 6= 0 in the proof of Theorem 2.85.
Try it out!

Note that

G =
ϕ1 + iϕ2

−ϕ3

and dh = ϕ3.

One advantage of using this Weierstrass representation with the Gauss map and
height differential is that the complex analytic properties of G and dh are related to
the geometry of a minimal surface. We will discuss this in a bit, but first we will look
at some examples. The following is a list of the Weierstrass data for some common
minimal surfaces.

(a) The Enneper surface: G(z) = z dh = z dz on C.
(b) The catenoid: G(z) = z dh = 1

z
dz on C \ {0}.

(c) The helicoid: G(z) = z dh = i
z
dz on C \ {0}.

(d) Scherk’s doubly periodic surface: G(z) = z dh = z
z4−1

dz on D.
(e) Scherk’s singly periodic surface: G(z) = z dh = iz

z4−1
dz on D.

(f) Polynomial Enneper: G(z) = p(z) dh = p(z) dz on C.
(g) Wavy plane: G(z) = z dh = dz on C \ {0}.
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Example 2.87. For G(z) = zk and dh = zk dz, where k = 1, 2, . . ., we get

x = Re

∫ z

0

(
1

2

(
1

zk
− zk

)
,
i

2

(
1

zk
+ zk

)
, 1

)
zk dh

=
(

Re
1

2

{
z − 1

2k + 1
z2k+1

}
,Re

1

2

{
− i
(
z +

1

2k + 1
z2k+1

)}
,Re

{ zk+1

k + 1

})
.

This is the Enneper surface with 2k + 2 leaves (see Exploration 2.70).

Exercise 2.88. You may have noticed that the Weierstrass data for the catenoid
and the helicoid, which are conjugate surfaces (see Definition 2.49), have the same
Gauss map, G, while the height diffferentials dh differ by a multiple of i. Prove that
this is true for any conjugate surfaces.

Try it out!

Exercise 2.89. Let G(z) = z4 and dh = z2 dz.

(a) Using eq (14), compute the parametrization.
(b) This minimal surface has a planar end (i.e., looks like a plane) and an Enneper

end. Use MinSurfTool with the W.E. (G,dh) tab to graph the surface; use
a disk domain with radius min: 0.3 and radius max: 1, theta min: pi/24
and theta max=2pi+pi/24 and initial values x = Re(−1/7 ∗ z7 − 1/z), y =
Re(i/2 ∗ (1/7 ∗ z7 − 1/z)), and z = Re(1/3 ∗ z3).

Try it out!

The catenoid and the surface in Exercise 2.89 are examples of minimal surfaces
with ends. Loosely, an end of a minimal surface is a piece that “goes on forever,” or,
more precisely, leaves all compact subsets of the minimal surface. Recall from Theorem
2.75 that all complete minimal surfaces in R3 are not compact, and hence they must
possess at least one end.

Exercise 2.90. Determine the number of ends each of the following surfaces have:
(a) the catenoid; (b) the plane; (c) the helicoid; (d) Enneper’s surface.

Try it out!

Ends occur in a deleted neighborhood (i.e., a disk with the centered removed)
centered at a singularity. Three common types of ends for minimal surfaces are: (1)
Enneper ends; (2) catenoid ends; and (3) flat or planar ends. In discussing ends, we
will need to represent ds, the metric (i.e., a way to measure distance) on a minimal
surface, in terms of G and dh. Using ds2 = |φ|2 and eq (14), we derive

(15) ds =
1√
2

(
|G|+ 1

|G|

)
|dh|.

An Enneper end has ds ∼ |zk| · |dz|, while a catenoidal end and a planar end has
ds ∼ |dz| (i.e., the metric becomes Euclidean). A catenoidal end differs from a planar
end in that the residue of dh is logarithmic.
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Exercise 2.91. Prove eq. (15).
Try it out!

Example 2.92. We know that the catenoid has two catenoid ends, but let’s show
how we could prove this if we did not know what type of ends these are. Using the
Weierstrass data, G(z) = z and dh = 1

z
dz, for the catenoid, we have the parametriza-

tion

x(z) =

(
1

2
Re

(
− 1

z
− z
)
,
i

2
Re

(
− 1

z
+ z

)
,Re

(
log z

))
.

So there is a singularity or pole of order 1 at 0. Also, there is a pole of order 1 at
∞. To see that there is a singularity at ∞, we replace z with 1

w
and look at the limit

as w goes to 0. Thus, the catenoid will have two ends (one at 0 and one at ∞). To
determine what types of ends these are, we look at ds at these points. Note that

ds =
1√
2

(
|z|+ 1

|z|

)
1

|z|
|dz|.

As z →∞, ds ∼ |dz| and because x3 is logarithmic, we have a catenoid end.
At z = 0, plugging in 0 does not work, so instead we let w = 1

z
and consider

w →∞. Note that in this case,

dh =
1

z
dz = w

(
1

w

)′
= w

(
− 1

w2
dw

)
= − 1

w
dw.

Therefore,

ds =
1√
2

(
|w|+ 1

|w|

)
1

|w|
|dw|.

As w →∞, ds ∼ |dw| and again because x3 is logarithmic, we have a catenoid end.

Example 2.93. The surface in Exercise 2.89 has G(z) = z4 and dh = z2 dz, and
the corresponding parametrization is

x(z) =

(
1

2
Re

(
1

7
z7 − 1

z

)
,
i

2
Re

(
1

7
z7 +

1

z

)
,Re

(
1

3
z3

))
.

Note there are singularities at 0 and at ∞ and

ds =
1√
2

(
|z|4 +

1

|z|4

)
|z|2|dz|.

As z →∞, ds ∼ |z|6 |dz| and so we have an Enneper end.
At z = 0, we again let w = 1

z
and consider w → ∞. Then G(w) = w4 and

dh = − 1
w4 dw. Hence,

ds =

(
|w|4 +

1

|w|4

)
1

|w|4
|dw|.

As w → ∞, ds ∼ |dw|, but because there is no logarithmic term, we have a planar
end.
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Figure 2.46. A minimal surface with Enneper and planar ends.

Exercise 2.94. Let G(z) = z2+3
z2−1

and dh = z2+3
z2−1

dz.

(a) Using eq (14), compute the parametrization.
(b) Show that this minimal surface has one planar end and two catenoid ends.
(c) Use MinSurfTool with the W.E. (G,dh) tab to graph the surface; use a disk

domain with radius min: 0.3 and radius max: 1.

Try it out!

The Gauss map and height differential also tell us about two important types of
curves on a minimal surface. These are known as the asymptotic lines and the curvature
lines. To understand what these lines are, we will review the terms normal curvature
and principal directions both of which were discussed in Section 2. Let p be a point
on a curve on a minimal surface M . The tangent vector w and normal vector n at
p form a plane that intersects the surface in another curve, say α (see Figure 2.2).
The normal curvature in the direction w is α′′ · n and measures how much the surface
bends toward n as you move in the direction of w at point p. An asymptotic line is
a curve that is tangent to a direction in which the normal curvature is zero. As we
rotate the plane through the normal n, we will get a set of curves on the surface each
of which has a value for its curvature. The directions in which the normal curvature
attains its absolute maximum and absolute minimum values are known as the principal
directions. Curvature lines are curves that are always tangent to a principal direction.

A nice relationship between these lines and the Weierstrass data is:

A curve z(t) is an asymptotic line ⇐⇒ dG

G
(z) · dh(z) ∈ iR.

A curve z(t) is a curvature line ⇐⇒ dG

G
(z) · dh(z) ∈ R.
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Example 2.95. Let G(z) = z and dh(z) = dz. This is a parametrization of the
wavy plane. Computing the Weierstrass representation, we get the parametrization:

(x1(z), x2(z), x3(z)) =

(
Re

{
1

2
ln(z)− 1

4
z2

}
,Re

{
i

2
ln(z) +

i

4
z2

}
,Re

{
z
})

.

Using MinSurfTool we plot an image of this surface. Note we let radius min: 0.001,
radius max: 1, theta min: -pi+0.01, and theta max: pi-0.01 (see Figure 2.47).

Figure 2.47. Side view of the wavy plane surface.

Now, for the wavy plane

dG

G
(z) · dh(z) =

dz

z
· dz.

If we let z = eiθ (since we let radius max=1), then dz = ieiθdθ and

dG

G
(z) · dh(z)

∣∣∣∣
z=eiθ

= −eiθ(dθ)2.

So, from the equations above, we get that for k ∈ R: (1) the asymptotic lines occur
when θ = π

2
+ kπ; and (2) the curvature lines occur when θ = kπ.

If we use MinSurfTool to plot the wavy plane with theta min = −π
2

and theta max
= π

2
, we see that these asymptotic lines lie in the x1x2-plane. Similarly, if we plot

theta min = 0 and theta max = π, we see that these curvature lines are reflection lines
through which the wavy plane can be reflected as if through a mirror to get a smooth
continuation of the minimal surface.

Exercise 2.96. Using G(z) = z and dh = zdz for Ennepers surface, show that for
z = eiθ the asymptotic lines occur when θ = π

4
+ kπ

2
, where k ∈ R, and the curvature
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lines occur when θ = kπ
2

, where k ∈ R. Use MinSurfTool to plot these lines on Ennepers
surface.

Try it out!

Exercise 2.97. Prove that for conjugate surfaces, the asymptotic lines (and cur-
vature lines) of one surface are the curvature lines (and asymptotic lines) of the other
surface.

Try it out!

As mentioned earlier, an advantage of using the Gauss map and height differential
is that the complex analytic properties of G and dh are related to the geometry of a
minimal surface. So, let’s look at the complex analytic properties of G and dh. First,
recall from the Summary on page 141, we need |φ|2 to be finite and nonzero. Because
of eq (15), this leads to the following condition.

Proposition 2.98. At a nonsingular point, G has a zero or pole of order n ⇐⇒
dh has a zero of order n.

Second, note that the integrals in the Weierstrass representation in eq (14) might
depend upon the path of integration if the domain of G and dh is not simply connected.
This means that for all closed paths γ in the domain

Re

(
1

2

∫
γ

(
1

G
−G

)
dh

)
= 0;

Re

(
i

2

∫
γ

(
1

G
+G

)
dh

)
= 0;

Re

∫
γ

dh = 0.

These three equations can be reduced to the following two period conditions:

(i)

∫
γ

G dh =

∫
γ

1

G
dh (horizontal period condition),

(ii) Re

∫
γ

dh = 0 (vertical period condition).

(16)

for all closed paths γ in the domain.

Exercise 2.99. Show that the conditions

Re

(
1

2

∫
γ

(
1

G
−G

)
dh

)
= 0, and Re

(
i

2

∫
γ

(
1

G
+G

)
dh

)
= 0

are equivalent to the condition ∫
γ

G dh =

∫
γ

1

G
dh.

Try it out!
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These period conditions are useful in determining horizontal periods (e.g., Scherk’s
doubly periodic surface), vertical periods (e.g., Scherk’s singly periodic surface) and in
determining possible constant values in G and dh.

Example 2.100. Consider Scherk’s doubly periodic surface with the Weierstrass
data G(z) = z and dh(z) = z

z4−1
dz. The horizontal period condition is

∫
γ
G dh =∫

γ
1
G
dh, for all closed paths γ in the domain. Note that both integrands are meromor-

phic with poles of order 1 at ±1,±i. So, the only paths that concern us are ones that
include one, two, three, or all of these poles. A nice way to calculate these integrals
along such paths is to use the Residue Theorem that states if γ is a simple closed
positively-oriented contour and f is analytic inside and on γ except at the points
z1, ldots, zn inside γ, then ∫

γ

f(z) dz = 2πi
n∑
j=1

Res(f, zj).

Recall that for poles of order 1,

Res(f, zj) = lim
z→zj

(z − zj)f(z).

Thus, for

∫
γ

G dh, we have

Res(G dh, zj) = lim
z→zj

z3 − zjz2

z4 − 1
= lim

z→zj

3z2 − 2zjz

4z3
= lim

z→zj

3z3 − 2zjz
2

4z4
=
z3
j

4
.

In particular,

Res(G dh, 1) =
1

4
Res(G dh, i) =

−i
4

Res(G dh,−1) =
−1

4
Res(G dh,−i) =

i

4
.

Similarly, we can compute that

Res

(
1

G
dh, 1

)
=

1

4
Res

(
1

G
dh, i

)
=
i

4

Res

(
1

G
dh,−1

)
=
−1

4
Res

(
1

G
dh,−i

)
=
−i
4
.

Now, if the path γ1 just contains the pole at z1 = 1, then the horizontal period
conditions result in∫

γ1

G dh = 2πi Res(G dh, 1) =
iπ

2
,

∫
γ

1

G
dh = 2πi Res

(
1

G
dh, 1

)
=
−iπ

2
.
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These integrals should be equal, which occurs if the minimal surface is periodic in the
imaginary direction with period of π

2
. Likewise, if we take a path γ2 that just contains

the pole z2 = i, then we get∫
γ2

G dh =
π

2
,

∫
γ

1

G
dh =

−π
2
,

and the minimal surface is periodic in the real direction with period π
2
. All other paths

γ are covered by these two cases. Finally, if we look at the vertical period condition,
we get that the condition is automatically true for all paths γ and so the minimal
surface is not periodic in the vertical direction. This matches up with what is true for
Scherk’s doubly periodic surface.

Exercise 2.101. Show that the period conditions given in eq. (16) result in
Scherk’s singly periodic surface being periodic in the vertical direction.

Try it out!

Let’s look at example of how all of this can help us use the geometry of a minimal
surface to determine G and dh.

Example 2.102. From the list of Weierstrass data on page 154, we know that
G(z) = z and dh = z dz for the Enneper surface. However, we want to show how
this Weierstrass data can be determined by using the geometric shape of the surface.
First, let’s determine a plausible candidate for G. To do this, we will make a guess
based on the value of G at a few specific points. From Example 2.81, we know that
G(0) = 0, G(r) = r for 0 ≤ r ≤ 1, and G(eiθ) = eiθ for 0 ≤ θ ≤ π

2
. Therefore, it seems

plausible to let G(z) = z. Second, given this G, let’s determine dh. Because eq (15)
must be finite and the Enneper surface has no ends in C, dh cannot have any poles in
C. However, from the sentence before Exercise 2.90, we know that Enneper’s surface
must have at least one end. This end corresponds to the point at infinity, z =∞, and
so dh has a pole at ∞. Thus, dh = ρzn, for some n ∈ N and ρ ∈ C. Since G(z) = z
has a zero of order 1 at 0, by Proposition 2.98 dh must also have a zero of order 1 at
0 and no other zeros. Thus, dh = ρz dz. For simplicity sake, we let ρ = 1. Finally,
notice that the period conditions in eq (16) hold, because there are no poles in C, and
so every integral along any closed path γ will equal 0. Hence, the Weierstrass data

G(z) = z, dh = z dz

generates a minimal surface.

Example 2.103. Consider the singly periodic Scherk surface with six leaves, MS

(see Figure 2.44). Note that these leaves go off to infinity. Hence, we will have 6 poles.
Because of symmetry, we will choose these poles to be at the 6th roots of unity (i.e.,
eiπk/3, (k = 0, ..., 5)). This means that dh will have the term z6− 1 in its denominator.
However, we will need to determine G first in order to know what should be in the
numerator of dh. From the results in Example 2.82, it seems reasonable that G(z) = z2.

161



Since G(z) = z2 has a zero of order 2 at 0, by Proposition 2.98 dh must also have a
zero of order 2 at 0 and no other zeros. Thus, we so far have

G(z) = z2, dh = ρ
z2

z6 − 1
dz,

where ρ ∈ C. To determine possible values of ρ, consider the period conditions in eq
(16). There are poles of order 1 at eikπ/3, k = 0, . . . , 5. We compute that

Res(G dh, zj) =
ρz5

j

6
, Res

(
1

G
dh, zj

)
=
ρzj
6
.

Hence, if γ contains the pole zj, then the horizontal period condition requires∫
γ

G dh = 2πi Res(G dh, zj) =
ρπiz5

j

3
, and∫

γ

1

G
dh = 2πi Res

(
1

G
dh, zj

)
=
−ρπizj

3

to be equal (since there is no periodicity of MS in the horizontal direction).These
integrals will be equal for these poles z5

j = zj if ρ = −ρ. That is, ρ is purely imaginary.
Without loss of generality, we let ρ = i and we check that the vertical period condition
holds. Hence, we have that the Weierstrass data for singly periodic Scherk surface with
six leaves is

G(z) = z2, dh =
iz2

z6 − 1
dz.

Exercise 2.104. Let M be the Enneper surface with 8 leaves. Using the approach
of Example 2.102 determine G and dh for this surface.

Try it out!

Exercise 2.105. Let M be the 3-noid with ends symmetrically placed so that if
the surface is rotated by 2π

3
you will get the same image. Determine G and dh for this

surface.
Try it out!

Small Project 2.106. Let M be a minimal surface that has 6 symmetrically-
placed ends with 4 ends along the side (like a 4-noid), 1 end on the top, and 1 end
on the bottom. So, M will look the same if it is rotated horizontally by π

2
and if it is

rotated vertically by π
2
. Determine G and dh for this surface.

Optional

Small Project 2.107. For Scherk’s singly periodic the four ends are symmetri-
cally placed so that if the surface is rotated by π

2
you will get the same image. This

is because the denominator of dh is z4 − 1 which has zeros that are equally spaced on
the unit circle. It is possible to create a variation of Scherk’s singly periodic surface
that has four ends with rotational symmetry of π. That is, if the ends are labelled

162



E1, . . . , E4, then E2 will be closer to E1 than to E3 (and likewise, E4 will be closer
to E3 than to E1) and if the surface is rotated by π you will get the same image.
Determine G and dh for this surface.

Optional

Large Project 2.108. Describe and classify the possible minimal surfaces where
one of the coordinates of the parametrization is fixed while the other two coordinates
vary. For example, if x3 is fixed to a specific function, what are the possible coordinate
functions for x1 and x2. Try to generalize this approach as much as possible.

Optional

Large Project 2.109. Describe and classify the possible minimal surfaces with
G(z) = zm and dh = zn dz, for all n,m ∈ N (see Example 2.87 and Example 2.93).
There are several distinct cases to consider. Determine how to separate m,n into these
distinct cases remembering to discuss types of surface, types of ends, lines of symmetry,
etc.

Optional

2.6. Minimal Surfaces and Harmonic Univalent Mappings

In the Summary on page 141 before the first Weierstrass representation, we learned
that each coordinate function of the parametrization x of a minimal surface had the
form xk = Re

∫
ϕkdz with ϕk being analytic. Since the real part of an analytic function

is a harmonic function, we see that each xk is harmonic. Also from this Summary, we
have that (ϕ1)2 + (ϕ2)2 + (ϕ3)2 = 0. This means that if we know the functions ϕ1

and ϕ2, we can determine the function ϕ3. So, another way to get a Weierstrass
representation for minimal surfaces is to use two harmonic functions x1 and x2. In
other words, we can investigate minimal surfaces by studying harmonic mappings in
the complex plane. Such mappings are known as planar harmonic mappings and have
been studied independently of minimal surfaces.

In this section we will develop another Weierstrass representation. In this case we
will use planar harmonic mappings instead of p and q as in Section 2.4 or G and dh as
in Section 2.5. What benefit do we obtain from this new approach? The benefit is in
establishing the embeddedness (i.e., no self-intersections) of minimal surfaces, and as
we have mentioned earlier embeddedness is an important property of minimal surfaces.
Getting embedded minimal surfaces from certain planar harmonic mappings will be
a result of requiring the harmonic mappings to be 1 − 1 functions. In the complex
plane, 1− 1 functions is the same as in R. That is, f will be 1− 1 in G means that if
f(z1) = f(z2), then z1 = z2. Geometrically, this means that the image, f(G), will not
overlap or intersect itself. When we use this new Weierstrass representation with 1− 1
planar harmonic mappings, the corresponding minimal surface will be a minimal graph
and hence will be embedded (for a refresher on minimal graphs read the paragraph
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before Exercise 2.8). For example, the 1− 1 planar harmonic function given by

f(z) = h(z) + g(z) = Re

[
i

2
log

(
i+ z

i− z

)]
+ i Im

[
1

2
log

(
1 + z

1− z

)]
maps the unit disk onto a square region. This square region is the projection (i.e.,
shadow) of Scherk’s doubly periodic surface onto the plane. In other words, we can

Figure 2.48. The image of f(D) and Scherk’s doubly periodic surface

lift f from C into R3 and to get Scherk’s doubly periodic surface. Planar harmonic
mappings that are 1 − 1 are also known as harmonic univalent mappings. Harmonic
univalent mappings can be studied on their own without bringing in minimal surfaces
and such a study is the topic of chapter 4 of this book.

Exercise 2.110.

(a). Although all minimal graphs are embedded, the converse is not true. Give an
example of an embedded minimal surface that is not a minimal graph.

(b). Suppose you have a nonunivalent harmonic mapping. Why could it not be
the projection of a minimal graph?

Try it out!

Now that we have given an overview of this section, let’s briefly discuss harmonic
univalent mappings. A planar harmonic mapping is a function f = u(x, y) + iv(x, y)
where u and v are real harmonic functions. This concept is more general than that of
an analytic function, because we do not require u and v to be harmonic conjugates.
However, the following theorem allows us to relate a planar harmonic mapping to
analytic functions. For our purposes, we will assume that the domain of f is the unit
disk, D.

Theorem 2.111. Define a function f = u + iv, where u and v are real harmonic
functions. If D is a simply-connected domain and f : D → C, then there exist analytic
functions h and g such that f = h+ g.

Exercise 2.112.

(a) Show that f(x, y) = u(x, y)+iv(x, y) = (x3−3xy2)+i(−3x2y+y3) is complex-
valued harmonic by showing that u and v are real harmonic functions.

164



(b) Using x = 1
2
(z+z) and y = 1

2i
(z−z), rewrite f(x, y) = (x3−3xy2)+i(−3x2y+

y3) in terms of z and z.
(c) Determine the analytic functions h and g such that f = h+ g.

Try it out!

Example 2.113. In the previous exercise, we saw that the planar harmonic map
f : D→ C defined by

f(x, y) = u(x, y) + iv(x, y) = (x3 − 3xy2) + i(−3x2y + y3)

can be written as

f(z) = h(z) + g(z) = z +
1

3
z3.

What is the image of D under f? It is a hypocycloid with 4 cusps. This fact can be
computed by considering f(eiθ) = u(θ)+iv(θ) and comparing the component functions,
u(θ) and v(θ), to the parametrized equation for a hypocycloid with 4 cusps. To help
us visualize the image, we can use the applet ComplexTool. To graph the image of D
under the harmonic function f(z) = z+ 1

3
z3, enter this function in ComplexTool in the

form z + 1/3 conj (z ∧ 3) (see Figure 2.49). Remember this example; we will show
that this function is related to a minimal graph.

Figure 2.49. Image of D under the harmonic function f(z) = z + 1
3
z3

Note that the harmonic function f(z) = h(z) + g(z) can also be written in the
form

(17) f(z) = Re
{
h(z) + g(z)

}
+ i Im

{
h(z)− g(z)

}
.

This is because,

Re{h+ g} =
1

2
[(h+ g) + (h+ g)] and Im{h− g} =

1

2i
[(h− g)− (h− g)].

Hence, in the previous example, f(z) = z + 1
3
z3 can also be written as f(z) = Re

{
z +

1
3
z3
}

+ i Im
{
z − 1

3
z3
}

.
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We are interested in harmonic functions that are 1 − 1 or univalent, because this
is one necessary condition in order to lift the harmonic mapping to a minimal graph.
One theorem that establishes univalency requires the following background material.

Definition 2.114. The dilatation of f = h+ g is ω(z) = g′(z)/h′(z).

Theorem 2.115. f = h + g is locally univalent and orientation-preserving ⇐⇒
|g′(z)/h′(z)| < 1, for all z ∈ D.

Exercise 2.116. Show that if z ∈ D, then |ω(z)| < 1 for:

(a) ω1(z) = eiθz, where θ ∈ R;

(b) ω2(z) = zn, where n = 1, 2, 3, . . .;

(c) ω3(z) =
z + a

1 + az
, where |a| < 1;

(d) ω4(z) being the composition of any of the functions ω above.

Try it out!

Creating nontrivial examples of harmonic univalent mappings that lift to minimal
graphs is not easy. However, one way to do this is to use the shearing technique
of Clunie and Sheil-Small. Before we proceed, we need to discuss a certain type of
domain.

Definition 2.117. A domain Ω is convex in the direction of the real axis (or convex
in the horizontal direction, CHD) if every line parallel to the real axis has a connected
intersection with Ω.

CHD not CHD

Theorem 2.118 (Clunie and Sheil-Small). A harmonic function f = h+ g locally
univalent in D is a univalent mapping of D onto a CHD domain⇐⇒ h−g is an analytic
univalent mapping of D onto a CHD domain.

Remark 2.119. This technique is known as the “shear” method or “shearing” a
function. In our situation, suppose F = h− g is an analytic univalent function convex
in the real direction. Then the corresponding harmonic shear is

f = h+ g = h− g + g + g = h− g + 2 Re{g}.
So, the harmonic shear differs from the analytic function by adding a real function to it.
Geometrically, you can think of this as taking F , the original analytic univalent function
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convex in the real direction, and cutting it up into thin horizontal slices which are then
translated and/or scaled in a continuous way to form the corresponding harmonic
function, f . This is why the method is called “shearing.” Since F is univalent and
convex in the real direction and we are only adding a continuous real function to it,
the univalency is preserved.

Example 2.120. Let

(18) h(z)− g(z) =
1

2
log

(
1 + z

1− z

)
which is an analytic function that maps D onto a horizontal strip convex in the direction
of the real axis (see Figure 2.50).

Figure 2.50. Image of D under the analytic function
1

2
log

(
1 + z

1− z

)
Let

ω(z) = g′(z)/h′(z) = −z2.

Applying the shearing method from Theorem 2.118 with the substitution g′(z) =
−z2h′(z), we have

h′(z)− g′(z) =
1

1− z2
⇒ h′(z) + z2h′(z) =

1

1− z2

⇒ h′(z) =
1

1− z4
=

1

4

[
1

1 + z
+

1

1− z
+

1

i+ z
+

1

i− z

]
.

Integrating h′(z) and normalizing so that h(0) = 0, yields

(19) h(z) =
1

4
log

(
1 + z

1− z

)
+
i

4
log

(
i+ z

i− z

)
.

We can use this same method to solve for normalized g(z), where g(0) = 0. Note that
we can also find g(z) by using eqs. (55) and (56). Either way, we get

g(z) = −1

4
log

(
1 + z

1− z

)
+
i

4
log

(
i+ z

i− z

)
.
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So

f(z) = h(z) + g(z) = Re

[
i

2
log

(
i+ z

i− z

)]
+ i Im

[
1

2
log

(
1 + z

1− z

)]
.

What is f(D)? Notice that

f(z) =

[
− 1

2
arg

(
i+ z

i− z

)]
+ i

[
1

2
arg

(
1 + z

1− z

)]
= u+ iv.

Let z = eiθ ∈ ∂D. Then

i+ z

i− z
=
i+ eiθ

i− eiθ
−i− e−iθ

−i− e−iθ
=

1− i(eiθ + e−iθ)− 1

1 + i(eiθ − e−iθ) + 1
= −i cos θ

1− sin θ
.

Thus,

u = −1

2
arg

(
i+ z

i− z

)∣∣∣∣∣
z=eiθ

=

{
π
4

if cos θ > 0,

−π
4

if cos θ < 0.

Likewise, we can show that

v =

{
π
4

if sin θ > 0,

−π
4

if sin θ < 0.

Therefore, we have that z = eiθ ∈ ∂D is mapped to

u+ iv =


z1 = π

2
√

2
ei
π
4 = π

4
+ iπ

4
if θ ∈ (0, π

2
),

z2 = π
2
√

2
ei

3π
4 = −π

4
+ iπ

4
if θ ∈ (π

2
, π),

z3 = π
2
√

2
ei

5π
4 = −π

4
− iπ

4
if θ ∈ (π, 3π

2
),

z4 = π
2
√

2
ei

7π
4 = π

4
− iπ

4
if θ ∈ (3π

2
, 2π).

Thus, this harmonic function maps D onto the interior of the region bounded by a
square with vertices at z1, z2, z3 and z4.

Figure 2.51. Image of D under f(z) = Re

[
i

2
log

(
i+ z

i− z

)]
+ i Im

[
1

2
log

(
1 + z

1− z

)]
.
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Exercise 2.121. Verify that shearing h(z)− g(z) = z − 1
3
z3 with ω(z) = z2 yields

f(z) = z + 1
3
z3 from Example 2.113.

Try it out!

To actually find the minimal graph that is associated with specific types of harmonic
univalent mappings, we need to develop the appropriate Weierstrass representation as
outlined in eq (13). Recall that it must satisfy the properties φ2 = 0 and |φ|2 6= 0, and
we want it to use planar harmonic mappings. A natural choice is to consider

x1 = Re(h+ g) = Re

∫
(h′ + g′) dz = Re

∫
ϕ1 dz

x2 = Im(h− g) = Re

∫
−i(h′ − g′) dz = Re

∫
ϕ2 dz

x3 = Re

∫
ϕ3 dz

and then solve for ϕ3.

Exercise 2.122. Derive that ϕ3 = 2ih′
√
g′/h′ = 2i

√
g′h′.

Try it out!

We need ϕ3 to be analytic and so we require the dilatation ω = g′/h′ to be a perfect
square.

Theorem 2.123 (Weierstrass Representation (h,g)). If f = h + g is a sense-
preserving harmonic univalent mapping of D onto some domain Ω ∈ C with dilatation
ω = q2 for some function q analytic in D, then the isothermal parametrization

x(u, v) =
(
x1, x2, x3

)
=

(
Re{h(z) + g(z)}, Im{h(z)− g(z)}, 2 Im

{∫ z

0

√
g′(ζ)h′(ζ)dζ

})
defines a minimal graph whose projection onto the complex plane is f . Conversely,
if a minimal graph x(u, v) =

{
(u, v, F (u, v)) : u + iv ∈ Ω

}
is parametrized by sense-

preserving isothermal parameters z = x + iy ∈ D, then the projection onto its base
plane defines a harmonic univalent mapping f(z) = u + iv = Re{h(z) + g(z)} +
i Im{h(z)− g(z)} of D onto Ω whose dilatation is the square of an analytic function.

Summary: Let f = h + g defined on D be a harmonic univalent mapping such
that the dilatation ω = g′/h′ is the square of an analytic function and |ω(z)| < 1 for
all z ∈ D. Then f lifts to a minimal graph using the Weierstrass formula given in
Theorem 2.123.

Example 2.124. Recall from Example 2.113 the harmonic univalent mapping

f(z) = z +
1

3
z3 = Re

(
z +

1

3
z3

)
+ i Im

(
z − 1

3
z3

)
.
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Note that h(z) = z and g(z) = 1
3
z3. Also, ω(z) = z2 which is the square of an analytic

function. Hence this harmonic mapping lifts to a minimal graph. We compute that

x3 = 2 Im

∫ z

0

√
h′(ζ)g′(ζ) dζ = Im

(
z2
)
.

This yields a parametrization of a surface that is the conjugate of the Enneper’s surface
given in Example 2.66:

x =

(
Re
{
z +

1

3
z3
}
, Im

{
z − 1

3
z3
}
, Im

{
z2
})

and hence yields Enneper’s surface. Note that the projection of the Enneper surface
onto the x1x2-plane is the image of D under the harmonic mapping f . Also, while
Enneper’s surface is not a graph over C, it is a graph over D as this result proves. You
can see this by using MinSurfTool with the W.E. (h,g) tab. Enter in the functions
h(z) = z and g(z) = 1

3
z3. Make sure to use the Disk domain for the unit disk (i.e.,

radius min: 0; radius max: 1; theta min: 0; theta max: 2 pi). The minimal surface
is colored red while the f(D) is colored green. As you move the image so that it is
viewed from the top, the projection of the minimal surface matches the image of f(D).

Figure 2.52. Side view of the Enneper surface and the image of the
unit disk under the harmonic map.

Exploration 2.125. In the Weierstrass representation (h,g), we require that ω =

g′/h′ be the square of an analytic function. This is necessary because ϕ3 = ih′
√
g′/h′,

and if g′/h′ were not the square of an analytic function, then there would be two
branches of the square root. Geometrically, we can see that this is necessary. Use
MinSurfTool with the W.E. (h,g) tab to graph the following images and describe why
the geometry of those functions f = h + g in the left column do lift to a minimal
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Figure 2.53. The projection of the Enneper surface is the image of the
unit disk under the harmonic map.

graph while those in the right column do not.

(a) z + 1
3
z3 (note: ω = z2); (b) z + 1

2
z2 (note: ω = z);

(c) z − 1
5
z5 (note: ω = −z4); (d) z − 1

4
z4 (note: ω = −z5).

Example 2.126. Consider the harmonic univalent mapping from Example 2.120
given by

f(z) = h(z) + g(z) = Re

[
i

2
log

(
i+ z

i− z

)]
+ i Im

[
1

2
log

(
1 + z

1− z

)]
.

Because ω(z) = −z2 is the square of an analytic function, we can lift this harmonic
mapping to a minimal graph. We compute that

x3 = 2 Im

∫ z

0

iz

1− z4
dζ =

1

2
Im

{
i log

(
1 + z2

1− z2

)}
.

This yields a parametrization of Scherk’s doubly periodic minimal surface:

x =

(
Re

[
i

2
log

(
i+ z

i− z

)]
, Im

[
1

2
log

(
1 + z

1− z

)]
,
1

2
Im

[
i log

(
1 + z2

1− z2

)])
.

Again we can use MinSurfTool with the W.E. (h,g) tab to plot the minimal graph
and the image of the unit disk under the planar harmonic mapping. Because of the
singularities at ±1,±i, set radius max to 0.999; also, to get a better display set theta
min: pi/8 and theta max: 2 pi + pi/8. Notice that the projection of Scherk’s doubly
periodic surface onto the x1x2-plane is a square which is the image of D under the
harmonic mapping f .
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Figure 2.54. Side view of Scherk’s doubly periodic surface and the
image of the unit disk under the harmonic map.

Figure 2.55. The projection of Scherk’s doubly periodic surface is the
image of the unit disk under the harmonic map.

Exploration 2.127. Use the W.E. (h,g) tab in MinSurfTool to plot the minimal
graphs associated with the given functions h and g for the planar harmonic mappings.
Determine which minimal surfaces these are.

(a) h(z) = z, g(z) = 1
2n+1

z2n+1(n = 1, 2, 3, . . .), with domain = D;

(b) h(z) = 1
4

log
(
i+z
i−z

)
− i

4
log
(

1+z
1−z

)
, g(z) = 1

4
log
(
i+z
i−z

)
+ i

4
log
(

1+z
1−z

)
, and domain

= D;
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(c) h(z) = 1
z
, g(z) = z, and domain = {z ∈ C : 0.1 ≤ |z| ≤ 1};

(d) h(z) = 1
z
, g(z) = iz, and domain = {z ∈ C : 0.1 ≤ |z| ≤ 1};

(e) h(z) = 1
5
z5, g(z) = −1

z
, and domain = {z ∈ C : 0.1 ≤ |z| ≤ 1}.

Try it out!

Starting with a minimal graph and finding the corresponding harmonic univalent
mapping is fairly straightforward. This is because the harmonic univalent mapping is
the projection of the minimal graph onto the x1x2-plane and so the harmonic mapping
can be represented by the first two coordinate functions in the parametrization of the
minimal graph. However, going in the other direction is not so easy. If we start with a
harmonic univalent mapping we can use Theorem 2.123 to find the parametrization of
a minimal graph, but we do not necessarily know which minimal graph this is. There
have been several research papers in the field of harmonic univalent mappings that
have used this approach to create minimal graphs from harmonic univalent mappings
(e.g., [8], [9], [10], [11], [16]). However, many of them have not identified the specific
minimal graph created.

Question: Given a harmonic univalent mapping we can use Theorem 2.123 to
find the parametrization of a minimal graph. Can we determine which minimal graph
this is?

Example 2.128. By shearing h(z)− g(z) = 1
2

log
(

1+z
1−z

)
with ω(z) = g′(z)/h′(z) =

m2z2, where |m| ≤ 1, it was shown in [9] that the harmonic function f = h + g is
univalent, where

h(z) =
1

2(1−m2)
log

(
1 + z

1− z

)
+

m

2(m2 − 1)
log

(
1 +mz

1−mz

)
g(z) =

m2

2(1−m2)
log

(
1 + z

1− z

)
+

m

2(m2 − 1)
log

(
1 +mz

1−mz

)
.

When m = ei
π
2 , the function f is the same as in Example 2.120 and the image of D

under f = h + g is a square. In fact, for every m such that |m| = 1, the image of D
under f = h+ g is a parallelogram.

Since ω(z) = g′(z)/h′(z) = m2z2, we can lift f to a minimal graph. We can compute

x3 = Im

{
m

1−m2
log

(
1−m2z2

1− z2

)}
.
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Figure 2.56. Image of D under f = h+ g when m = ei
π
4 .

Hence, the corresponding parametrization of the minimal graph is

x =

(
Re

{
1 +m2

2(1−m2)
log

(
1 + z

1− z

)
+

m

(m2 − 1)
log

(
1 +mz

1−mz

)}
,

Im

{
1

2
log

(
1 + z

1− z

)}
, Im

{
m

1−m2
log

(
1−m2z2

1− z2

)})
.

When m = ei
π
2 , the minimal graph is Scherk’s doubly periodic surface. For m =

eiθ, (0 < θ < π
2
), the minimal graphs are slanted Scherk’s surfaces.

Figure 2.57. Side view of slanted Scherk’s surface and the image of
the unit disk under the harmonic map.
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What is the minimal graph when m = 1? In the limit (i.e., θ = 0) we have the
equation

x =

(
Re

{
z

1− z2

}
,Re

{
− i

2
log

(
1 + z

1− z

)}
,Re

{
−iz2

1− z2

})
.

Using the substitution z 7−→ ez−1
ez+1

and the fact that Re

{
−iz2

1− z2

}
= Re

{
1

2i

1 + z2

1− z2

}
,

this equation is equivalent to

X =

(
1

2
sinhu cos v,

1

2
v,

1

2
sinhu sin v

)
,

which is an equation of a helicoid.

Figure 2.58. Side view of helicoid that is the limit function of the
slanted Scherk’s surfaces.

Exercise 2.129. Show that Re

{
−iz2

1− z2

}
= Re

{
1

2i

1 + z2

1− z2

}
.

Try it out!

Example 2.130. If we shear h(z)− g(z) = z
1−z with z2, then we get the harmonic

univalent mapping f = h+ g, where

h =
1

8
ln

(
z + 1

z − 1

)
+

3z − 2z2

4(1− z)2
and g =

1

8
ln

(
z + 1

z − 1

)
− z − 2z2

4(1− z)2
.

This function is interesting in complex analysis, because

h(z)− g(z) =
z

1− z
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Figure 2.59. Image of D under f = Re
(

1
4

log
(
z+1
z−1

)
+ z

2(1−z)2

)
+ Im

(
z

1−z

)
.

is a right half-plane mapping that has several interesting properties.
Note that ω(z) = z2, and so we can use Theorem 2.123 to find the parametrization of
the corresponding minimal graph:

x =

(
Re

{
2 log

(
z + 1

z − 1

)
+

z

2(1− z)2

}
, Im

{
z

1− z

}
, Im

{
1

4
log

(
z + 1

z − 1

)
− z

2(1− z)2

})
.

In this form, the coordinate functions do not look familiar. However, we can use a
Möbius transformation which will not affect the geometry of the minimal graph to
rewrite these coordinate functions. In particular, letting z 7→ ẑ+1

ẑ−1
, we get:

x̂ =

(
1

4
Re

{
log (ẑ) +

1

2
ẑ2 − 1

2

}
,−1

2
Im
{
ẑ
}
,−1

4
Im

{
log (ẑ)− 1

2
ẑ2 +

1

2

})
.

This transformation is useful, because it simplifies the log terms in x1 and x3. Next,
we notice that by switching the coordinate functions and factoring out 1

2
we have

something that looks more like the wavy plane.

x̃ =

(
− 1

2

[
1

2
Im

{
log (z̃)− 1

2
z̃2

}]
,
1

2

[
1

2
Re

{
log (z̃) +

1

2
z̃2

}]
,−1

2
[Im {z̃}]

)
.

The coordinates above correspond to the conjugate surface of the wavy plane scaled
by 1

2
. This is clear given the actual coordinates of the wavy plane below:

W =

(
1

2
Re

{
log (z) +

1

2
z2 + c

}
,−1

2
Im

{
log (z)− 1

2
z2 + c2

}
,−Re {z + c3}

)
.

Since the wavy plane is its own conjugate surface, this means that it is accurate to
describe our surface as the wavy plane.
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Figure 2.60. Side view of the wavy plane surface.

Exercise 2.131. Consider the harmonic univalent map f(z) = h(z) + g(z), where

h =
1

4
ln

(
1 + z

1− z

)
+

1
2
z

1− z2
and g =

1

4
ln

(
1 + z

1− z

)
−

1
2
z

1− z2
.

(a) Use Theorem 2.123 to find the parametrization of the minimal graph that f
lifts to.

(b) Use ComplexTool to graph the image of D under f and MinSurfTool with tab
W.E.(h,g) to sketch the corresponding minimal graph.

(c) Use the approach of Example 2.128 to show analytically that this minimal
graph is the catenoid.

Try it out!

Exercise 2.132. An important function is complex analysis is the Koebe function
given by z

(1−z)2 . By shearing

h(z)− g(z) =
z

(1− z)2
with ω(z) = z2,

we derive the harmonic univalent mapping f = h+ g, where

h =
z − z2 + 1

3
z3

(1− z)3
and g =

1
3
z3

(1− z)3
.

(a) Use Theorem 2.123 to find the parametrization of the minimal graph that f
lifts to.

(b) Use ComplexTool to graph the image of D under f and MinSurfTool with tab
W.E.(h,g) to sketch the corresponding minimal graph.
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(c) Use the approach of Example 2.130 to show analytically that this minimal
graph is the Enneper surface.

Try it out!

Large Project 2.133. The analytic function, F (z) = z, maps the unit disk, D,
onto itself. Shear h(z)−g(z) = z with various dilatations, ω, that satisfy the condition

|ω| < 1 for all z ∈ D (e.g., ω = z2n(n ∈ N), ω = eiθz2(θ ∈ R), ω =
(
z−a
1−az

)2
(|a| < 1)).

Determine the corresponding minimal graphs.
Optional

Large Project 2.134. The analytic function, F (z) = z
1−z , maps the unit disk,

D, onto a right half-plane and is an important function. Shear h(z) + g(z) = z
1−z

with various dilatations, ω, that satisfy the condition |ω| < 1 for all z ∈ D (e.g.,

ω = z2n(n ∈ N), ω = eiθz2(θ ∈ R), ω =
(
z−a
1−az

)2
(|a| < 1)). Determine the corresponding

minimal graphs.
Optional

2.7. Convex Combinations of Minimal Graphs

We are interested in finding ways to construct embedded minimal surfaces. In this
section we will explore the idea of taking a convex combination of minimal graphs.
The background from the previous two sections lay the foundation for this section.

Definition 2.135. A convex combination

x = t1x1 + · · ·+ tnxn

is a linear combination of a finite number of “points” x1, . . . , xn, where each scalar tk

is non-negative and
n∑
k=1

tk = 1.

Example 2.136. The set of all convex combinations, t1P1 + t2P2, of two points, P1

and P2, is the line segment between these points. In the definition, “points” can be
more general. For example, the expression 1

2
eiθ+ 1

2
e−iθ = cos θ is a convex combination

of the functions f1(θ) = eiθ and f2(θ) = e−iθ.

Let M1, M2 be minimal graphs in R3 with Weierstrass data (G1, dh1), (G2, dh2),
respectively. It is not true that the convex combination M = t1M1 + t2M2 must be a
minimal graph. Consider the following example.

Example 2.137.

However, we can guarantee that the convex combination will be a minimal graph
if we include a few conditions. Before we state this result, we need to present a few
background ideas.
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Definition 2.138. A domain Ω ⊂ C is convex in the direction eiϕ if for every
a ∈ C the set Ω ∩ {a + teiϕ : t ∈ R} is either connected or empty. In particular, a
domain is convex in the imaginary direction if every line parallel to the imaginary axis
has a connected intersection with Ω.

Condition A: Let F be a non-constant analytic function in D, and there exists se-
quences z′n, z′′n converging to z = 1, z = −1, respectively, such that

lim
n→∞

Re{F (z′n)} = sup
|z|<1

Re{F (z)}

lim
n→∞

Re{F (z′′n)} = inf
|z|<1

Re{F (z)}.
(20)

Note that the normalization in (20) can be thought of in some sense as if F (1) and
F (−1) are the right and left extremes in the image domain in the extended complex
plane.

Now, we can state our main result.

Theorem 2.139. Let M1, . . . ,Mn : D → R3 be minimal graphs with isothermal
parametrizations φk = Re(φ1

k, φ
2
k, φ

3
k) in terms of the Gauss map Gk and height differ-

ential dhk (k = 1, . . . , n) as given in (14). Let Gk = G1, for each k. Also, let each
Dk, the projection of Mk onto the x1x2-plane be convex in the imaginary direction
and let condition A hold for each φ1

k, for k = 1, . . . , n. Then the convex combination
M = t1M1 + · · ·+ tnMn is a minimal graph, for all 0 ≤ tk ≤ 1, where t1 + · · ·+ tn = 1
with G = G1 and dh = t1dh1 + · · ·+ tndhn.

In order to prove Theorem 2.139, we need some background material. First, we
will need some results about univalent harmonic mappings, f = h+ g, where h, g are
analytic in D that were discussed in Section . Recall from Theorem 2.123 that harmonic
univalent mappings are connected with minimal graphs in R3 through a Weierstrass
representation. Note that the Gauss map G(z) and height differential dh(z) discussed
in Section relate to the the univalent harmonic mapping f = h+ g by:

(21) G(z) =

√
g′(z)

h′(z)
, dh(z) = −2i

√
g′(z)h′(z) dz.

Exercise 2.140. Using Weierstrass Representation (G,dh) and Weierstrass Rep-
resentation (h,g) derive the formulas in (21).

Try it out!

The next theorem from [5] can be used to show that the harmonic function f = h+g
is univalent.

Theorem 2.141. A harmonic function f = h+g locally univalent in D is a univalent
mapping of D onto a domain convex in the imaginary direction if and only if h + g is
a univalent analytic mapping of D onto a domain convex in the imaginary direction.
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There is a result in [15] about univalent analytic mappings that map onto domains
convex in the imaginary direction.

Theorem 2.142. Suppose f is holomorphic and non-constant in D. Then

Re{(1− z2)f ′(z)} ≥ 0, z ∈ D,
if and only if f is univalent in D, f(D) is convex in the imaginary direction, and
Condition A holds.

Now, we will prove our main result, Theorem 2.139.

Proof. By Theorem 2.123, the projection of each minimal graphMk onto the x1x2-
plane defines a univalent harmonic mapping fk = hk + gk with dilatation ωk = g′k/h

′
k.

Let
f = h+ g = (t1h1 + · · ·+ tnhn) + (t1g1 + · · ·+ tngn).

We will show that f is a univalent harmonic mapping of D onto a domain convex in
the imaginary direction.

Since G1 = Gk, we see from (21) that ω1 = ωk for all k = 2, . . . , n. Also, ω = g′/h′

equals ω1, because

ω =
t1g
′
1 + · · ·+ tng

′
n

t1h′1 + · · ·+ tnh′n
=
t1h
′
1ω1 + · · ·+ tnh

′
nωn

t1h′1 + · · ·+ tnh′n
= ω1.

Hence, f is locally univalent since |ω(z)| = |ω1(z)| < 1,∀z ∈ D.
We now will show that h + g is a univalent analytic mapping of D onto a domain

convex in the imaginary direction, so we can apply Theorem 2.141. By Theorem 2.141,
we know that each hk + gk is univalent and convex in the imaginary direction. Also,
hk + gk satisfies condition A since Re{hk + gk} = Re{φ1

k}. Applying Theorem 2.142
we have

Re{(1− z2)(h′k(z) + g′k(z))} ≥ 0.

Then

Re{(1−z2)(h′(z) + g′(z))}
= Re{(1− z2)[t1(h′1(z) + g′1(z)) + · · ·+ tn(h′n(z) + g′n(z))]}
= t1 Re{(1− z2)(h′1(z) + g′1(z))}+ · · ·+ tn Re{(1− z2)(h′n(z) + g′n(z))} ≥ 0.

By applying Theorem 2.142 in the other direction, we have that h + g is convex in
the imaginary direction, and so by Theorem 2.141, f is univalent mapping with f(D)
being convex in the imaginary direction.

We can now apply the Weierstrass representation from Theorem 2.123, to lift f =

h+ g to a minimal graph M̃ = (u, v, f(u, v)). Notice that

u = Re{h+ g}
= Re{(t1h1 + t1g1) + · · ·+ (tnhn + tngn)}
=t1 Re{φ1

1}+ · · ·+ tn Re{φ1
n}.
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Similarly, v = Im{h− g} = t1 Re{φ2
1}+ · · ·+ tn Re{φ2

n}.
Finally,

F (u, v) =2 Im
{∫ z

0

√
(t1g′1(ζ) + · · ·+ tng′n(ζ))(t1h′1(ζ) + · · ·+ tnh′n(ζ)) dζ

}
=2 Im

{∫ z

0

√(
t1ω1(ζ)h′1(ζ) + · · ·+ tnωn(ζ)h′n(ζ)

)(
t1h′1(ζ) + · · ·+ tnh′n(ζ)

)
dζ
}

=2 Im
{∫ z

0

√
ω1(ζ)

(
t1h
′
1(ζ) + · · ·+ tnh

′
n(ζ)

)
dζ
}

=2 Im
{∫ z

0

(
t1
√
g′1(ζ)h′1(ζ) + · · ·+ tn

√
g′n(ζ)h′n(ζ)

)
dζ
}

=t1 Re
{
φ3

1}+ · · ·+ tn Re{φ3
n

}
.

Thus, M̃ = t1M1 + · · ·+ tnMn = M . �

Remark 2.143. The hypothesis of Theorem 2.139 that Gk = G1 for all k is not
necessary.

Example 2.144. Consider Scherk’s doubly periodic surface M1 with Weierstrass
data

G1(z) = z and dh1(z) =
z dz

1− z4
,

and Scherk’s singly periodic surface M2 with Weierstrass data

G2(z) = z and dh2(z) =
−iz dz
1− z4

.

These satisfy the conditions of Theorem 2.139. Hence, the Weierstrass data

G(z) = z and dht(z) =
(t− i(1− t))z dz

1− z4

is a minimal graph for all t ∈ [0, 1]. Note M1 and M2 are conjugate surfaces. The

corresponding associate surfaces are determined by G(z) = z and dhθ(z) = eiθz dz
1−z4

which is different than the surface created by the convex combination of M1 and M2.

Exercise 2.145. Add conjugate surfaces that satisfy condition A, such as a catenoid
on its side and a helicoid on its side.

Example 2.146. Consider the minimal surface M1 with Weierstrass data

G1(z) = z and dh1(z) =
z dz

1− z4
.
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The domain is D and by the Weierstrass representation given in (14), M1 is parametrized
by

x(z) = (u1, v1, w1)

=

(
Re

{
i

2
log

(
1 + z

1− z

)}
,Re

{
i

2
log

(
i+ z

i− z

)}
,Re

{
1

2
log

(
1 + z2

1− z2

)})
.

What is the projection of this surface onto the x1x2-plane? In other words, what is
the image of D under complex function u1 + iv1? Note that

u1 = −1

2
arg

(
1 + z

1− z

)
, v1 = −1

2
arg

(
i+ z

i− z

)
.

Let z = eiθ ∈ ∂D. Then

1 + z

1− z
=

1 + eiθ

1− eiθ
1− e−iθ

1− e−iθ
=

1 + eiθ − e−iθ − 1

1− eiθ − e−iθ + 1
= i

sin θ

1− cos θ
.

Thus,

u1 = −1

2
arg

(
1 + z

1− z

)∣∣∣∣∣
z=eiθ

=

{
π
4

if sin θ < 0,

−π
4

if sin θ > 0.

Likewise, we can show that

v1 =

{
π
4

if cos θ > 0,

−π
4

if cos θ < 0.

In summary, we have that z = eiθ ∈ ∂D is mapped to

u1 + iv1 =


z1 = π

2
√

2
ei

3π
4 = −π

4
+ iπ

4
if θ ∈ (0, π

2
),

z3 = π
2
√

2
ei

5π
4 = −π

4
− iπ

4
if θ ∈ (π

2
, π),

z5 = π
2
√

2
ei

7π
4 = π

4
− iπ

4
if θ ∈ (π, 3π

2
),

z7 = π
2
√

2
ei

9π
4 = π

4
+ iπ

4
if θ ∈ (3π

2
, 2π).

Thus, the projection of this minimal surface onto the x1x2-plane is the interior of the
region bounded by a square with vertices at z1, z3, z5 and z7.

Notice that w1 = 1
2

ln
(

1+z2

1−z2
)

has singularities at z = ±1,±i. As z → ±1, w1 → +∞
while as z → ±i, w3 → −∞. Our surface M1 is a parametrization of Scherk’s doubly
periodic surface.

Next, consider the minimal surface M2 with the Weierstrass data

G2(z) = z and dh2(z) =
−iz dz
1 + z4

.
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This is another parametrization of Scherks doubly-periodic surface given by

x2(z) = (u2, v2, w2)

=

(
Re

{
i

2
√

2

[
log

(
ei
π
4 + z

ei
π
4 − z

)
+ log

(
ei

3π
4 + z

ei
3π
4 − z

)]}
,

Re

{
−i

2
√

2

[
log

(
ei
π
4 + z

ei
π
4 − z

)
− log

(
ei

3π
4 + z

ei
3π
4 − z

)]}
,

Re

{
1

2
log

(
i+ z2

i− z2

)})
.

Similar to above, the projection of M2 onto the x1x2-plane is a rotated square
region with vertices at z0, z2, z4 and z6 since z = eiθ ∈ ∂D is mapped to

u2 + iv2 =


z0 = π

2
√

2
if θ ∈ (−π

4
, π

4
),

z2 = iπ
2
√

2
if θ ∈ (π

4
, 3π

4
),

z4 = − π
2
√

2
if θ ∈ (3π

4
, 5π

4
),

z6 = − iπ
2
√

2
if θ ∈ (5π

4
, 7π

4
).

Also, w2 = 1
2

ln
(
i+z2

i−z2
)

has singularities at z = ±eiπ/4,±e−iπ/4. As z → ±eiπ/4,

w2 → +∞ while as z → ±e−iπ/4, w2 → −∞.
The hypotheses for Theorem 2.139 are satisfied. Therefore,

M = tM1 + (1− t)M2, (0 ≤ t ≤ 1)

is a minimal graph in R3 with

G(z) = z and dht(z) = t
z dz

1− z4
+ (1− t)−iz dz

1 + z4
.

To determine what surfaces these are, consider the specific case when t = 1
2
. The

projection of the surface M onto the complex plane is the nonconvex star shown in the
bottom left column of Figure 4.28.

To see why this is, we can look at where arcs of the unit circle are mapped under
f = 1

2
f1 + 1

2
f2. Notice that f1(eiθ) and f2(eiθ) depend upon which of eight arcs θ is in.

For example, if θ ∈ (−π
4
, 0), then f1(eiθ) = z1 and f2(eiθ) = z0, and so in this interval

f(eiθ) = z1+z0
2

(that is, it is the midpoint between z1 and z0). However, if θ ∈ (0, π
4
),
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Figure 2.61. Image D under f = 1
2
f1 + 1

2
f2

then f1(eiθ) = z3 and f2(eiθ) = z0, and f(eiθ) = z3+z0
2

. Specifically,

f(eiθ) =



ζ1 = z1+z0
2

= π
2
√

2
cos π

8
ei
π
8 if θ ∈ (−π

4
, 0),

ζ2 = z3+z0
2

= π
2
√

2
cos 3π

8
ei

3π
8 if θ ∈ (0, π

4
),

ζ3 = z3+z2
2

= π
2
√

2
cos π

8
ei

5π
8 if θ ∈ (π

4
, π

2
),

ζ4 = z5+z2
2

= π
2
√

2
cos 3π

8
ei

7π
8 if θ ∈ (π

2
, 3π

4
),

ζ5 = z5+z4
2

= π
2
√

2
cos π

8
ei

9π
8 if θ ∈ (3π

4
, π),

ζ6 = z7+z4
2

= π
2
√

2
cos 3π

8
ei

11π
8 if θ ∈ (π, 5π

4
),

ζ7 = z7+z6
2

= π
2
√

2
cos π

8
ei

13π
8 if θ ∈ (5π

4
, 3π

2
),

ζ8 = z1+z6
2

= π
2
√

2
cos 3π

8
ei

15π
8 if θ ∈ (3π

2
, 7π

4
).

Note that the vertices ζ1, ζ3, ζ5 and ζ7 lie equally spaced on a circle of radius router =
π

2
√

2
cos π

8
≈ 1.026, while the vertices ζ2, ζ4, ζ6 and ζ8 lie equally spaced on a circle of

radius rinner = π
2
√

2
cos 3π

8
≈ 0.425.
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We can visualize the boundary of f(D) by plotting the eight vertices z0, z1, . . . z7

and drawing the midpoints ζ1, . . . , ζ8 (see Figure 4.26).

z1 w1

z 0

z2z3

z7

z4

z5
z6

z3

w2

z 0

z1
z2

z7

z4

z5
z6

w3

z1

z 0

z2
z3

z7

z4

z5
z6

w2

w3

w1
w4

w8
w5 w6

w7

Figure 2.62. Visualizing the image of the boundary of f(D)

Now, let’s look at the behavior of the third coordinate function, w, for this convex
combination map, f . Note that there are singularities at ±1, ±eiπ/4, ±i, and ±e−iπ/4.
As z → ±1, w1 → +∞ while w2 remains finite, and so w → +∞. On the other hand,
as z → ±i, w1 → −∞ while w2 remains finite, and so w → −+∞. Similarly, w → +∞
as z → ±eiπ/4, while w → −∞ as z → ±e−iπ/4.

By changing the value of t we can get different asymmetric nonconvex polygonal
regions with the same behavior for w, and the corresponding surfaces M are known as
Jenkins-Serrin surfaces.

Exercise 2.147. We can have two different parametrizations, x1 and x2, of the
same surface with the same image projected onto the x1x2-plane. Yet, when we take
the convex combination of each of these with a parametrization of another independent
surface x3, the resulting surfaces can be different.

Repeat the steps in Example 2.146 using the same G2 and dh2 for M2 but replacing
the Weierstrass data for M1 with

G1(z) = iz and dh1(z) =
z dz

1− z4
.

(a.) Show that G1 = iz and G2 = z satisfies eq. (??).
(b.) Determine the image of the projection onto the x1x2-plane of the convex com-

bination of M1 and M2. Do this by using the approach in Example 2.146 to
compute the new values of w1, . . . , w8 and then use the visualization technique
in the example to plot the eight vertices z0, . . . , z7 and draw the midpoints
w1, . . . , w8.

(c.) Use LinComboTool to verify your result in part (b.).
(d.) Determine the behavior of the third coordinate function, w, for this convex

combination map using the approach in Example 2.146.

Try it out!
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Exercise 2.148. Repeat the steps in Exercise 2.147 using the same Weierstrass
data,

G1 = iz and dh1 =
z dz

1− z4

for M1 but replacing M2 with the Weierstrass data

G2 = iz2 and dh1 =
z2 dz

1− z6
.

(a.) Show that G1 = iz and G2 = iz2 satisfies eq. (??).
(b.) Determine the image of the projection onto the x1x2-plane of the convex com-

bination of M1 and M2 by using the approach in Example 2.146 to compute
the new values of the vertices.

(c.) Use LinComboTool to verify your result in part (b.).
(d.) Determine the behavior of the third coordinate function, w, for this convex

combination map using the approach in Example 2.146.

Try it out!

2.8. Conclusion

We have presented an introduction to minimal surfaces and described a few top-
ics that students can explore using the exercises, the exploratory problems, and the
projects along with the applets. For a deeper and thorough explanation of differen-
tial geometry consult [7], [17], or [20] for beginners, and [3] for intermediates. Also,
you should consider Spivak’s five volume work [23]. For more background on minimal
surfaces we recommend [24], [14], [15], [6], [22], and [19].
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2.9. Additional Exercises

Differential Geometry
Exploration 2.149. An oblique cylinder can be parametrized by

x(u, v) = (cosu, sinu+ v cos θ, v sin θ),

where θ ∈
(
0, π

2

)
is a fixed value. Use DiffGeomTool to explore what happens to the

oblique cylinder as θ varies between 0 and π
2
.

Exercise 2.150. Use DiffGeomTool to graph the surface parametrized by

x(u, v) =

(
cosu

(
1 + v sin

(
1

2
u

))
, sinu

(
1 + v sin

(
1

2
u

))
, v cos

(
1

2
u

))
,

where −π < u < π, −1
2
< v < 1

2
. This surface is known as the Möbius strip and

is nonorientable; that is, the normal vector can change from pointing outward to
pointing inward as it travels along a closed path on the surface. You can see this in
DiffGeomTool by clicking on the Normal vector box and setting the Point locator:

(u,v)= to (π − 0.1, 0). Next, change this u coordinate to each of the following values:
u = π− 0.1− 1, u = π− 0.1− 2, u = π− 0.1− 3, u = π− 0.1− 4, u = π− 0.1− 5, and
u = π− 0.1− 6. As you do so, observe that n will make nearly a complete path along
a closed curve but it will change the direction it is pointing from where it started to
where it ended.

Exercise 2.151. Describe the u-parameter and v-parameter curves on the Enneper
surface.

Exercise 2.152. In Exploration 2.11(c), you proved the largest value of r for which
the Enneper surface has no self-intersections assuming that the intersection occurs on
the x3-axis. In this exercise, prove the same result without assuming the intersection
occurs on the x3-axis.

Exercise 2.153. Compute the coefficients of the first and the second fundamental
forms for the Enneper surface whose parametrization is

x(u, v) =

(
u− 1

3
u3 + uv2, v − 1

3
v3 + u2v, u2 − v2

)
.

Exercise 2.154. A CMC (Constant Mean Curvature) surface is a surface that has
the same mean curvature everywhere on the surface. Minimal surfaces are a subset of
CMC surfaces. Using DiffGeomTool sketch the following surfaces and determine which
are CMC surfaces:

(a). x(u, v) = (u− v, u+ v, 2(u2 + v2)), where −1 < u < 1, −1 < v < 1;
(b). x(u, v) = (cosu, sinu, v), where −π < u < π, −2 < v < 2;

(c). x(u, v) =
(

(2 + cos v) cosu, (2 + cos v) sinu, sin v
)
, where 0 < u, v < 2π;

(d). x(u, v) = (
√

1− u2 cos v,
√

1− u2 sin v, u), where −1 < u < 1, −π < v < π;
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Minimal Surfaces

Exercise 2.155. Use eq (5) to show that the Enneper surface parametrized by

x(u, v) =

(
u− 1

3
u3 + uv2, v − 1

3
v3 + u2v, u2 − v2

)
is a minimal surface.

Exercise 2.156. Prove Theorem 2.38 in the special case that the surface of revo-
lution has the parametrization

x(u, v) =
(
f(v) cosu, f(v) sinu, v).

Exercise 2.157. An oblique cylinder is a cylinder whose side forms an angle θ
with the x1x2-plane, where 0 < θ ≤ π

2
. For a fixed θ it can be parametrized by

x(u, v) = (cosu, sinu+ v cos θ, v sin θ).

Determine the values of θ for which x is isothermal.

Exercise 2.158. Show that the parametrization

x(u, v) =

(
arctan

(
2u

1− (u2 + v2)

)
, arctan

(
−2v

1− (u2 + v2)

)
,

1

2
ln

(
(u2 − v2 + 1)2 + 4u2v2

(u2 − v2 − 1)2 + 4u2v2

))
is an isothermal parametrization of Scherk’s doubly periodic surface (that is, show that
it is isothermal and that there is transformation that maps this parametrization to the
parametrization given in Exercise 2.42(b) for Scherk’s doubly periodic surface).

Weierstrass Representation

Exercise 2.159. In Example 2.66, show the details in going from the Enneper
surface parametrization

x =
(

Re
{
z − 1

3
z3
}
,Re

{
− i
(
z +

1

3
z3
)}
,Re

{
z2
})

to the parametrization

x(u, v) =

(
u− 1

3
u3 + uv2, v − 1

3
v3 + vu2, u2 − v2

)
that is also for the Enneper surface.

Exercise 2.160. Compute the parametrization for the minimal surfaces gener-
ated by using p(z) = 1

2z
and q(z) = iz on the domain C − {0} in the Weierstrass

representation. Use MinSurfTool with the W.E.(p,q) tab to graph an image of this
surface which is known as the wavy plane. [Use radius min=0.001, radius max=1.3,
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theta min=-pi, theta max=pi with initial values x = Re(1/2 ∗ ln(z) − 1/4 ∗ z2),
y = Im(1/2 ∗ ln(z) + 1/4 ∗ z2), and z = Re(z).]

Exercise 2.161. Compute the parametrization for the minimal surfaces gener-
ated by using p(z) = z2 and q(z) = i

z2
on the domain C − {0} in the Weierstrass

representation. Use MinSurfTool with the W.E.(p,q) tab to graph an image of this
surface which is known as Richmond’s surface. [Use radius min=0.1, radius max=1,
theta min=pi/24, theta max=2pi+pi/24 with initial values x = Re(1/3 ∗ z3 + 1/z),
y = Im(1/3 ∗ z3 − 1/z), and z = Re(2 ∗ z).]

Exercise 2.162. Compute the parametrization for the minimal surfaces generated

by using p(z) = (z+1)2

z4
and q(z) = z2(z−1)

z+1
on the domain D − {0} in the Weierstrass

representation. Use MinSurfTool with the W.E.(p,q) tab to graph an image of this
surface which is known as the wavy plane. [Use radius min=0.1, radius max=0.9, theta
min=pi/24, theta max=2pi+pi/24 with initial values x =, y =, and z =.]

The Gauss map, G, and height differential, dh

Exercise 2.163. Show that if z = x+ iy is the projection of the point (x1, x2, x3)
on the Riemann sphere onto to complex plane, then

x =
x1

1− x3

, y =
x2

1− x3

.

Exercise 2.164. For Scherk’s doubly periodic surface find:

(a) G(0); (b) G(1); (c) G(−1); (d) G(i); (e) G(−i).

Exercise 2.165. The Weierstrass data for a 4-noid are

G(z) = z3 and dh =
z3

(z4 − 1)2
dz.

Show that the ends of the 4-noid are catenoid ends.

Exercise 2.166. Determine the asymptotic and curvature lines for Scherk’s doubly
periodic surface with G(z) = z and dh(z) = iz

z4−1
dz.

Exercise 2.167. Determine the period conditions for the wavy plane withG(z) = z
and dh(z) = dz.

Exercise 2.168. Let M be the Scherk doubly periodic surface with 6 ends. Using
the approach of Example 2.103 determine G and dh for this surface.

Minimal Surfaces and Harmonic Univalent Mappings

Exercise 2.169. Prove that if f = u+iv is harmonic in a simply-connected domain
G, then f = h+ g, where h and g are analytic.
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Exercise 2.170. Prove that the representations f(z) = h(z) + g(z) and f(z) =
Re
{
h(z) + g(z)

}
+ i Im

{
h(z)− g(z)

}
are equivalent.

Exercise 2.171. Shear h(z) − g(z) = z
1−z with ω(z) = z2 to get the harmonic

univalent function f = h+ g given in Example 2.130, where

h =
1

8
ln

(
z + 1

z − 1

)
+

3z − 2z2

4(1− z)2
and g =

1

8
ln

(
z + 1

z − 1

)
− z − 2z2

4(1− z)2
.

Exercise 2.172. Shear h(z) − g(z) = z
(1−z)2 with ω(z) = z2 to get the harmonic

univalent function f = h+ g given in Exercise 2.132, where

h =
1

8
ln

(
z + 1

z − 1

)
+

3z − 2z2

4(1− z)2
and g =

1

8
ln

(
z + 1

z − 1

)
− z − 2z2

4(1− z)2
.

Exercise 2.173. Show that the parametrization:

x =

(
Re

[
i

2
log

(
i+ z

i− z

)]
, Im

[
1

2
log

(
1 + z

1− z

)]
,
1

2
Im

[
i log

(
1 + z2

1− z2

)])
is equivalent to the parametrization in Exercise 2.158 that gives Scherk’s doubly peri-
odic minimal surface.

Large Project 2.174. The analytic function, F (z) = z
(1−z)2 , maps the unit disk,

D, onto C \ (−∞,−1
4
) and is an important function. Shear h(z) − g(z) = z

(1−z)2

with various dilatations, ω, that satisfy the condition |ω| < 1 for all z ∈ D (e.g.,
ω = z2n(n = N)ω = eıθz2, (θ ∈ R), ω =

(
z−a
1−az

)
(|a| < 1)). Determine the corresponding

minimal graphs.

Convex Combinations of Minimal Surfaces

Exercise 2.175. Repeat the steps in Exercise 2.147 using the Weierstrass data,

G1 = z and dh1 =
z dz

1− z4

for M1 and

G2 = iz and dh1 =
z dz

1− z4

for M2.

(a.) Show that eq. (??) is satisfied.
(b.) Determine the image of the projection onto the x1x2-plane of the convex com-

bination of M1 and M2 by using the approach in Example 2.146 to compute
the new values of the vertices.

(c.) Use LinComboTool to verify your result in part (b.).
(d.) Determine the behavior of the third coordinate function, w, for this convex

combination map using the approach in Example 2.146.

190



Bibliography

[1] F. J. Almgren and J. Taylor, The geometry of soap films and soap bubbles, Sci. Am. 235 (1976),
8293.

[2] L. Bers, Riemann Surfaces, New York Univ., Institute of Mathematical Sciences, New York,
1957-1958.

[3] W. Boothby, An introduction to differentiable manifolds and Riemannian geometry, Second edi-
tion. Pure and Applied Mathematics, vol 120. Academic Press, Inc., Orlando, FL, 1986.

[4] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A.I
Math. 9 (1984), 3-25.

[5] R. Courant and H. Robbins, What Is Mathematics?, Oxford University Press, 1941.
[6] U. Dierkes, S. Hildebrandt, A. Kster, and O. Wohlrab, Minimal surfaces I, Grundlehren der

Mathematischen Wissenschaften, 295, Springer-Verlag, Berlin, 1992.
[7] M. do Carmo, Differential geometry of curves and surfaces, translated from the Portuguese,

Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976.
[8] M. Dorff, Minimal graphs in R3 over convex domains, Proc. Amer. Math. Soc. 132 (2004), no.

2, 491-498.
[9] M. Dorff and J. Szynal, Harmonic shears of elliptic integrals, Rocky Mountain J. Math. 35 (2005),

no. 2, 485–499.
[10] K. Driver and P. Duren, Harmonic shears of regular polygons by hypergeometric functions, J.

Math. Anal. App. 239 (1999), 72-84.
[11] P. Duren and W. Thygerson, Harmonic mappings related to Scherk’s saddle-tower minimal sur-

faces, Rocky Mountain J. Math. 30 (2000), no. 2, 555-564.
[12] W. Hengartner and G. Schober, On schlicht mappings to domains convex in one direction, Com-

ment. Math. Helv. 45 (1970), 303-314.
[13] S. Hildebrandt and A. Tromba, Mathematics and Optimal Form, Scientific American Library,

1985.
[14] H. Karcher, Construction of minimal surfaces, Survey in Geometry, Univ. of Tokyo, 1989.
[15] H. Karcher, Introduction to the complex analysis of minimal surfaces, Lecture notes given at the

NCTS, Taiwan, 2003.
[16] J. McDougall and L. Schaubroeck, Minimal surfaces over stars, J. Math. Anal. Appl. 340 (2008),

no. 1, 721-738.
[17] R. Millman and G. Parker, Elements of differential geometry, Prentice-Hall Inc., Englewood

Cliffs, N. J., 1977.
[18] F. Morgan, Minimal surfaces, crystals, shortest networks, and undergraduate research, Math.

Intel., 14 (1992), 37-44.
[19] J. Nitsche, Lectures on Minimal Surfaces, vol. 1, Cambridge U. Press, 1989.
[20] J. Oprea, Differential geometry and its applications., 2nd ed., Classroom Resource Materials

Series. Math. Assoc. of America, Washington, DC, 2007.
[21] J. Oprea, The mathematics of soap films: explorations with Maple, Student Mathematical Library,

vol 10, Amer. Math. Soc., Providence, RI, 2000.

191



[22] R. Osserman, A survey of minimal surfaces, 2nd ed. Dover Publications, Inc., New York, 1986.
[23] M. Spivak, A Comprehensive Introduction to Differential Geometry, vols 1-5, 3rd ed., Publish or

Perish, Inc., Houston, TX, 2005.
[24] M. Weber, Classical minimal surfaces in Euclidean space by examples, Preliminary notes for the

Clay Institute Summer School on minimal surfaces, MSRI, Berkeley, Calif., 2001.
[25] S. Weintraub, Differential Forms: A Complement to Vector Calculus, Academic Press, Inc., San

Diego, CA, 1997.

192



CHAPTER 3

Applications to Flow Problems

Michael Brilleslyper (text), Jim Rolf (applets)

3.1. Introduction

This chapter grew out of a series of lectures prepared for an undergraduate math-
ematical physics course. At the time, the goal was to show the students some applica-
tions of complex function theory that connected to familiar topics from calculus and
physics. The idea to look at the two dimensional flows of ideal fluids was a natural fit.
Many common ideas from vector calculus are used in the development of the subject
and there are numerous applications of the methods that are developed. Modeling
ideal fluid flow is a standard application of conformal mappings and is readily found
in most undergraduate complex analysis texts (see [3] or [5]). However, in preparing
the notes it became apparent that there was a need for a unified treatment that in-
cluded a variety of applications and extensions such as including sources and sinks in
the flow, or accounting for the role played by sources or sinks at infinity. Addition-
ally, the emphasis in many texts is on the analytic aspects of the subject and not on
the geometric or visual aspects of the flows. This chapter combines all this material
and more. It is self-contained and relies only on basic results from vector calculus
and a standard first course in complex variables. To permit discovery and experi-
mentation, we created the easy-to-use applet FlowTool that can be accessed online at
http://www.jimrolf.com/explorationsInComplexVariables/chapter3.html:

• FlowTool plots the streamlines for the flow of an ideal fluid. It permits the
user to select the number and location of sources or sinks on the boundary of
the region and then allows the strength to be dynamically varied. The applet
shows steady state fluid flow in four preset regions: the entire plane, the half
plane, the quadrant, and the strip.

We note that the applet is limited to certain pre-set regions and particular types of
sources. To account for the wide variety of problems that may be encountered in
practice, we also make use of powerful computer algebra systems such as Mathematica.

Vector fields arise naturally in many applications. They are used to model physical
phenomena such as the velocity field of a fluid flowing in a region or the electric force
field generated by a collection of charges. The geometry of the region, along with any
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sources or sinks in the field, determines the nature of the resulting vector field. Finding
descriptions of these fields is the focus of this chapter. It is also of interest to find the
integral curves of such a vector field. These are curves that are everywhere tangent
to the vector field. Integral curves have different names depending on the context
including flow lines, stream lines, or lines of force.

In this chapter we study physical situations in which complex function theory can
be used to help solve the problem of finding particular instances of such vector fields
and their integral curves. We focus mainly on using techniques of complex analysis to
solve flow problems. To motivate our discussion and to provide a road map for where
the chapter is headed, we start with an example. We omit many of the details here
hoping the reader will be intrigued enough to press on with the material and learn how
to solve this type of problem.

Example 3.1. Imagine an infinitely long, very shallow, channel in which fluid
flows. Because the channel is very shallow we assume this is a two dimensional flow
(real flows are three dimensional, but we assume the flow is identical on all parallel
planes). Orient the channel on the complex plane so that one edge runs along the
real axis and the other along the horizontal line Im z = π (thus our channel has width
π). Now we assume that fluid is being pumped into the channel and drained from the
channel at various points along the edges. For the time being we assume that all pumps
and drains operate at the same constant rate. Our goal is to describe the velocity of
the fluid in the channel. We assume that the flow is in a steady state, meaning the
velocity at a point of the domain does not change with time. For this scenario, let
the fluid be pumped into the channel at equal rates at z = 0 and z = 2, and suppose
fluid is drained from the channel at the same rate at the point z = −2 +πi. Note that
there is more fluid being pumped into the channel than there is being drained from
the channel. Figure (3.1) illustrates the situation. The curves shown are the integral
curves of the underlying vector field and they represent the path that a drop of dye
would follow if placed into the flow. A critical assumption in this model is that we are
dealing with an ideal fluid. This means that the fluid is incompressible, non viscous,
and there is no loss of energy due to friction between the walls of the channel and the
fluid. Such fluids do not really exist, but they frequently provide good approximations
to real physical situations and they have certain mathematical properties that lend
themselves to analysis and modeling.

The plot in figure(3.1) was generated using the computer algebra system Mathe-
matica. Software packages such as Mathematica, Maple, and Matlab are very powerful
and can be useful in generating complicated graphics. However, they may not be easy
to use or to adapt to a particular problem. In order to facilitate your understanding of
this chapter we have provided the FlowTool applet. This applet allows you to experi-
ment with complicated flows for a fixed number of domains. We will make use of this
applet throughout the chapter and in numerous exercises. We also provide the basic
syntax for generating these types of plots in Mathematica.
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Figure 3.1. Flow Lines for an Ideal Fluid in a Channel with Sources
and Sinks

Before moving on you should open the FlowTool applet and follow the instructions
below to generate your own version of figure (3.1). Open the applet and select the
strip domain from the drop down menu. Uncheck the box marked Equipotential lines
(we only wish to view the flow lines in this example). Use the mouse to place a source
at z = 0, z = 2, and z = −2 + πi by clicking once near each of the three locations.
Notice that a dialog box with a slider opens in the right hand panel each time a source
is placed on the boundary of the channel. The sliders are used to change the strength
of a source. If the slider is moved to the left, the strength will eventually become
negative, signifying that the source has changed to a sink. Move the slider to create a
sink of strength −1 at the location z = −2+πi. The other two locations are sources of
strength 1. Figure (3.2) shows a graph similar to what you should see on the applet.
You should feel free to experiment further by adding or deleting sources and using the
sliders to vary the relative strengths. Observe how the flow lines run parallel to the
edges of the channel, indicating that the boundary of the region acts like a frictionless
barrier to the flow.

There is a lot of interesting mathematics behind the plot of the flow lines in fig-
ures (3.1) and (3.2). The chapter follows a path that develops all the key ideas needed
to solve flow problems in various regions with combinations of sources and sinks along
the boundary. In addition, later sections in the chapter extend the ideas and methods
to more complicated settings.

Section 3.2 starts with a review of basic ideas from vector calculus including the
important notions of the divergence and curl of a vector field and the definition of a
harmonic function. This material should be familiar to most students.

Section 3.3 provides a review of the main results needed from a standard course
in complex variables. This section also makes the critical connection between planar
vector fields and complex functions. We also introduce the Polya field and give a
mathematical description of sources and sinks.

Section 3.4 introduces the complex potential function which is the main tool for
constructing ideal fluid flows. We make several key connections between the complex
potential function and the underlying vector field. This material leads directly to the
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Figure 3.2. Flow Lines in a Channel with Sources and Sinks generated
with FlowTool Applet

construction of uniform flows in various regions in section 3.5. We then continue the
development in section 3.6 by allowing sources and sinks along the boundary of the
region. We then take a careful look at the uniform flow in a channel in section 3.7. This
development sheds light on the important role played by sources or sinks at infinity.
Section 3.8 puts all the previous material together by discussing flows in any region
with various combinations of sources or sinks along the boundary.

The final five sections focus on various applications or extensions of the material.
These topics include interval sources, sources or sinks in the interior of regions, flows
inside disks, dipoles, and steady state temperature problems.

3.2. Background and Fundamental Results

Several fundamental concepts from multivariable calculus are required for this ma-
terial. We briefly review the main ideas here. The reader wishing to obtain more
background regarding vector fields and their associated operations should consult any
standard calculus text such as Stewart [1].

We represent a 2-dimensional or planar vector field in Cartesian coordinates using
two real-valued functions of position: ~F (x, y) =< P (x, y), Q(x, y) >. Simple exam-

ples include constant vector fields such as ~F (x, y) =< 3, 4 > and the field tangent

to concentric circles about the origin given by ~G(x, y) =< −y, x >. Other exam-
ples include slope fields for first order differential equations or the magnetic field in
a plane perpendicular to a wire with a current flowing through it. Vector fields are
represented graphically in the plane by drawing arrows indicating the direction of the

196



field at selected points. The magnitude of the field at a point is given by

|~F | =
√
P (x, y)2 +Q(x, y)2

and the direction is given by

arctan
Q(x, y)

P (x, y)

for P (x, y) 6= 0. If Q(x, y) 6= 0 and P (x, y) = 0, then the direction is ±π
2

at (x, y),
the choice being determined by the sign of Q(x, y). The vector < 0, 0 > has no
defined direction. It is usually impossible to draw vectors with their true magnitude,
so graphical representations frequently scale the length of the vectors down to a more
manageable size. Figure (3.3) shows a constant vector field, while figure (3.4) shows
the magnetic field generated by a current running perpendicular to the plane. We also
show an integral curve of the field.

Figure 3.3. The constant vector field given by ~F (x, y) =< 4,−3 >

The curl and divergence of ~F are defined respectively in terms of the vector differ-
ential operator ∇ =< ∂x, ∂y > as follows:

∇× ~F = (Qx − Py)k̂ (Curl)(22)

∇ · ~F = Px +Qy (Divergence)(23)
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Figure 3.4. Magnetic field generated by a current in a wire. The circle
represents an integral curve of the field.

The curl is really defined on 3-dimensional vector fields and yields another vector
field orthogonal to the original field. However, in the case of 2-dimensional planar
fields we simply assume the k̂-component of the vector field is zero, implying that the
curl will always point in the k̂-direction. Thus, it is sufficient to simply compute the
scalar component of ∇× ~F , namely Qx − Py.

We say that a vector field is irrotational at a point if the curl is zero. Similarly, we
say the vector field is incompressible at a point if the divergence is zero. The standard
physical description of a fluid with zero curl is that an infinitesimally small paddle
wheel placed horizontally into the flow would not rotate. That is the flow contains no
vortices. The physical description of the divergence being zero is the idea of the fluid
being incompressible. One consequence of this is that the amount of fluid entering
some region must be equal to the amount of fluid leaving the same region.

In this chapter we study vector fields that are both irrotational and incompressible
throughout some region. Whereas this may seem restrictive, it actually encompasses
a wide range of physically meaningful phenomena such as the electric field in a region
free from charges or the velocity field of an ideal fluid flowing in a region. In addition,
the gravity force field generated by a collection of masses also falls in this category.
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The requirement that both the curl and the divergence be zero imposes conditions
on the component functions of the vector field ~F (x, y) =< P (x, y), Q(x, y) >. From
equations (22) and (23) we obtain a pair of partial differential equations relating the

components of ~F :

Px = −Qy(24)

Py = Qx

Note the similarity of these equations to the Cauchy-Riemann equations satisfied by
analytic functions.

Exercise 3.2. Determine if the following vector fields are incompressible and/or
irrotational:

(1) ~F (x, y) =< ax+ by, cx+ dy >, where a, b, c, and d are real

(2) ~G(x, y) =< ex cos y, ex sin y >

Try it out!

A vector field ~F is said to be conservative in a simply connected domain D if
the line integral

∫
C
~F · d~R between any two fixed points in D is independent of the

path C chosen for the integration (provided the path lies entirely in D). There are
numerous equivalent conditions that guarantee a field is conservative. See Stewart [1]
for a complete discussion.

Theorem 3.3. Let ~F be a vector field with component functions that are continu-
ous throughout a simply connected region D. The following statements are equivalent:

(1) ~F is conservative.

(2) There exists a differentiable potential function φ such that ∇φ = ~F .

(3)
∫
C
~F · d~R = 0 for every closed loop C in D.

(4) ∇× ~F = 0.

We make extensive use of the result that a curl-free vector field has a potential
function. The condition ∇φ = ~F implies the system of partial differential equations

φx = P (x, y)(25)

φy = Q(x, y)

be satisfied. These equations allow us to construct potential functions through partial
integration. The function φ is unique up to an additive constant (why?) and is called

the real potential function of ~F .
Another key definition that plays an important role in our work is that of a harmonic

function. These functions are solutions of Laplace’s equation. Harmonic functions play
a critical role in much of applied mathematics. They arise frequently as steady-state
solutions to various physical problems. Harmonic functions and their properties are
closely tied to the theory of analytic functions in complex analysis. In solving flow
problems, harmonic functions play a central role.
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Definition 3.4. Let u : D ⊆ R2 → R have continuous 2nd order partial deriva-
tives. If u satisfies Laplace’s Equation ∆u = ∇ ·∇u = uxx + uyy = 0, then u is said to
be a harmonic function in D.

The following exercises explore the mechanics of working with vector fields, po-
tential functions, and harmonic functions. In particular, exercise (3.6) shows that the
potential function for an irrotational and incompressible field must be harmonic.

Exercise 3.5. Let ~F (x, y) =< x3 − 3xy2, y3 − 3x2y >. Compute both the curl

and divergence of ~F . If ~F is conservative, then find a potential function for it. If ~F
is also incompressible, then show that the potential function is harmonic. (Optional)
Use a program such as Mathematica or Matlab (or some other utility) to graph both
~F and several level curves of the potential function. What key geometrical observation
connects the direction of ~F with the tangents to the level curves of the potential
function? Try it out!

Exercise 3.6. Suppose that ~F is both irrotational and incompressible. Let φ be
a real potential function of ~F . Show that φ is a harmonic function. Try it out!

The result of exercise (3.6) is particularly important. Note that is the irrotational
feature of the vector field that implies the existence of the potential function and the
incompressibility then implies the potential function is harmonic.

Exercise 3.7. Consider an attracting force at the origin of the xy-plane whose
magnitude at a point is inversely proportional to the square of the distance from the
origin to the point. Determine a formula for the vector field representing this force
field and determine if the field is both irrotational and incompressible in any region not
containing the origin. If possible, find a potential function for the vector field. Finally,
change the field by assuming the force of attraction at a point is inversely proportional
to the distance to the point (as opposed to the square of the distance). Now compute
the curl and divergence of this field. How do your answers compare? Try it out!

3.3. Complex Functions and Vector Fields

In this section we make several basic connections between vector fields and complex
functions. A vector field being both irrotational and incompressible is closely related
to the concept of an analytic function.

Any complex function of the complex variable z = x+y i can be expressed in terms
of its real and imaginary parts as f(z) = u(x, y) + i v(x, y), where u and v are real-
valued functions of x and y. This is accomplished by setting z = x+ i y and separating
into real and imaginary parts. Recall from the introductory chapter that the function
f is said to be analytic at z = z0 if the complex derivative f ′(z) exists for every z in
a neighborhood of z0. An immediate and far-reaching consequence of this definition is
that the functions u and v must satisfy the Cauchy-Riemann equations:
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ux = vy(26)

uy = −vx
We recall a basic result about analytic functions:

Theorem 3.8. Let f(z) = u(x, y) + iv(x, y) be analytic in a domain D, then the
functions u and v are both harmonic in D.

This result is an easy consequence of the Cauchy-Riemann equations and the reader
is strongly encouraged to prove the result in the following exercise.

Exercise 3.9. Prove theorem (3.8). Try it out!

An equally important result is that every harmonic function is the real part of an
analytic function.

Theorem 3.10. Let u(x, y) be a harmonic function defined in a domain D. Then,
there exists another harmonic function, v(x, y), called the harmonic conjugate of u,
such that f(z) = u(x, y) + iv(x, y) is analytic in some domain D′ ⊂ D.

Exercise 3.11. Find a harmonic conjugate for u(x, y) = 3x2 − 2y − 3y2. Try it
out!

Exercise 3.12. Let u(x, y) = 1
2

ln(x2 + y2). Show that u is harmonic everywhere
except the origin and construct a harmonic conjugate for u. Where is the resulting
complex function analytic? Try it out!

Next we establish a correspondence between the set of complex functions and the
set of planar vector fields. Indeed, since both complex functions and planar vector fields
can be represented by a pair of real-valued functions, then any complex function may
be thought of as a vector field and visa-versa. We note the following correspondence:

(27) V (z) = P (x, y) + iQ(x, y) ⇐⇒ ~F (x, y) =< P (x, y), Q(x, y) >

Initially the correspondence is only a renaming of one object into another with no
obvious value. However, looking at complex functions as vector fields sometimes yields
insights that are not apparent in the more traditional view of complex functions as
mapping regions from one copy of the complex plane to another copy. When plot-
ting the vector field of a complex function, the magnitude of the vector field at z is
|V (z)| and the direction is arg(V (z)). For example, figure (3.5) shows the vector field
corresponding to the complex function V (z) = z2

For the remainder of this chapter we will use the notation V (z) to refer to both
complex functions and their corresponding vector field representation.

The correspondence given by (27), though particularly simple, is not the most
useful vector field representation of a complex function. For reasons that will become
clear, we instead associate a complex function with its Polya vector field.
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Figure 3.5. Vector field representation of the function V (z) = z2

Definition 3.13. Let V (z) = u(x, y)+v(x, y) i be a complex function. The vector

field given by the conjugate V (z) = u(x, y) − i v(x, y) is called the Polya vector field
of V (z).

It is important to note then when plotting V (z), that we still attach the arrow to
the point z, not z̄.

The Polya vector field of V (z) = z2 is V (z) = z̄2 and is shown in figure (3.6).
Contrast this field with the one shown in figure (3.5). We will see the value of the
Polya field representation when we look at the vector field corresponding to an analytic
function.
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Figure 3.6. The irrotational, incompressible Polya field V (z) = z̄2

The following theorem shows that if a complex function is analytic, then its Polya
field is both irrotational and incompressible. The proof is a straightforward calculation
involving the Cauchy-Riemann equations and is left as an exercise.

Theorem 3.14. V (z) is analytic in a domain D if and only if its Polya vector field

V (z) is irrotational and incompressible D.

Exercise 3.15. Prove theorem (3.14). Try it out!

The previous theorem (3.14) establishes a bijection between the set of irrotational,
incompressible planar vector fields and the set of analytic functions. It is precisely
this connection that allows us to use the techniques of complex analysis to solve flow
problems.

Exercise 3.16. Find the component functions of each irrotational and incompress-
ible vector field corresponding to the following analytic functions. Verify directly that
the resulting vector fields have both curl and divergence equal to zero.

(1) V (z) = z2
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(2) V (z) = ez

(3) V (z) = 1
z

Try it out!

Exercise 3.17. Verify that the following vector field is irrotational and incom-
pressible and then find the corresponding analytic function.

V (z) = (x2 − y2 − 2x) + i (−2xy + 2y).

Try it out!

The third example in exercise (3.16) deserves some additional comments. The
function V (z) = 1/z is not defined at z = 0, but is analytic at every point in any
neighborhood of z = 0. Such a point is called a singular point or a singularity of
the function. The corresponding Polya vector field V (z) is also undefined at z = 0.
However, graphing the vector field reveals that the field lines emanate radially from
the origin; see figure (3.7) We call such a point a source. This leads to the following
definition.

Figure 3.7. Polya vector field of the analytic function f(z) = 1
z

Definition 3.18. Let V (z) be an analytic function except at z = 0. If V (z) has a
pole of order 1 at z = 0 then zero is either a source or sink of the corresponding Polya
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field V (z). The sign of the coefficient of the z−1-term of the Laurent expansion of V (z)
about z = 0 determines whether the point is a source or a sink.

Sources and sinks have physical interpretations in terms of some quantity being
created or destroyed. In the case of flow problems we interpret a source as a location
where fluid is pumped into the region, whereas a sink acts like a drain, removing fluid
from the region. In the case of an electric field, sources and sinks correspond to positive
and negative charges respectively. For gravitational fields, point masses correspond to
sinks of various strengths (depending on the mass). Allowing vector fields to have
sources and sinks greatly extends the examples to which we may apply our methods.

Exercise 3.19. let V (z) = 1/z. Show that the Polya field V (z) corresponds to the
familiar inverse square law from physics. That is show that the vector field emanates
radially from the origin and that the strength of the field is inversely proportional to
the square of the distance from the origin. Try it out!

If we desire to have a vector field with a source at some point z = z1 rather
than z = 0 we only need to translate the corresponding analytic function to obtain
V (z) = 1/(z−z1). A sink is obtained by changing the sign of the function. The relative
strength of a source or sink is changed by multiplying V (z) by a real scalar. Finally, to
account for more than one source or sink we use the Principle of Superposition. This
principle states that if several components act to generate a vector field, then the field
is obtained as the sum of the fields generated from each component separately. This
is nothing more than the linearity of vector addition, but the consequences are far-
reaching: complicated systems may be analyzed by studying the simpler components
from which they are generated. For example, figure (3.8) shows the field generated by
a sources at z = 0 and z = 1 and sink of twice the strength of either source located at
z = 1 + 2i. The analytic function corresponding to this field is given by

(28) V (z) =
1

z
+

1

z − 1
− 2

z − (1 + 2i)
.

From a qualitative standpoint only the relative strengths of any sources or sinks
matters in the analysis of the situation. Nevertheless, we compute the actual strength
of a source or sink for completeness. We define the strength of a source to be the flux
of the vector field over any simple closed loop C that encloses the source, but no other
singularities of the function.

Definition 3.20. Let V (z) = P (x y) − i Q(x, y) be an irrotational and incom-
pressible vector field with a source at z = z0. The strength of the source is given by
the line integral

(29)

∫
C

P dy −Qdx,

where C is a loop traversed in a counter clockwise direction containing z0 and no other
singularities of the field.
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Figure 3.8. Vector field with two point sources and one sink. Integral
curves are shown for clarity rather than arrows.

Equation (29) is the familiar formula for computing the flux of a vector field.
The strength of the source can be determined directly from the complex integral∫

C
V (z) dz as shown in the following important exercise.

Exercise 3.21. Let V (z) = u(x, y) + i v(x, y) be a vector field Let C be a sim-
ple loop not passing through any singular points of the field. Expand the integral∫
C
V (z) dz in real and imaginary parts. (Hint: let dz = dx+ i dy.) Show that∫

C

V (z) dz =

∫
C

u dx+ v dy + i

∫
C

u dy − v dx.

This computation shows that the flux of V (z) outward across C is obtained from the

imaginary part of the integral
∫
C
V (z) dz. Note as a consequence that the circulation

of V (z) is given by the real part of the integral. Try it out!

The above exercise gives a useful characterization and interpretation of complex
integration in terms of the familiar concepts of work and flux. An immediate conse-
quence is that if V (z) is irrotational and incompressible both inside and on C, then
both the work along C and the flux across C must both be zero. This implies that
the function V (z) is analytic (as was already established). An exceptional discussion
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of Polya vector fields and their relationship to complex integration can be found in
Needham [2].

Definition 3.22. Let V (z) be analytic everywhere except for a finite number of

simple poles located at zi, i = 1, 2, . . . , n. The strength of the source or sink of V (z)
located at zk is given by the imaginary part of

∫
C
V (z) dz, where C is a simple closed

loop traversed in the counter clockwise direction such that zk is contained in the interior
of C and none of the other zi are inside C.

Let C be a simple closed curve containing zk, but no other zi for i 6= k. The
function V (z) can be represented in the form

g(z)

z − zk
,

where g(z) is analytic inside and on C. By Cauchy’s Integral Formula,
∫
C
V (z) dz =

2πig(zk).

Exercise 3.23. In constructing vector fields with sources or sinks, the most typical
case is where V (z) has the form

V (z) =
n∑
j=1

aj
z − zj

,

where aj ∈ R. Show that for the corresponding Polya field that the strength of the
source or sink located at z = zk is simply 2πak. Try it out!

Exercise 3.24. Let a ∈ R. Show that the vector field V (z) = a/(z̄−z0) has a source
of strength 2πa at z = z0 by directly computing the imaginary part of

∫
C
V (z) dz, where

C is a circle centered at z0. Try it out!

Exercise 3.25. Consider the Polya field of the function

V (z) =
sin z

z2
.

This vector field has a simple pole at the origin. What is the strength of the source?
Try it out!

3.4. Complex Potential Functions

At this point, we have established a one-to-one correspondence via complex con-
jugation between irrotational, incompressible vector fields in the plane with a finite
collections of point sources and sinks and complex functions which are analytic except
at finitely many points where they have poles of order one.

Having established this correspondence we now proceed to construct the complex
potential function of the underlying vector field. Let V (z) be analytic so that V (z)

is irrotational and incompressible, Hence V (z) has a real potential function φ that is
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harmonic. Thus, by theorem (3.10) we know there exists another harmonic function
ψ such that the complex function Ω(z) = φ(x, y) + i ψ(x, y) is analytic. This analytic

function is called the complex potential function of V (z). The function Ω tells us a
great deal about the underlying vector field.

Definition 3.26. Given an irrotational, incompressible vector field, V (z), the

complex potential function of V (z) is the analytic function Ω(z) = φ(x, y) + i ψ(x, y),

where φ is the real potential function of V (z) and ψ is a harmonic conjugate of φ.

As we already know, the level curves of φ (the real potential function) are orthogonal

to the direction of V (z). Thus these curves form the equipotential lines of the field.
In the case of a velocity field of an ideal fluid, these curves represent points where
the velocity is constant. Whereas in the case of an electric field, the level curves of φ
represent curves of constant electrostatic potential. So, what do the level curves of ψ
represent? The answer is found in the following standard result from complex variables
(see chapter 0). We restate the result here.

Theorem 3.27. Let Ω(z) = φ(x, y)+i ψ(x, y) be analytic at z0 = x0 +i y0 and sup-
pose that Ω′(z0) 6= 0. Then the tangents to the level curves of φ and ψ are orthogonal
at the point (x0, y0).

Theorem (3.27) implies that the level curves of ψ are parallel to the underlying

vector field V (z). Thus, these level curves are the integral curves of the field. They
are, in fact, exactly the curves that were sketched by the FlowTool applet in the opening
example to this chapter. The function ψ is often referred to as the stream function in
the case of a flow problem. The level curves of ψ are called the stream lines.

The vector field can be obtained from the complex potential function according to
the following exercise.

Exercise 3.28. Let V (z) be an irrotational and incompressible vector field with
analytic complex potential function Ω(z). Show that Ω′(z) = V (z). (Hint: Write Ω(z)
in terms of its real and imaginary parts and differentiate using the Cauchy-Riemann
equations.) Try it out!

An equivalent statement to the preceding exercise is that

(30) Ω(z) =

∫
V (z) dz

This formulation is useful in the following exercise:

Exercise 3.29. Let V (z) = 3z̄2−4z̄ be an irrotational, incompressible vector field.

(1) Determine the complex potential function using equation (30).
(2) Find the real and imaginary parts of the complex potential function to easily

find the real potential function and the stream function.

Try it out!
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We end this section with an exercise that illustrates a mapping property of the
complex potential function.

Exercise 3.30. Let Ω be the complex potential for an irrotational, incompressible
vector field. Show that when viewed as a mapping of the z-plane to the w-plane, Ω
maps equipotential curves to horizontal lines and flow lines to vertical lines. Try it
out!

3.5. Uniform Flows in the Plane and other Regions

We now begin the process of building up examples that allow us to solve a wide
variety of problems in different regions of the plane. We start by considering very
simple flows in the entire plane. Consider the function Ω(z) = z. Thinking of Ω as a
complex potential function, the natural question is to determine the underlying vector
field. The following exercise asks you to determine this field.

Exercise 3.31. Show that Ω(z) = z is the complex potential function for a uni-
form flow to the right. Be sure to explicitly compute the vector field V (z). See
exercise (3.28). Also show directly that the level curves of the imaginary part of Ω are
stream lines for the flow. Try it out!

Exercise 3.32. How does the answer to exercise (3.31) change if the complex
potential function is Ω(z) = (2 + 3i)z? Show that the stream lines are given by the
family of linear equations 3x+ 2y = c. See figure (3.9). Try it out!

Our goal is to solve flow problems in various regions such as sectors, strips, and
disks. However, to this point we have only studied flows in the entire complex plane.
The connection lies in the theory of conformal mappings. The subject of conformal
mappings is central to any course in complex analysis. In brief, a conformal mapping is
a complex function mapping some region in the z-plane to some region in the w-plane
in such a way that angles and orientation are preserved. A key result is that an analytic
function is conformal at all points where its derivative does not equal zero. The critical
property of conformal mappings for our development is the following theorem:

Theorem 3.33. Let Ω(w) be analytic on a domain D′ ∈ C, and let f : D → D′

be conformal for some domain D ∈ C. Then the composition Ω̃(z) = (Ω ◦ f)(z) is
analytic on the domain D.

For a proof see Zill and Shanahan [3].
The significance of theorem (3.33)is that it allows a given problem to be translated

to a simpler domain, solved, and then translated back to the original domain. Unfor-
tunately, it usually impossible to conformally map a given region to the entire complex
plane. Instead, we make use of a deep and powerful theorem from complex analysis.

Theorem 3.34 (Riemann Mapping Theorem). Every simply connected region in
the complex plane, with the exception of the entire plane, can be conformally mapped
to the upper half plane.

209



Figure 3.9. Uniform Flow with complex potential Ω(z) = (2 + 3i)z

The Riemann Mapping Theorem gives no indication of how to find the needed
conformal mapping, just that one exists. Nevertheless, there are extensive tables of
conformal mappings that give specific instances of the needed mappings for a large
collection regions. A good table of conformal mappings can be found in [3]. Despite
being only an existence result, Theorem (3.34) indicates that it is valuable to know
how to solve problems on the upper half plane H = {z | Im z > 0} in C. Indeed, we
will translate any given problem to an equivalent problem in H in order to solve it.

Suppose an ideal fluid is flowing from left to right in H. The real axis in this case
acts as a boundary for the flow. That is the real axis acts as a streamline for the flow.
It is clear that a constant vector field such as V (z) = 1 is such a flow. It is easy to
see the complex potential of this field is Ω(z) = z. Thus, the identity function may
be regarded as the complex potential for a uniform flow to the right in H. Our goal is
to use this fact, combined with the theory of conformal mappings to find the complex
potential for flows in other regions and in regions that have sources and sinks.

Our first example deals with a uniform flow in a quadrant, often called flow around
a corner.

Example 3.35. Imagine if a vertical barrier were inserted along the imaginary
axis into the uniform flow in H described above. The result is likely to look like
the flow shown in figure (3.10). The goal is to find the complex potential function
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for this flow. The key is theorem (3.33). We seek a conformal mapping that maps
the region shown in figure (3.10) to H with the property that the boundaries of the
region are mapped to the real axis. This last part is important because the boundaries
of the region are always streamlines for the flow (that is the flow is parallel to the
boundaries and there is no friction). If we let h(z) = −z2 then this function will
map the 2nd quadrant to H. Observe that the negative real axis is mapped to the
negative real axis and the imaginary axis is mapped to the positive real axis. We know
that the complex potential for the uniform flow in H is given by Ω(z) = z, so we set

Ω̃(z) = h(Ω(z)) = h(z) = −z2. Note that Ω̃(z) = −x2 + y2 − 2xyi = −z2 and that the

underlying vector field is Ω̃′(z) = −2z̄. Plotting the vector field gives figure (3.10). The

streamlines are given by the level curves of the imaginary part of Ω̃, namely −2xy = c
for different values of the constant c.

Figure 3.10. Uniform Flow around a Corner

Exercise 3.36. Let R be the region given in polar coordinates by

R = {(r, θ) | r ≥ 0 and 0 ≤ θ ≤ π

4
}.

Find the complex potential function for an irrotational, incompressible flow in R. Try
it out!

The discussion above along with exercise (3.36) demonstrates the technique of
using conformal mappings to solve uniform flow problems. Essentially any conformal
mapping from a region D to H is the complex potential for the velocity field of an ideal
fluid flowing in D.
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Another example showing the power of conformal mappings is flow around a cylin-
der.

Example 3.37. Consider the function h(z) = z + 1/z. This function is a conformal
mapping from H minus the upper half of the unit disk onto H. More precisely, h maps
{z | |z| > 1 and Im z ≥ 0} onto H. The streamlines are shown in figure (3.11) and are
given explicitly by the family of curves

y − y

x2 + y2
= c.

Figure 3.11. Streamlines around a Cylinder

3.6. Sources and Sinks

Having seen how to solve for uniform flows in various regions, we now turn our
attention to regions that have sources or sinks at various locations on the boundary of
the region. Recall the example of the channel from the introduction. Before tackling
problems involving channels or other regions, we will first see how to solve the problem
in H. Here we will allow any number of sources or sinks of various strength along the
real axis.

Let a ∈ R. We have already seen that V (z) = 1/(z̄ − a) is an irrotational, incom-
pressible vector field with a source at z = a of strength 2π. However, it is important
to note that we are only interested in the part of V (z) that lies in H. Since this is
exactly half of the field, it makes sense to define the effective strength of the source
on the boundary to be half of the strength. In this case, the effective strength of the
source is π. As we have already mentioned, only the relative strengths of the sources or
sinks matter with regard to the qualitative behavior of the flow. However, if we wish
to balance a source on the boundary with a sink in the interior of the region, then the
notion of effective strength comes into play.

Before proceeding, it is important to revisit the idea of a source in vector field.
The following exploration shows how physical principles lead to our complex function
representation of a source or sink.
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Exploration 3.38. Suppose that we have an irrotational and incompressible vec-
tor field with a source of strength S at z = 0. We wish to determine a formula for
the field. Let ~F (x, y) denote the vector field at all points other than the origin. It is

clear that the direction of ~F is always directly away from the origin, so the only thing
to determine is the magnitude of ~F at each fixed distance from the origin. Since ~F
is incompressible, the amount of fluid crossing into any closed region must equal the
amount leaving the region. We apply this principle to circles centered at the origin. We
interpret the source having strength S to mean that there are S units of fluid entering
the region per unit time. Now consider the circle x2 + y2 = R2. There must be S units
of fluid crossing this circle per unit time. On the other hand, the amount crossing the
circle must be equal to the magnitude of the vector field multiplied by the length of
the circle. Setting these two quantities equal to each other gives

(31) S = |~F (x, y)| · 2πR.
Solve this equation for the magnitude of the field and combine the result with the

fact that the direction is radial to find an explicit formula for the field.
Now show that the complex representation of the vector field is given by V (z) =

S/2πz̄. Hint: 1/z̄ = z/|z|2.

Immediate consequences of exploration (3.38) are the following results that we have
already established:

(1) If the source is located at z = a instead of z = 0, then the complex represen-

tation of the vector field is given by V (z) = 1/(z̄ − ā).

(2) If a sink is desired at z = a, then the function is given by V (z) = −1/(z̄ − ā)
(3) The strength of a source or sink is changed simply by multiplying V (z) by a

real number.

Exercise 3.39. Find the complex representation of the irrotational, incompressible
vector field in H if there is a source of effective strength π at z = 3 and a sink of effective
strength 2π at z = −2. Hint: The vector field at any point is the sum of the vector
fields determined from each individual source or sink. Use the FlowTool applet to view
the solution. Try it out!

Recall that if V (z) = 1/(z̄−ā), then the complex potential function can be obtained
from V (z) by using equation (30):

(32) Ω(z) =

∫
V (z) dz = ln(z − a).

Thus, we see that the complex logarithm is involved whenever there are sources and
sinks along the boundary. It is important to remember that the complex logarithm
extends the real logarithm function. Observe that Ω(z) is analytic for Im z > 0, but it
is not analytic in any domain containing z = a.
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We recall that

ln(z − a) = ln |z − a|+ i arg(z − a).

Since arg(z) = arctan(Im z/Re z), the stream lines are given by the family of equations

arctan

(
y

x− a

)
= c.

This in turn is easily manipulated into the family of rays emanating from z = a given
by y = (tan c)(x− a). Observe that the values c = 0 and c = π correspond to the two
stream lines that run along the boundary of H in the positive and negative directions
from the source at z = a.

The proceeding development allows us to write down the complex potential for
an irrotational, incompressible vector field with any combination of sources and sinks
along the boundary. We state the complete result in the following theorem.

Theorem 3.40. Let V (z) be an irrotational , incompressible vector field defined in
H. Assume there are sources located along the boundary of H at z = ai, i = 1, . . . , n,
ai ∈ R, with corresponding effective strengths, Siπ, i = 1, . . . , n (note, if Sj < 0, then

aj is a sink). Then the complex potential of V (z) is given by

Ω(z) =
n∑
i=1

Si ln(z − ai).

The following exercise asks you to experiment with the FlowTool Applet to develop
some intuition regarding flows in H. Feel free to expand beyond the suggestions in the
exercise and to experiment with a variety of situations. In each case, the result should
make physical sense.

Exercise 3.41. Use the FlowTool applet to view the flow in H for the following
situations:

(1) A source of strength 2π at z = −1 and a sink of strength 2π at z = 1.
(2) A source of strength 2π at z = −1 and a source of strength 2π at z = 1.
(3) A source of strength 4π at z = −1 and a sink of strength 2π at z = 1.
(4) Sources of strength 2π at z = −3 and z = 0 and a sink of strength 4π at

z = 2. Try it out!

You should observe in exercise (3.41) that in some cases all the fluid emanating
from the sources is taken in by the sinks, but in other cases some of the fluid either
escapes to infinity or seems to emanate from infinity. If we think of infinity as a point
in H, then we are led to the notion that there must be a sink or source (or both) at
infinity.
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In order to further examine the behavior at infinity, we revisit a flow in the entire
plane with a finite collection of sources or sinks. Specifically, consider the vector field

V (z) =
n∑
i=1

Si
2π

1

z̄ − z̄i
.

Let C be a simple closed contour that encloses all the singularities of V (z) and
consider

∫
C
V (z) dz. By the residue theorem,

Im

∫
C

V (z) dz =
n∑
i=1

Si,

which gives the total flux across C. Now,
∫
C
V (z) dz can also be viewed as a line

integral “around infinity” traversed in the clockwise direction. When viewed in this
way, the value of the integral is the opposite sign of the total flux outward across C.
For example, if V (z) has a source of strength 3 and a sink of strength 1 at points in
the plane, then there must a sink of strength 2 at infinity. Observe that if the net flux
in the finite plane is zero, then the sum of the sinks and sources at infinity must be
zero as well. The idea that infinity can be both a source and a sink will be explored
further as we progress through the chapter. In particular, section 3.7 investigates flow
in an infinite channel, where sources and sinks at infinity play a critical role.

3.7. Flow in a Channel

Here we return to the example of a uniform flow in an infinitely long channel
described in the introduction. However, before dealing with any sources or sinks along
the boundary, we first investigate the case of uniform flow to the right in the channel.
Assume the channel is oriented with one edge along the real axis and the other edge
along the line Im z = π. Since the edges of the channel are horizontal, the flow is simply
the restriction of the uniform flow to the right in H restricted to the channel. Hence
the complex potential is Ω(z) = z.

On the other hand, the function f(z) = ez is a conformal mapping of the strip to H
such that boundary edges of the strip are mapped to the real axis. Hence, proceeding
as in the case of the quadrant (flow around a corner), and using theorem (3.33), we see

that Ω̃(z) = f(Ω(z)) = ez should be the complex potential function for the uniform

flow in the strip. However, note that Im Ω̃(z) = ex ∗ sin y. Plotting the level curves
of this function gives the streamlines shown in figure (3.12). The streamlines should
simply go from left to right parallel to the edges of the strip. What went wrong?

The incorrect flow occurred from a failure to account for the behavior of infinity
under the conformal mapping. Indeed, we may think of the flow in the channel as
having a source at the “left end” of the strip and a sink of equal strength at the “right
end” of the strip. Now observe that points in the strip with very large negative real
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Figure 3.12. Incorrect uniform flow in a channel

parts are mapped near zero. In fact, for all z with 0 ≤ y ≤ π, we have

lim
x→−∞

ex+i y = 0.

Thus, under the conformal mapping ez, we expect to see a source at zero in H. On the
other hand, as x → ∞, the values of ez also approach ∞ and the sink is mapped to
infinity in H. This means that our complex potential in H has a source at zero. The
complex potential for this flow in H is Ω(z) = ln(z). Thus, the complex potential for

the uniform flow in the strip is given by theorem (3.33) as Ω̃(z) = Ω(ez) = ln(ez) = z
as expected.

With an understanding of how sources and sinks at infinity must be accounted for,
it is easy to incorporate sources and sinks along the boundary. The following exercise
asks you to find the complex potential for various flows in a channel. You should
note in each case that the sum of all sources and sinks must be zero. Use the FlowTool
applet to see the streamlines for each different flow and to note the behavior at infinity.

Exercise 3.42. Consider an infinitely long channel of width π having its lower
edge along the real axis. Suppose there is a source of strength 6π at z = 0 and a
sink of strength 6π at −3 + 4πi. Find the complex potential for this flow. Use the
FlowTool applet to visualize the streamlines of the flow. Does any of the flow “escape”
to infinity? Why or why not? Try it out!

Exercise 3.43. Consider a similar problem to exercise (3.42), but now suppose
that the sink at −3 + 4πi has strength 2π. Carefully describe the behavior at infinity.
Find the complex potential and use the FlowTool applet to plot the streamlines. Does
the result make sense from a physical perspective? Try it out!

3.8. Flows in Other Regions

The methods used to solve flow problems in a strip apply equally well to any other
region with sources or sinks along the boundary. All that is required is a conformal
mapping from the region in question to the upper half-plane H, such that the boundary
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of the region is mapped to the real axis. It is then a matter of determining where the
sources and sinks are mapped and accounting for any behavior at infinity. It is then
straightforward to find the complex potential for the transformed problem in H and
then compose the result with the conformal mapping to obtain the solution.

Example 3.44. As an example of these techniques, consider the region R = H −
{z | |z| < 1}. Imagine a uniform flow in R going left to right, along with a source
of strength 2π at z = −1 and a sink of strength 2π at z = 1. We find the complex
potential for this flow in R as follows:

(1) The mapping f(z) = z + 1/z maps R conformally to H.
(2) Observe that f(−1) = −2 and f(1) = 2.
(3) The complex potential in H is Ω(z) = ln(z + 2)− ln(z − 2).

(4) Composing Ω with f gives the result: Ω̃(z) = ln(z+1/z+2)− ln(z+1/z−2).

(5) The flow lines are given by the level curves of Im Ω̃.

The flow lines are shown in figure (3.13).

Figure 3.13. Flow around cylinder with sources and sinks

Apply the methods outlined in the example above in the following exercise.

Exercise 3.45. Let R = {z | 0 ≤ arg(z) ≤ π/3 }. Assume there is a source of
strength 4π at z = 0 and a sink of strength 2π at z = 2. Find complex potential for
the flow in R. The stream lines are shown in figure (3.14)

It should be noted that even with a sophisticated graphing program it may not be
easy to obtain a sketch of the flow lines. Many of the plots in this chapter have been
generated using Mathematica. The Mathematica code used to generate figure (3.14) is
shown below.

>F[z_]=4*Log[z^3]-2*Log[z^3-8]

>a=ContourPlot[If[y<Sqrt[3]*x, Im[F[x+I*y]]], {x, 0, 4}, {y, 0, 4},

ContourShading->False, Contours->30]

>b=Plot[Sqrt[3]*x, {x, 0, 4}]

>Show[a, b]
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Figure 3.14. Stream lines for exercise (3.45)

In the Mathematica code, observe the use of the “If” statement to only plot stream
lines in the region of interest. The second plot, labeled “b” is technically not needed,
but it makes the boundary of the region much clearer in the final plot.

A few more comments regarding the use of Mathematica are in order. In order to
make a contour plot of the real or imaginary part of a complex function, it is necessary
to replace z by x+ i y in the plot command. In addition, if the various branch cuts for
complex logarithm functions may result in a plot with some breaks in the flow lines that
does not look quite right. Sometimes it is possible to fix this problem by combining
all the logarithm terms. For example in the code fragment above, the function could
have been defined as

F[z_]=Log[z^12/(z^3-8)^2]

The FlowTool applet provides the first quadrant as one of the domains available
for study. In the absence of any sources or sinks on the boundary, the uniform flow in
this region is simply the “flow around a corner” that we have already mentioned. By
including sources or sinks some some very interesting flows can be seen.

Exploration 3.46. Develop a general procedure for finding the complex potential
for a flow in the first quadrant with various sources or sinks on the boundary. Use your
method to find the complex potentials for the scenarios given below. In each case, use
the FlowTool applet to investigate the flow.

(1) Sources of equal strength at z = 1 and z = i.
(2) A source and a sink of equal strengths at z = 1 and z = i.
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(3) Sources of equal strength at z = 1 and z = i, and a sink of double strength at
the origin.

3.9. Flows inside the Disk

The methods developed thus far can be applied equally well to fluid flow inside a
disk. The following set of exercises explores various scenarios. Obtaining the graphical
output for these flows can be challenging. We present the Mathematica code to generate
one of the plots.

Exercise 3.47. Let D = {Z ∈ C | |z| < 1}. Show that

f(z) = i
1− z
1 + z

is a conformal mapping from the unit disk D to the upper half plane H. Determine the
images of the points ±1 and ±i in H. Use the conformal mapping to find a uniform
flow inside D. The flow lines are shown in figure (3.15). Explain why there appears to
be both a source and a sink at z = −1. Try it out!

Figure 3.15. Uniform flow in a disk. Observe the behavior at z = −1.

The Mathematica code for figure (3.15) is given below.
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>g[z_] = I*(1 - z)/(1 + z)

>H[z_] = Log[z] - Log[z - (3*I)]

>G[z_] = g[H[z]] // Simplify

>M[x_, y_] = If[x^2 + y^2 <= 1, Im[g[x + I y]]]

>a = ContourPlot[M[x, y], {x, -1.2, 1.2}, {y, -1.2, 1.2},

ContourShading -> False, Contours -> 30]

>b = ParametricPlot[{Cos[t], Sin[t]}, {t, 0, 2*Pi},

PlotStyle -> Thickness[.01]]

>Show[a, b]

Exploration 3.48. (1) Find the velocity field of the ideal fluid flow inside
D if there is a source located at at z = 1. Note that the total strength of
the sources in a problem must be balanced by a sink or sinks of equivalent
strength. Where is the sink in this problem? Can you control the location of
the sink?

(2) Find the complex potential for the flow in D if there is a sink of strength 2π
at z = i.

(3) Consider the case where there are equal strength sources on the boundary of
D located at z = 1 and z = −1. Consider the location of the resulting sink.
Why does this occur?

3.10. Interval Sources and Sinks

In this section we extend the some of the methods already developed. Instead of
looking at point sources or sinks, we consider the case of an entire interval of sources
or sinks. This will allow us to model different phenomenon such as flow through a levy
or the electric field generated by a line of charges. We present the material as a series
of exercises designed to lead to the key results. The reader is strongly encouraged to
complete these exercises rather than simply using the results.

We begin by examining the flow lines generated by a uniformly distributed source
of total strength 2π located along the interval a ≤ x ≤ b.

We expect to see a vector field as in figure (3.16).
The next exercises shows that the complex potential for an interval source can be

derived as a Riemann integral of a collection of point sources as the number of points
approaches infinity.

Exercise 3.49. Let a = x0, x1, . . . , xn = b be n + 1 equally spaced points in the
interval [a, b]. Assume there is a source of strength 2π/(n + 1) at each xj. Find the
complex potential Ω(z) for the flow in H for this collection of point sources. Try it
out!

Now the idea at this point is to let n→∞ and to recognize the resulting limit as
a definite integral.
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Figure 3.16. Vector field with a uniform interval source

Exercise 3.50. Let ∆xj = xj+1 − xj, j = 0, 1, . . . , n − 1. Express the result of
the previous exercise as a Riemann sum on the interval [a, b]. Show the limit of the
Riemann sum leads to the definite integral

(33)
1

b− a

∫ b

a

ln(z − x) dx

Try it out!

Exercise 3.51. Use integration by parts to show the complex potential in H can
be evaluated to the expression:

(34) Ωb
a(z) =

b− z
b− a

ln(z − b) +
z − a
b− a

ln(z − a)− 1

Try it out!

Exercise 3.52. Use equation (34) to find the complex potential in H for a flow
that has a uniform source of strength 2π along the interval [0, 3] and a uniform sink
of strength 2π along the interval [−2, −1]. The graph appears in figure (3.17).Try it
out!

Next we seek to extend the notion of interval sources or sinks to the boundaries
of other regions. Some care must be taken to be sure the interval sources or sinks
are still uniform as we now show. Consider the case of the first quadrant R in C
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Figure 3.17. Flow lines with interval source/sink

with interval sources of equal strength located along the intervals [1, 3] and [i, 3i]. We
proceed as in previous sections. The conformal mapping f(z) = z2 maps R to H.
Next we determine the behavior of the key intervals under the conformal mapping.
The interval [1, 3] is mapped to [1, 9] and [i, 3i] is mapped to [−9, −1]. Now, we
know how to find the complex potential in H from equation (34). Indeed we see that
Ω(z) = Ω9

1(z) − Ω−1
−9(z). We then find the complex potential in R by composition:

Ω̃(z) = Ω(z2). Unfortunately this result is not quite correct. The problem is that that
sources should be uniformly distributed across the intervals in R. When we apply the
conformal mapping the resulting intervals in H are no longer uniformly distributed.
The key to fixing this problem is described next.

To understand what is happening, focus on the interval [1, 3] under the mapping
f(z) = z2. Clearly the interval is mapped to [1, 9]. Notice that the first half [1, 2] is
mapped to [1, 4] and the second half [2, 3] is mapped to [4, 9].] Hence the density of
points is less in the second half of the interval. Thus, when solving for the complex
potential in H we cannot treat the intervals as though the source is uniformly dis-
tributed. Recall that equation (34) was derived under the assumption that the source
was uniformly distributed along the interval. We must instead use equation (33) and
take into account the non-uniform distribution. Thus instead of computing the integral∫ 9

1
ln(z − x) dx we compute

∫ 3

1
ln(z − x2) dx.

Exercise 3.53. Find the complex potential for an ideal flow in the region

R = {reiθ | r ≥ 0, 0 ≤ θ ≤ π

3
}

with a uniform source of strength 2π located along the interval [2, 4]. Try it out!

Exercise 3.54. Find the complex potential for an ideal flow in the infinite channel

R = {z | 0 ≤ Im z ≤ 2}
with a uniform source of strength 2π located on the boundary along the interval [1 +
2i, 4 + 21]. Try it out!
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A natural extension of the previous material on interval sources is to consider
intervals with a non-uniform density. This small project was inspired by Potter [4].

Small Project 3.55. Consider a function λ : [a, b]→ R with the property that∫ b

a

λ(x) dx = S,

where S is the total strength of the generalized source on [a, b]. We think of λ(x) as
giving the source density at x ∈ [a, b]. The goal is to find the complex potential for
this interval source with variable density. Observe that if λ(x) = S/(b − a), then we
obtain the case of a uniformly distributed source along the interval.

Rather then attempting to directly find the complex potential, it is better to first
find the underlying vector field, V (z). Begin by subdividing the interval into n equal

subintervals, where the nth subinterval is [xi, xi+1]. Now, consider the vector field Vi(z)
having a source at xi with strength

Si =
b− a
n

λ(xi).

Show by summing the individual vector fields and taking a limit as n → ∞ that the
vector field is given by

(35) V (z) =

∫ b

a

λ(x)

z̄ − x
dx.

From equation (35) it follows that the complex potential is

(36) Ω(z) =

∫ (∫ b

a

λ(x)

z − x
dx

)
dz

Consider the specific example of λ(x) = x on the interval [−1, 2]. Observe that
the source density takes on both positive and negative values on the interval, with the
positive density increasing towards the right end of the interval. The strength of this
variable density source is ∫ 2

−1

x dx =
3

2
.

Compute V (z) by using the substitution w = z − x in the integral. Use the result to
find the complex potential and plot the flow lines. The result is shown in figure (3.18).

Note that if λ is a polynomial, then a formula for V (z) can be found explicitly
using the same substitution as above. A good exercise is to find and plot the complex
potential for the case where λ(x) = x2 on [0, 1].
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Figure 3.18. Flow lines for variable density interval source

3.11. Steady State Temperature Problems

A common problem in applied mathematics is to find the steady state temperature
in a region of the plane given a fixed temperature distribution along the boundary of
the region. In the case of the upper half plane H, the problem takes the following form:
Given a piecewise continuous, bounded function f defined on the real axis (i.e., the
temperature), find a function T in H such that ∆T = 0 and T “agrees” with f along
the boundary. Note that solution involves finding a harmonic function in H. Every
time we construct a complex potential function in H, both the real and imaginary parts
are harmonic. To see if our methods are useful in this setting, we need to discuss how
to manipulate the boundary values in an example.

We begin with the simple case of the complex potential for an ideal flow in H with
a single point source of strength 2π at z = 0. We know that the complex potential is
given by Ω(z) = ln(z). Writing this in terms of its real and imaginary parts gives

(37) Ω(z) = ln |z|+ i Arg(z).

Now observe the values of Arg(z) along the real axis. When x > 0, we have
Arg(x) = 0, and when x < 0 we have Arg(z) = π. The key observation is that the
argument function is piecewise constant along the real axis.
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Consider the steady state temperature problem where the distribution along the
boundary is given by

(38) f(x) =

{
0 if x < 0

100 if x ≥ 0.

Starting from equation (37), we see that multiplying Im Ω(z) by 100/π gives a
harmonic function in H satisfying the boundary condition

(39)
100

π
Arg(x) =

{
100 if x < 0

0 if x ≥ 0.

This is almost correct. To get the boundary values switched around to the correct
intervals we need some properties of the argument function. The following exercise
leads to the correct result.

Exercise 3.56. Use the fact that Arg(z) = arctan(y/x) to show that reflecting
Arg(z) across the y-axis give the function Arg(−z̄). Then show that

Arg(−z̄) = −Arg(−z).

Try it out!

Using the results of exercise (3.56), we see that

g(x, y) = −100

π
Arg(−z)

is harmonic and satisfies the correct boundary conditions. The graph of g(x, y) is shown
in figure (3.19). Note that g(x, y) is the imaginary part of the complex potential

Ω(z) = −100

π
ln(−z).

The streamlines correspond to isotherms–curves of constant temperature.
The next few exercises explore slight variations on this problem. We then finish the

chapter by extending to the case where segments of the boundary are not insulated (i.e.,
there are segments that have non-constant temperatures) and see how our methods
involving intervals sources can be applied.

Exercise 3.57. Solve the steady state temperature problem in H where the bound-
ary temperatures are given below. (Hint: This is very similar to the example–simply
start with a slightly different complex potential function.)

(40) f(x) =

{
100 if x < 2

0 if x ≥ 2.

Try it out!
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Figure 3.19. Steady state temperature distribution with piece-wise
constant boundary values

Exercise 3.58. Solve the steady state temperature problem in H where the bound-
ary temperatures are given below. (Hint: Add a constant to the function, but pay
attention to the affect it has on the other boundary value.)

(41) f(x) =

{
100 if x < 2

50 if x ≥ 2.

Try it out!

The types of boundary conditions we have been considering can easily be extended
to more segments. The following exercise leads to the algorithm for solving the general
problem of this type.

Exercise 3.59. Solve the steady state temperature problem in H where the bound-
ary temperatures are given below.

(42) f(x) =


100 if x < −3

50 if −3 < x < 2

25 if x ≥ 2.

Make a contour plot of your solution and observe that the contours represent curves
of constant temperature. Try it out!

The general problem of finding the temperature distribution in the half-plane given
piece-wise constant boundary conditions is a standard application in complex analysis
texts; see ([3]). The problem usually takes the following form; see ([3]):
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Exploration 3.60. Solve:

Txx + Tyy = 0

Subject to:

T (x, 0) =


k0 if −∞ < x < x1

k1 if x1 < x < x2

...
...

kn if xn < x <∞
Using the techniques developed in the exercises, derive the general solution to this
problem.

Next we consider a slightly more general problem where segments of the boundary
are not kept at constant temperature. For example, suppose we have the following
temperature distribution along the boundary:

(43) f(x) =

{
100 if x < 0

0 if x > 1.

Observe that no temperature is specified on the interval (0, 1). If this segment of the
boundary is not insulated then we expect the temperature to change linearly from 100
degrees to 0 degrees (this can be seen by solving the one-dimensional heat flow problem
on the interval [0, 1] with the endpoints held at 100 and 0 degrees respectively).

We now investigate how our earlier techniques can be applied to this type of prob-
lem. Let us attempt to find the steady state temperature distribution in H for the
boundary condition given in equation (43). We begin by writing down the complex
potential for an ideal flow with an interval source uniformly distributed along the
interval [0, 1]. Recall from equation (34) that the complex potential is given by

(44) Ω1
0(z) = (1− z) ln(z − 1) + z ln(z)− 1.

We know that Im Ω1
0(z) must be constant along the intervals x < 0 and x > 1. We

determine these values by choosing a test value from each interval. Thus,

Im Ω1
0(−1) = Im(2 ln(2)− ln(−1)− 1) = π,

and

Im Ω1
0(2) = Im(− ln(1) + 2 ln(2)− 1) = 0.

Hence multiplying our complex potential by 100/π gives the correct temperatures on
the two intervals that are held constant. But, what about the interval (0, 1)? In figure
3.20, we show the graph of Im Ω1

0(x), for −3 < x < 3 and observe the desired linear
behavior on the interval (0, 1).

The graph of the solution on H is shown in figure (3.21). Notice how the surface
representing the temperature matches up with the given boundary values.
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Figure 3.20. Temperature along boundary

Figure 3.21. Solution to heat equation

The following small project asks you to generalize the previous example to a general
problem of the same type.

Small Project 3.61. Find a general formula for the steady-state temperature
distribution T (x, y) in the half-plane with the following boundary data:
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T (x, 0) =


k1 if −∞ < x < x1

k2 if x2 < x < x3

...
...

kn if xn < x <∞
We assume x1 < x2 < . . . < xn and that T (x, 0) is linear on the intervals in between

the xi locations.

3.12. Flows with Source and Sinks not on the Boundary

In this section we extend the ideas of this chapter to a wider array of the appli-
cations. Consider the standard example of the upper half plane H, but with a source
located at z = i, as opposed to being on the boundary. In this case, we expect the flow
to look like an ordinary source near z = i, but since it is constrained to stay in H the
real axis must deflect the flow so that it runs parallel to the boundary. Figure (3.22)
shows the flow lines we should expect.

Figure 3.22. Flow in H with a single source at z = i.

The key idea in obtaining the complex potential that gives figure (3.22) is to balance
the source at z = i with a source of equal strength at z = −i. By the Principle of
Superposition, the vertical components of the underlying vector fields will sum to zero
along the real axis.

This simple idea combined with our earlier work can be used to deal with sources or
sinks in the interior of any region. The following exercise finds the complex potential
for a flow in the first quadrant with a source located at the interior point z = 1 + 2i.
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Exercise 3.62. Find the flow of an ideal fluid in the first quadrant with a single
source located at z = 1 + 2i. Hint: Use the conformal mapping f(z) = z2 to map the
first quadrant to H. Determine the location of source by computing f(1 + 2i). Find
the complex potential in H by balancing the source with another source symmetrically
located across the real axis. Compose the result with f(z) to obtain the complex po-
tential of the flow in the first quadrant. The result gives the flow shown in figure (3.23).
Try it out!

Figure 3.23. Flow in the first quadrant with a single source at z = 1 + 2i

When dealing with sources and sinks both on the boundary and in the interior
the notion of effective strength comes into play. Indeed, a source on the boundary
must have twice the strength as one in the interior in order to have the same effective
strength.

Exercise 3.63. Find the complex potential for a uniform flow in H with a source
at z = 0 and a sink of equal magnitude at z = i. Answer: Ω(z) = ln(z2/(z2 + 1)) The
streamlines are shown in figure (3.24) Try it out!

The techniques developed thus far allow us to combine sources and sinks of various
relative strengths both on the boundary and in the interior of some region. The
following exercise shows that the complex potential for a very complicated flow can be
systematically built up from simpler pieces.

Exercise 3.64. Let R be the infinite strip defined by 0 ≤ Im z ≤ π. Suppose there
is a source of strength 2π at z = 1, a sink of strength 2π at z = 4 and a source of
strength 2π in the middle of the strip at z = πi/2. Construct the complex potential
of the velocity field. The streamlines are shown in figure (3.25). Try it out!
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Figure 3.24. Balancing a source on the boundary with a sink in the interior

Figure 3.25. Streamlines for the flow in exercise (3.64)

3.13. Vector Fields with Other Types of Singularities

Another application arises when we interpret ideal flows as electric field lines gener-
ated by various positive and negative charges. In this context we imagine the plane as
a copper plate with charges at various locations. A dipole is obtained when a positive
and negative charge of equal strength are separated by a small distance. Consider the
case of a source of strength 1 located at z = ε and a sink of strength −1 located at
z = −ε. The Polya vector field for the corresponding electric field is

f(z) =
1

z̄ − ε
− 1

z̄ + ε
.
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Observe that as ε approaches zero, the field vanishes. In order to prevent the field from
vanishing, we need to keep the field strength constant while the distance between the
charges approaches zero.

Exercise 3.65. Consider the Polya vector field

f(z) =
1

2ε

(
1

z̄ − ε
− 1

z̄ + ε

)
.

Compute the limiting field as ε goes to zero and then compute the complex potential
for the field. Hint: Recall that Ω′(z) = f(z). Try it out!

As shown in exercise (3.65), the vector field generated by the dipole is f(z) = 1/z̄2.
Observe the complex potential is given by Ω(z) = −1/z. The electric field lines are
given by the level curves of Im Ω(z) and are shown in figure (3.26).

Exercise 3.66. Show that the electric field lines for the dipole are circles with
their centers along the imaginary axis.

Figure 3.26. Electric field lines for a dipole

Observe the orientation of the two small loops in figure (3.26). The particular
orientation of the dipole depends on the direction from which the source and the sink
approach each other. In this case Polya field was 1/z̄2 and the dipole moment was
1. Other dipole moments are obtained by considering the field d/z̄2, where d is any
complex number. For example if d = 1 + i, then we obtain the dipole field shown in
figure (3.27).
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Figure 3.27. Electric field lines for a dipole with dipole moment equal
to 1 = i.

Exploration 3.67. Investigate the general behavior of the dipole whose field is
given by f(z) = (a+ bi)/z̄2.

It is also possible to consider the problem of multiple charges approaching each
other to obtain multipoles. As an example, consider the complex potential function
Ω(z) = 1/z2. The electric field lines are shown in figure (3.28).

An interesting problem involves looking at sources or sinks and multipoles at the
same location. For example, consider the Polya field V (z) = 1/z̄2 + 1/z̄. The complex
potential function is Ω(z) = −1/z + ln z. As an exercise, you should plot the electric
field lines both near zero and on a larger scale. Note how the dipole dominates the
behavior near zero and the source dominates the behavior far from zero.

We close this chapter with a brief discussion that ties together a loose end: namely
the nature of sources and sinks at infinity. Since we now understand the idea of a
multipole, we are in a position to correctly state the nature of a flow at infinity.

Consider the most basic example of the uniform flow to the right in the entire plane
C. Since fluid appears from the left and disappears to the right it seems reasonable to
say that there is both a source and a sink at infinity. Of course we now recognize this
phenomenon as a dipole.

To study the behavior of a complex function at infinity, it is standard to replace
z with 1/z and study the behavior of the resulting function at z = 0. For the case
of the uniform flow, the complex potential is Ω(z) = z. The behavior at infinity is
determined by examining Ω(1/z) = 1/z at z = 0. Thus we have a potential function
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Figure 3.28. Electric field lines for a multipole.

of 1/z. Differentiating and taking the conjugate to obtain the underlying vector field,
we get 1/z̄2 which we recognize as a dipole.

More generally, for any vector field where the net sum of the sources and sinks is,
say N , the strength of the source or sink at infinity is −N. If N = 0, then there is a
multipole at infinity.
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CHAPTER 4

Harmonic Univalent Mappings

Michael Dorff (text), Jim Rolf (applets)

4.1. Introduction

Complex-valued analytic functions have many very nice properties that are not
necessarily true for real-valued functions. For example, if you can differentiate the
complex-valued function one time, then you can differentiate it infinitely many times.
In addition, complex-valued analytic functions can always be represented as a Taylor
series, and they are conformal (that is, they preserve angles). Why does an analytic
function have these properties? If f = u + iv is an analytic function, then its real
part, u(x, y) and its imaginary part, v(x, y), satisfy Laplace’s equation and thus are
both harmonic. Also, u and v satisfy the Cauchy-Riemann equations and are therefore
harmonic conjugates of each other. In this chapter we discuss some ideas and problems
related to a collection of univalent (i.e., 1 − 1) complex-valued functions, f = u + iv,
where u and v satisfy Laplace’s equation but not necessarily the Cauchy-Riemann
equations. This collection of functions are known as harmonic univalent functions
or mappings, and contain the collection of analytic univalent functions as a subset.
Analytic univalent functions have been studied since the early 1900’s, and there are
thousands of research papers written on the subject. The study of harmonic univalent
mappings is a fairly recent area of research. So, it is natural to consider the properties
of analytic univalent functions as a starting point for our study of harmonic univalent
mappings. A general theme will be “What properties of analytic univalent functions
are still true for this larger class of harmonic univalent functions?”

Section 4.2 presents some background about the collection of univalent analytic
functions. Section 4.3 introduces the fundamentals of harmonic univalent functions.
The study of harmonic univalent functions from the perspective of univalent complex-
valued analytic functions is a new area of research. Finding examples of such functions
is not easy, but a very useful method of doing so is discussed in Section 4.4. These
three sections should be read first. After that, the remaining sections can be read in
any order and are independent of each other. There are three applets used in this
chapter:
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• ComplexTool is used to plot the image of domains in C under complex-valued
functions.
• ShearTool is used to plot the image of domains in C under a complex-valued

harmonic function that is formed by shearing an analytic function and its
dilatation; the user enters the corresponding analytic function and dilatation
without having to solve explicitly for the harmonic function.
• LinComboTool is used to plot and explore the convex combination of complex-

valued harmonic polygonal maps.

They can be accessed online at
http://www.jimrolf.com/explorationsInComplexVariables/chapter4.html. Each section
contains examples, exercises, and explorations that involve using the applets. You
should do all of the exercises and explorations many of which present functions and
concepts that will be used later in the chapter (there are additional exercises at the
end of the chapter). In the study of harmonic univalent functions, there are many
open problems. Some of these are specifically mentioned. In addition, there are short
projects and long projects that are suitable as research problems for undergraduates
to explore.

The goal of this chapter is not to give a comprehensive or step-by-step approach
to this topic, but rather to get the reader engaged with the general notions, questions,
and techniques of the area – but even more so, to encourage the reader to actively pose
as well as pursue their own questions. To better understand the nature and purpose
of this text, the reader should be sure to read the Introduction before proceeding.
The study of harmonic univalent functions has many interesting problems that can
be investigated by undergraduates through the use of computers and the applets. I
anticipate that some students will explore the ideas in this chapter and that this will
lead them to prove some new results in the field.

4.2. The Family S of Analytic, Normalized, Univalent Functions

We will be discussing mapping problems in complex analysis. This deals with the
properties of a collection of functions that map one domain onto certain other image
domains. Before we get into these properties, we need some background material.

Definition 4.1.

(1) Let G ⊂ C be a simply-connected domain.
(2) Let D = {z : |z| < 1}, the unit disk.
(3) A function f is univalent in G if f is one-to-one in G. That is, if f(z1) = f(z2),

then z1 = z2, ∀z1, z2 ∈ G.

Univalent analytic functions are nice, because they guarantee the existence of an
inverse function that is analytic.

Example 4.2. Suppose we want to prove that f(z) = (1 + z)2 is univalent in D. A
standard argument for that is to let z1, z2 ∈ D and suppose f(z1) = f(z2). This means
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that

f(z1) = f(z2)⇒ (1 + z1)2 = (1 + z2)2

⇒ 1 + 2z1 + z2
1 = 1 + 2z2 + z2

2

⇒ z2
1 − z2

2 + 2(z1 − z2) = 0

⇒ (z1 − z2)(z1 + z2 + 2) = 0.

Since |z1|, |z2| < 1, we know that z1 + z2 + 2 6= 0. Hence, we must have z1 − z2 = 0, or
z1 = z2.

We can graph the image of D under the map f(z) = (1 + z)2 by using the accom-
panying applet ComplexTool. To do so, open ComplexTool (see Figure 4.1).

Figure 4.1. The applet ComplexTool

In the middle section near the top there is a box that has f(z)= before it. In this
box, enter (1 + z) ∧ 2. Below this, there is a window that states No grid. Click on
the down arrow H and choose the option Circular grid; an image of a circular grid
should appear on the left. Next, click on the button Graph which is in the middle
section below the function you entered earlier. The image of the circular grid should
appear on the right. To reduce the size of the image, click on the down arrow H above
the image and chose a different size, such as Re: [-3,3] Im: [-3,3]. Also, you
can move the axes so that the image is centered by positioning the cursor over the
image, clicking on the mouse button, and dragging the image to the left (see Figure
4.2).

Exploration 4.3. From Example 4.2, we know that f(z) = (1 + z)2 is univalent,
while it can be shown that f(z) = (1 + z)4 is not univalent (see Exploration 4.4). Use
ComplexTool to graph the image of D under the analytic function f(z) = (1 + z)2

and then under the analytic function f(z) = (1 + z)4. What aspects of these two
images suggest that a function is univalent or is not univalent? Explore this idea by
plotting the following further functions in ComplexTool and conjecture which of them
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Figure 4.2. The image of the unit disk under the map f(z) = (1 + z)2.

is univalent:

(a) g1(z) = z − z2; (b) g2(z) = z − 1
2
z2;

(c) g3(z) = 2z − z2; (d) g4(z) = z + 3
4
z2;

(e) g5(z) = z
1−z ; (f) g6(z) = z2

1−z ;

(g) g7(z) = z
(1−z)2 .

Try it out!

Exploration 4.4. Prove that f(z) = (1 + z)4 is not univalent in D.
One way to do this is to find two distinct points z1, z2 ∈ D such that f(z1) = f(z2).

You can use ComplexTool to help you find z1 and z2. Plot the image of D under the
map f(z) = (1 + z)4. Check the Sketch box in the top middle section. The Sketch
command allows you to draw a shape in the original domain on the left and see the
image under the function of that shape on the right. For example, draw a line from
along the imaginary axis from 0 to i and then draw a line from along the imaginary
axis from 0 to −i; you should see that the two image curves meet at f(i) = f(−i).
Compute f(i) and f(−i) to prove that this is true. However, this does not prove that
f is not univalent in D since i,−i /∈ D.

Use the Sketch feature of ComplexTool to help you find two points z1, z2 ∈ D such
that f(z1) = f(z2). To delete the shapes you have drawn, use the Clear all button
and then regraph your image. [Hint: using ComplexTool find two distinct lines in the
original domain that get mapped to the line on the real axis from −4 to 0 in the image
domain; parametrize these two lines in such a way that for each t value, the image of
these parametrized lines under f give the same image point.]

Try it out!

In Exploration 4.3, you may have noticed that the image of D under the function
g2(z) = z− 1

2
z2 is similar to the image of D under the function g3(z) = 2z− z2. This is

because g3 = 2g2. We want to avoid such repetitions. To do so, we will normalize all
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functions in the family of analytic, univalent functions. Suppose f1 is univalent and
analytic in G 6= C. The Riemann Mapping Theorem can be stated in the following
form:

Theorem 4.5. (Riemann Mapping Theorem) Let a ∈ G. Then there exists a
unique function f2 : G→ C such that

(1) f2(a) = 0 and f ′2(a) > 0;
(2) f2 is univalent;
(3) f2(G) = D.

Thus f3 = f1 ◦ f−1
2 : D → f1(G) with f3 being univalent and analytic. So when

studying mappings of simply-connected domains, we can simplify matters by letting D
be our domain. Let f3 : D→ C be univalent and analytic. Since f3 is analytic, it has
a power series about the origin:

f3(z) = α0 + α1z + α2z
2 + α3z

3 + · · ·

that is convergent in D. Notice that adding a constant to f3 merely translates the
image domain and does not effect the univalency. Hence

f4(z) = f3(z)− α0 = α1z + α2z
2 + α3z

3 + · · ·

is also univalent and analytic in D. Next, note that α1 6= 0 because f4 being univalent
implies f ′4(z) 6= 0 (for all z ∈ D); but f ′4(0) = α1. So consider

f5(z) =
1

α1

f4(z) = z +
α2

α1

z2 +
α3

α1

z3 + · · · .

Recall that multiplying f4 by 1
α1

merely rotates and/or stretches (or shrinks) the image
domain. Hence f5 is still univalent and analytic in D. These steps have “normalized”
our original function f3.

Definition 4.6. The family of analytic, normalized, univalent functions is denoted
by S (from the German word “schlicht” which means “simple” or “plain”); that is,

S = {f : D→ C | f is analytic and univalent with f(0) = 0, f ′(0) = 1}.

Thus f ∈ S implies f(z) = z + a2z
2 + a3z

3 + · · · .

Exercise 4.7. Show that f(z) = z + a2z
2 is univalent in D⇐⇒ |a2| ≤ 1

2
.

Try it out!

Example 4.8. (Polynomial map)
Consider the function g2(z) = z − 1

2
z2 ∈ S. In Exploration 4.3, you graphed g2(D).

While computer images are helpful, they can be misleading and sometimes inaccurate.
So, it is important for us to be able to determine analytically such images. How can
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we determine g2(D) analytically? Consider the image of the boundary of D.

w = f(eiθ) =eiθ − 1

2
e2iθ

=(cos θ + i sin θ)− 1

2
(cos 2θ + i sin 2θ)

=
(

cos θ − 1

2
cos 2θ

)
+ i
(

sin θ − 1

2
sin 2θ

)
=u+ iv

Thus, f(∂D) is parametrized by

u(θ) = cos θ − 1

2
cos 2θ

v(θ) = sin θ − 1

2
sin 2θ.

What is this image? It is a cardiod or an epicycloid with one cusp (see Figure 4.3).

Definition 4.9. An epicycloid is the path traced out by a point p on a circle of
radius b rolling on the outside of a circle of radius a:

x(θ) =(a+ b) cos θ − b cos

((a
b

+ 1
)
θ

)
y(θ) =(a+ b) sin θ − b sin

((a
b

+ 1
)
θ

)
.

Figure 4.3. The image of the unit disk under the map z − 1
2
z2 .

Exploration 4.10. In Exercise 4.7, you showed that f(z) = z + a2z
2 is univalent

in D ⇐⇒ |a2| ≤ 1
2
. We want to make a conjecture about the generalization of this

result. Use ComplexTool to graph f(z) = z + a3z
3 for various values of a3. What do

you conjecture is the bound on a3 for which f is univalent on D? Do the same for
f(z) = z + a4z

4, f(z) = z + a5z
5, etc. What do you conjecture is the bound on an
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for which f(z) = z + anz
n is univalent on D? What do you conjecture f(D) is when

an = − 1
n
?

Try it out!

Let’s look at determining f(D) analytically for a few important examples that were
included in Exploration 4.3.

Example 4.11. (Right half-plane map)
Consider the function

fr(z) =
z

1− z
∈ S.

Since
1

1− z
=
∞∑
n=0

zn, we can multiply by z to get:

z

1− z
=
∞∑
n=1

zn = z + z2 + z3 = · · · .

Recall that this is the Möbius transformation that maps D onto the right half-plane
whose boundary is the line −1

2
+ ic, where c ∈ R (see Figure 4.4).

Figure 4.4. The image of the unit disk under the analytic right half-
plane map in S.

Example 4.12. (Koebe map)
Next, consider the function

fk(z) =
z

(1− z)2
∈ S.

We can compute the power series for fk by differentiation the series for 1
1−z and

then multiplying by z:

z

(1− z)2
=
∞∑
n=1

nzn = z + 2z2 + 3z3 + · · · .
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Notice, for this function, an = n for all n. We will now show that the image of D under
fk is a slit domain; that is, a domain consisting of the entire complex plane except that
a slit is cut out of it. To determine fk(D), consider the following sequence of maps:

u1(z) =
1 + z

1− z
, u2(z) = u2

1(z), u3(z) =
1

4
[u2(z)− 1].

Now,

u3 ◦ u2 ◦ u1(z) =
1

4

[(
1 + z

1− z

)2

− 1

]
=

z

(1− z)2
.

Note that u1 is the Möbius transformation that maps D onto the right half-plane whose
boundary is the imaginary axis. Also, u2 is the squaring function, while u3 translates
the image one space to the left and then multiplies it by a factor of 1

4
.

Thus the image D is the entire complex plane except for a slit along the negative
real axis from w = ∞ to w = −1

4
(see Figure 4.5). The function fk(z) = z

(1−z)2 is

known as the Koebe function.

1+z
1−z u2

1

D

1

4
[u2 − 1]

f(z) =
z

(1− z)2

−1
4

Figure 4.5. The image of the unit disk under the Koebe function.

Exploration 4.13. It is difficult to interpret the image of D under the Koebe
function using ComplexTool. One way to help understand the image is to use increasing
values in the Outer radius box in the center panel of the applet. Graph D under
the map z

(1−z)2 several times using the values of 0.8, 0.85, 0.9, 0.95, and 0.999 in the

Outer radius box.
Try it out!
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Suppose we have an analytic function f with a Taylor series representation f(z) =
z + a2z

2 + a3z
3 + · · · . One question to ask is for what values of an is f in the family

of schlicht functions? Consider the case in which all an = 0 except possibly a2. So,
f = z + a2z

2. By Exercise 4.7, we know that if |a2| ≤ 1
2
, then f ∈ S. The function

f(z) = z − 1
2
z2 from Example 4.8 is an extremal function. An extremal function is a

function that is on the boundary between those that satisfy a condition and those that
do not. Here, f(z) = z − 1

2
z2 is extremal, because if we increase |a2| =

∣∣ − 1
2

∣∣ then
f(z) = a + a2z

2 is no longer schlicht. In general, how large can |an| be and f still be
schlicht? Recall, for the Koebe function,

z

(1− z)2
=
∞∑
n=1

nzn,

and so in this case we have that an = n. This lead Bieberbach to make his famous
conjecture in 1916.

Bieberbach Conjecture For f ∈ S, |an| ≤ n, for all n. In particular, |a2| ≤ 2.

Because the image of D under the Koebe function covers all of C except a slit
along the real axis, it seems plausible that the the Bieberbach Conjecture is true with
the Koebe function being extremal. It is true. However, it was not until 1984 that
deBranges proved it.

We say an inequality is sharp if it is impossible to improve it (that is, we cannot
decrease the upper bound or increase the lower bound). We can show that an inequality
is sharp by finding a function with the desired properties and for which the inequality
becomes equality. Such a function for which equality holds is known as an extremal
function. Note that for deBranges Theorem (or Bieberbach Conjecture), the Koebe
function is extremal.

There is another case in which the Koebe function is extremal. We know that if
f ∈ S, then f(D) is not the entire complex plane. That is, there is some point a ∈ C
such that a /∈ f(D). This leads to the question of how small can |a| be? For example,
if f(z) = z, then |a| = 1; if f(z) = z

1−z , the right half-plane mapping in Example

4.11, then |a| = 1
2
. The answer to the question is that for all f ∈ S, |a| ≥ 1

4
. This is

known as the Koebe 1
4

Theorem. The Koebe function is extremal in this case, because

|a| = 1
4

for the Koebe function. For these reasons and others, the Koebe function is
very important in the study of schlicht functions.

Exploration 4.14. Consider the function f(z) =
z − tz2

(1− z)2
, where 0 ≤ t ≤ 1.

From what you have read so far, what is f(D) when t = 0? What is f(D) when t = 1?
Using your answers to these two questions and not using ComplexTool yet, make a
conjecture of what f(D) is, when 0 < t < 1. Now, use ComplexTool to modify or
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strengthen your conjecture. Using ComplexTool, what happens to f(D) for t > 1? For
t = id, 0 ≤ d ≤ 1?

Try it out!

The family S has been studied extensively for many years. Here are a few facts
about normalized, analytic univalent functions that will be used later in our discussion:

(1) (uniqueness in the Riemann Mapping Theorem) Let G 6= C be a specific
simply-connected domain with a ∈ D. Because of the Riemann Mapping
Theorem, the map f ∈ S that maps D onto G with f(0) = a and f ′(0) > 0 is
unique.

(2) (deBranges Theorem) For f ∈ S, |an| ≤ n, for all n.
(3) (Koebe 1

4
Theorem) The range of every function in class S contains the disk

G = {w : |w| < 1
4
}

Remark: This is a consequence of the fact that |a2| ≤ 2 which was proved
by Bieberbach in 1916.

(4) Let f ∈ S. Then f(D) omits some value on each circle {w : |w| = R} where
R ≥ 1. In other words, there is no function f ∈ S for which f(D) contains
∂D, the unit circle.

4.3. The Family SH of Normalized, Harmonic, Univalent Functions

About the same time that deBranges proved the Bierbach Conjecture, Clunie and
Sheil-Small studied a family, SH, of complex-valued harmonic functions that contained
S as a proper subset and considered some of the same properties on SH that had been
investigated in S.

Recall that function φ(x, y) is harmonic if and only if φxx + φyy = 0.

Definition 4.15. A continuous function f = u + iv defined in G is a complex-
valued, harmonic function in G if u and v are real harmonic (but not necessarily
harmonic conjugates) in G.

Example 4.16. The function

f(x, y) = u(x, y) + iv(x, y) = (x2 − y2) + i2xy

is complex-valued, harmonic because

uxx + uyy =2− 2 = 0

vxx + vyy =0 + 0 = 0.

Exercise 4.17. Show that

f(x, y) = u(x, y) + iv(x, y) =
(
x+

1

2
x2 − 1

2
y2
)

+ i(y − xy)
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is complex-valued harmonic.
Try it out!

Although harmonic functions are more general than analytic functions, some famil-
iar theorems about analytic functions have an equivalent form for harmonic functions.
These include the mean-value theorem, the maximum-modulus theorem, Liouville’s
Theorem, and the Argument Principle. However, by considering all harmonic func-
tions instead of just the subclass of analytic functions we can sometimes get more
information as is in the case in the study of minimal surfaces.

One way of thinking of a function f(x, y) = u(x, y) + iv(x, y) as being analytic is
that f can be expressed solely in terms of z = x+ iy without using z = x− iy. Hence,
the function f = z2 is analytic while f = zz is not. To explore this idea, let’s say that
ζ := z = x+ iy and ξ := z = x− iy. Then, we can “formally” write x = 1

2
(ζ + ξ) and

y = 1
2i

(ζ− ξ). Using the chain rule with the function f(x(ζ, ξ), y(ζ, ξ)) and since ζ = z
and ξ = z, we can show that

∂f

∂z
=

1

2

(
∂u

∂x
+
∂v

∂y

)
+
i

2

(
∂v

∂x
− ∂u

∂y

)
(45)

∂f

∂z
=

1

2

(
∂u

∂x
− ∂v

∂y

)
+
i

2

(
∂u

∂y
+
∂v

∂x

)
.(46)

Exercise 4.18.

(a) Derive eqs (45) and (46).
(b) Use these equations and the Cauchy-Riemann equations to prove that f(x, y) =

u(x, y) + iv(x, y) is analytic ⇐⇒ ∂f

∂z
= 0.

Try it out!

Exercise 4.19.

(a) Using x = 1
2
(z + z) and y = 1

2i
(z − z), rewrite

f(x, y) = u(x, y) + iv(x, y) =
(
x+

1

2
x2 − 1

2
y2
)

+ i(y − xy)

in terms of z and z.
(b) Use Exercise 4.18 to determine if f is analytic.
(c) Show that all analytic functions are complex-valued harmonic, but not all

complex-valued harmonic functions are analytic.

Try it out!

The next theorem tells us that a complex-valued harmonic function defined on D
is related to analytic functions.

Theorem 4.20. If f = u + iv is harmonic in a simply-connected domain G, then
f = h+ g, where h and g are analytic.
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Proof. Recall that if u and v are real harmonic on a simply-connected domain,
then there exists analytic functions K and L such that u = ReK and v = ImL. Hence,

f = u+ iv = ReK + i ImL =
K + K

2
+ i

L− L

2i
=
K + L

2
+

K − L
2

= h+ g.

�

Exercise 4.21. Let

f(x, y) = u(x, y) + iv(x, y) =
(
x+

1

2
x2 − 1

2
y2
)

+ i(y − xy)

be defined on D. In Exercise 4.17 you showed that f is harmonic. Find analytic
functions h and g such that f = h+ g.

Try it out!

We can use the applet ComplexTool to graph complex-valued harmonic functions.
For example, to graph the image of D under the harmonic function f(z) = z + 1

2
z2,

enter this function in ComplexTool in the form z + 1/2 conj (z ∧ 2) (see Figure 4.6).

Figure 4.6. Image of D under the harmonic function f(z) = z + 1
2
z2

Note that the harmonic function f(z) = h(z) + g(z) can also be written in the
form

(47) f(z) = Re
{
h(z) + g(z)

}
+ i Im

{
h(z)− g(z)

}
.

Hence, in the previous example, f(z) = z + 1
2
z2 can also be written as f(z) = Re

{
z +

1
2
z2
}

+ i Im
{
z − 1

2
z2
}

. In ComplexTool you can also enter the harmonic function in
this form. To do so, you would type in re(z + 1/2z ∧ 2)+ i*im (z − 1/2z ∧ 2).

Exercise 4.22. Prove that the representations f(z) = h(z) + g(z) and f(z) =
Re
{
h(z) + g(z)

}
+ i Im

{
h(z)− g(z)

}
are equivalent.

Try it out!
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Exploration 4.23. Graph the image of D under the following harmonic maps.
Describe characteristics that appear to be different for harmonic mappings as compare
to analytic mappings.

(a) f1(z) = z + 1
3
z3;

(b) f2(z) = Re
(

z
1−z

)
+ i Im

(
z

(1−z)2
)
;

(c) f3(z) = z
1−z −

1
2
e
z+1
z−1 ;

(d) f4(z) = Re
(

i√
3

ln
(

1+e−i
π
3 z

1+ei
π
3 z

))
+ i Im

(
1
3

ln
(

1+z+z2

1−2z+z2

))
;

(e) f5(z) = z + 2 ln(z + 1) + (z + 1)e
z−1
z+1 .

Try it out!

Since f = h + g, where h and g are analytic, f has the following series represen-
tation:

f(z) =
∞∑
n=0

anz
n +

∞∑
n=1

bnz
n.

Hence, we normalize the harmonic univalent functions in a way similar to the normal-
ized analytic univalent functions.

Definition 4.24. Let SH be the family of complex-valued harmonic, univalent
mappings that are normalized on the unit disk; that is,

SH = {f : D→ C | f is harmonic, univalent

with f(0) = a0 = 0, fz(0) = a1 = 1}.

SOH = {f ∈ SH | fz(0) = b1 = 0}.

Thus, S ⊂ SOH ⊂ SH.

Let’s look at some significant examples.

Example 4.25. Harmonic polynomial map
Consider

f(z) = h(z) + g(z) = z +
1

2
z2.

In the next section we will prove that f is univalent and hence in SOH . But for now we
will assume this and look at the image of D under f (see Figure 4.6). f maps D onto
the interior of the region bounded by a hypocycloid with 3 cusps.
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Definition 4.26. An hypocycloid is the curve produced by a fixed point p on a
small circle of radius b rolling the inside of a larger circle of radius a:

x(θ) =(a− b) cos θ + b cos

((a
b
− 1
)
θ

)
y(θ) =(a− b) sin θ + b sin

((a
b
− 1
)
θ

)
.

In the next section, we will see that the function f is related to the function
F (z) = z − 1/2z2 which maps D to an epicycloid (see Example 4.8).

Exploration 4.27.

(a) Use ComplexTool to plot the image of D under the analytic polynomial map
F (z) = z − 1/2eit

π
6 z2 for t = 0, 1, 2, 3, 4, 5, 6. Describe what happens to the

image as t varies.
(b) Use ComplexTool to plot the image of D under the harmonic polynomial map

f(z) = z + 1/2eit
π
6 z2 for t = 0, 1, 2, 3, 4, 5, 6. Describe what happens to the

image as t varies.
(c) What differences do you notice between the images in (a) and (b) as t in-

creases? Explain why it is reasonable for this difference to occur.

Try it out!

Small Project 4.28.

(a) Use ComplexTool to plot the images of the following polynomials:

Harmonic Functions Analytic Functions

(i) f1(z) = z + 1
3
z3; (ii) F1(z) = z + 1

3
z3;

(iii) f2(z) = z + 1
4
z2 + 1

4
z2 + 1

3
z3; (iv) F2(z) = z + 1

2
z2 + 1

3
z3;

(v) f3(z) = z + 1
6
z2 + 1

6
z4; (vi) F3(z) = z + 1

6
z6;

(vii) f4(z) = z + 1
6
z2 + 1

6
z4.

(b) Write a list of similarities and differences between the images of D under
harmonic and the analytic functions.

(c) Some questions to consider are: If the polynomial has three or more terms
then how large can their coefficients be in modulus to guarantee univalency?
If the polynomial has three terms, what difference does it make if the last two
terms are z2 and z3 instead of z2 and z3?

(d) Plot your own examples of harmonic and analytic polynomials and see if the
properties in your list from (b) are still valid.
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Optional

Example 4.29. Harmonic right half-plane map
Consider

f(z) =h(z) + g(z) =
z − 1

2
z2

(1− z)2
−

1
2
z2

(1− z)2

= Re(h(z)− g(z)) + i Im(h(z)− g(z)) = Re

(
z

1− z

)
+ i Im

(
z

(1− z)2

)
.

We will prove that f is univalent in the next section. The image of D under f using
ComplexTool is shown in Figure 4.7.

Figure 4.7. Image of D under f(z) = Re
(

z
1−z

)
+ i Im

(
z

(1−z)2
)

It turns out that the image of D under this harmonic map is the right half-plane
map {w ∈ C

∣∣Re{w} ≥ −1
2
}. This is the same domain as the image of D under the

analytic map z
1−z although the boundary behavior is different.

Exploration 4.30.

(a) Use ComplexTool to plot D under the analytic right half-plane map z
1−z . Use

the Sketch box to draw radial lines from the origin to the boundary of D in
the original domain. What are the images of points on the unit circle under
this analytic map?

(b) Use ComplexTool to plot D under the harmonic right half-plane map
z− 1

2
z2

(1−z)2 −
1
2
z2

(1−z)2 . Use the Sketch box to draw radial lines from the origin to the boundary

of D in the original domain. What is the image of points on the unit circle
under this analytic map?

(c) Using (a) and (b), describe how the boundary behavior is different between
the analytic right half-plane map and this harmonic right half-plane map?

Try it out!
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We are interested in harmonic univalent functions. However, results about univalent
functions are difficult to obtain. So it is sometimes useful to just consider locally
univalent functions as opposed to globally univalent. Let’s look at the idea of local
univalence for a moment.

Definition 4.31. A function f is locally univalent on G if Jf 6= 0 on G, where Jf
is the Jacobian of f = u+ iv:

Jf = det

∣∣∣∣ux uy

vx vy

∣∣∣∣
= det

∣∣∣∣∣(Re h)x + (Re g)x (Re h)y + (Re g)y

(Im h)x − (Im g)x (Im h)y − (Im g)y

∣∣∣∣∣ .
For analytic functions F , the Cauchy-Riemann equations yield (Re F )y = −(Im F )x
and (Im F )y = (Re F )x. Hence we have

= det

∣∣∣∣∣(Re h)x + (Re g)x −(Im h)x − (Im g)x

(Im h)x − Im g)x Re hx − (Re g)x

∣∣∣∣∣
= (Re h)2

x − (Re g)2
x + (Im h)2

x − (Im h)2
x

= |h′|2 − |g′|2.
Thus, we want |h′|2 − |g′|2 6= 0.

Besides local univalence, another important property of these functions is sense-
preserving. What is sense-preserving? A continuous function f is sense-preserving or
orientation-preserving if it preserves orientation. Consider the following example. Let
f1, f2 be defined on the punctured disk D− {0} by

f1(z) =
1

z
and f2(z) = z.

Both functions map the unit circle, ∂D, onto itself. In particular, both functions
map the points A = 1, B = ei

π
4 , and C = i to the points A′ = 1, B′ = e−i

π
4 , and

C ′ = −i, respectively. As we travel along ∂D in a counterclockwise direction, the left
hand side domain (LHS) is in D, while the right hand side domain (RHS) is in C−D.
Where do these domains get mapped under these functions? Note that as we travel
along ∂D in a counterclockwise direction, the image curve under both functions will be
∂D traversed in a clockwise direction. So, in the image domain, D is now RHS while
C − D is LHS. Now, f1 maps the point 1

2
∈ D to 2 ∈ C − D and so f1 maps the LHS

onto the LHS. Functions that map the LHS onto the LHS are sense-preserving. On
the other hand, f2 maps the point 1

2
∈ D to 1

2
∈ D and so f1 maps the LHS onto the

RHS. Functions that map the LHS onto the RHS are sense-reversing.
More exactly, as we travel counterclockwise along any simple closed contour γ ∈ G,

there exists a left hand side domain (LHS) and a right hand side domain (RHS).
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f (z) =  
1

1
z

C
B

A

DI B'
C'

A'

LHS

LHS

f (z) = z  
2

C
B

A

DI B'
C

A'LHS

RHS

Figure 4.8. f1 is sense-preserving, while f2 is sense-reversing.

Consider the image curve f(γ). f is sense-preserving if the original LHS domain with
regard to γ is mapped to the LHS domain with regard to f(γ). f is sense-reversing if
the original LHS domain with regard to γ is mapped to the RHS domain with regard
to f(γ). Note that analytic functions are sense-preserving; if f is sense-preserving,
then f is sense-reserving.

Exploration 4.32. For each of the following harmonic functions, use ComplexTool
to make a conjecture if the function is: (a) locally univalent; and (b) sense-preserving
[Hint: for sense-preserving, you can use the Sketch feature to draw a counterclockwise
curve on the unit circle and see its image under the function]

(a) z + 2z; (b) z + 1
2
z

(c) z + 2z2; (d) z + 1
2
z

(e) 2z2 + z; (f) 1
2
z2 + z

Try it out!

Now, we will need the following important definition.

Definition 4.33. ω(z) = g′(z)/h′(z) is known as the dilatation of f .

There is a connection between the dilatation of a harmonic function and its locally
univalence and sense-preserving nature.

Theorem 4.34 (Lewy). f = h+ g is locally univalent and sense-preserving ⇐⇒
|ω(z)| < 1, for all z ∈ G.

Exercise 4.35. Compute ω(z) for each of the functions in Exploration 4.32. Then
use your results from Exploration 4.32 to verify that Lewy’s Theorem for the functions
in that Exploration.

Try it out!

Exercise 4.36. Show that |ω(z)| < 1 for:

(a) ω1(z) = eiθz, where θ ∈ R;
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(b) ω2(z) = zn, where n = 1, 2, 3, . . .;

(c) ω3(z) =
z + a

1 + az
, where |a| < 1;

(d) ω4(z) being the composition of any of the functions ω above.

Try it out!

Remark 4.37. Let f = h + g be a sense-preserving harmonic map that has
|ω(z)| = 1 for all z ∈ arc of ∂D. Then the image of the arc is either:

• a concave arc (see Example 4.25); or
• stationary (see Example 4.29).

We discuss the dilatation more in Section 4.5.

4.4. The Shearing Technique

Finding examples of univalent harmonic mappings that are not analytic is not easy.
One very useful way to construct new examples of univalent harmonic mappings was
provided by Clunie and Sheil-Small. It is known as the shearing technique. Before we
proceed, we need to discuss certain types of domains.

Definition 4.38. A domain Ω is convex in the direction eiϕ if for every a ∈ C the
set Ω ∩ {a + teiϕ : t ∈ R} is either connected or empty. In particular, a domain is
convex in the direction of the real axis (CHD) if every line parallel to the real axis has
a connected intersection with Ω.

CHD not CHD

Exercise 4.39. For which values of n = 1, 2, 3, . . . do the following functions map
D onto a CHD domain?

(1) f(z) = zn,
(2) f(z) = z − 1

n
zn (see Example 4.8 and Definition 4.9),

(3) f(z) = z
(1−z)n (see Examples 4.11 and 4.12 to get you started).

Try it out!

Theorem 4.40 (Clunie and Sheil-Small). A harmonic function f = h+ g locally
univalent in D is a univalent mapping of D onto a CHD domain⇐⇒ h−g is an analytic
univalent mapping of D onto a CHD domain.

Before we prove Theorem 4.40, let’s look at an example.
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Example 4.41. Harmonic polynomial map
In Example 4.25, we claimed that the harmonic polynomial f(z) = z+ 1

2
z2 is univalent

and is related to the analytic function F (z) = z − 1
2
z2. We can use Theorem 4.40 to

show this. The analytic univalent function

F (z) = h(z)− g(z) = z − 1

2
z2

maps ∂D to an epicycloid with 1 cusp (see Example 4.8) that is convex in the direction
of the real axis. Letting ω(z) = g′(z)/h′(z) = z, we can apply the Shearing Method
and solve for h and g:

h′(z)− g′(z) = 1− z ⇒ h′(z)− zh′(z) = 1− z
⇒ h′(z) = 1

⇒ h(z) = z.

Since g′(z) = zh′(z) = z, we also have g(z) = 1
2
z2. Notice that h and g are normalized;

that is, h(0) = 0 and g(0) = 0. So, the corresponding harmonic univalent function is

f(z) = h(z) + g(z) = z +
1

2
z2 ∈ SOH

which was derived from shearing the analytic univalent function

F (z) = z − 1

2
z2 ∈ S

with the dilatation ω(z) = z.

Figure 4.9. Image of D under the harmonic map f(z) = z + 1
2
z2

Remark 4.42. This technique is known as the “shear” method or “shearing” a
function. The word shear means to cut (as in “shearing a sheep to get its wool”). In
our situation, suppose F = h − g is an analytic univalent function convex in the real
direction. Then the corresponding harmonic shear is

f = h+ g = h− g + g + g = h− g + 2 Re{g}.
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Figure 4.10. Image of D under the analytic map F (z) = z − 1
2
z2 .

So, the harmonic shear differs from the analytic function by adding a real function to
it. Geometrically, you can think of this as taking F , the original analytic univalent
function convex in the real direction, and cutting it up into thin horizontal slices
which are then translated and/or scaled in a continuous way to form the corresponding
harmonic function, f (see Figure 4.11). This is why the method is called “shearing.”

cut into horizonal
slices

each slice gets 
scaled and
translated

horizontally

put all the
horizontal

slices
together

Figure 4.11. Shearing an analytic function to preserve univalency

Since F is univalent and convex in the real direction and we are only adding a
continuous real function to it, the univalency is preserved.

255



Exercise 4.43. Let f = h + g with h(z) − g(z) = z and ω(z) = z. Compute h
and g explicitly so that f ∈ SOH and use ComplexTool to sketch f(D).

Exercise 4.44. Let f = h+ g with h(z)−g(z) = z+ 1
3
z3 and ω(z) = z2. Compute

h and g explicitly so that f ∈ SOH and use ComplexTool to sketch f(D).

For exploring shears of functions, the applet ShearTool (see Figure 4.12) has an
advantage over ComplexTool, because it easily allows you to see the image of D under
a shear of h(z) − g(z) without having to explicitly compute the resulting harmonic
function f = h+ g. When using ShearTool, enter an analytic function that is convex
in the direction of the real axis in h-g= box in the upper left section and enter the
dilatation in the ω box below it. The click on the Graph button.

Figure 4.12. The applet ShearTool
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In Example 4.41, we sheared h(z)− g(z) = z − 1
2
z2 with ω(z) = z. Entering these

two functions into ShearTool we get the image of a hypocycloid with 3 cusps (see Figure
4.13).

Figure 4.13. The image of D when shearing h(z)−g(z) = z− 1
2
z2 with

ω(z) = z.

Exploration 4.45.

(a.) Use ShearTool to graph the image of D under f = h+ g where h(z)−g(z) = z
and ω(z) = −z. Note the slight difference between this and Exercise 4.43.

(b.) Use ShearTool to graph the image of D under f = h+ g where h(z)− g(z) =
z − 1

3
z3 and ω(z) = z2. Note the slight difference between this and Exercise

4.44.

Try it out!
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To prove Theorem 4.40, we will use the following lemma

Lemma 4.46. Let Ω ⊂ C be a CHD domain and let ρ be a real-valued continuous
function on Ω. Then the map ω → ω + ρ(ω) is one-to-one in Ω ⇐⇒ it is locally
one-to-one. If it is one-to-one, then its range is a CHD domain.

Proof of Lemma. (⇒) Trivial.
(⇐) Suppose it is not 1−1. That is, there are distinct points ω1, ω2 ∈ Ω such that

ω1 + ρ(ω1) = ω2 + ρ(ω2). Let ωk = uk + ivk, (k = 1, 2). Since ρ is real-valued

v1 = Im(ω1 + ρ(ω1)) = Im(ω2 + ρ(ω2)) = v2.

So v1 = v2 = c. Then the map u → u + ρ(u + ic) is not strictly monotonic, because
there exists distinct points u1, u2 ∈ R such that their images are equal. Hence, this
map is not locally 1−1, and consequently, ω → ω + ρ(ω) is not locally 1−1.

Geometrically, the mapping acts as a “shear” in the horizontal direction and hence
its range is CHD. �

Proof of Theorem 4.40. (⇒) Assume f = h+ g is 1−1 and Ω = f(D) is CHD.
Note that f = h− g + g + g = h− g + 2 Re{g}. Then the function

(h− g) ◦ f−1(w) = (f − 2 Re{g}) ◦ f−1(w) = w − 2 Re{g(f−1(w))} = w + p(w)

may be defined in Ω, where p is real-valued and continuous. Since f is locally 1−1,
|g′| < |h′| ⇐⇒ g′(z) 6= h′(z), ∀z ∈ D. Hence h − g is locally 1−1 in D, and thus
w → w + p(w) is also locally 1−1 on Ω since it is the composition of locally 1−1
functions. By the lemma, w → w + p(w) is in fact univalent and has range that is
CHD. Hence, (h − g)(z) = [w + p(w)] ◦ f(z) is univalent being the composition of
univalent functions, and its range is CHD.

f−1(w)
Ω

D f−1

f

w

h− g w + p(w)

(h− g)(z)
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(⇐) Now assume that F = h − g is univalent on D and that Ω = F (D) is CHD.
Then f = F + 2Re {g }

f(F−1(w)) = w + 2Re{g(F−1(w))}
= w + q(w)

F = h− g w

D F−1
Ω

f

w + q(w)

is locally 1-1 (being the composition of locally 1-1 functions) in Ω. By the Lemma,
f ◦ F−1 is univalent in Ω and has a range that is CHD.

�

Example 4.47. Harmonic Koebe map
Since the Koebe function is an important function in S (see Example 4.12), let’s see
what happens when it is sheared with a standard dilatation. In particular, let

(48) h(z)− g(z) =
z

(1− z)2

and let

ω(z) = g′(z)/h′(z) = z.

Apply the Shearing Method:

h′(z)− g′(z) =
1 + z

(1− z)3
⇒ h′(z)− zh′(z) =

1 + z

(1− z)3

⇒ h′(z) =
1 + z

(1− z)4
.

Integrating h′(z) and normalizing so that h(0) = 0, yields

(49) h(z) =
z − 1

2
z2 + 1

6
z3

(1− z)3
.
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We can use this same method to solve for normalized g(z), where g(0) = 0. However,
this time we will find g(z) by using eqs. (48) and (49).

g(z) = h(z)− z

(1− z)2
=

1
2
z2 + 1

6
z3

(1− z)3
.

So

f(z) = h(z) + g(z) = Re

(
z + 1

3
z3

(1− z)3

)
+ i Im

(
z

(1− z)2

)
∈ SOH .

What is the image of D under f? It turns out that f(D) is similar to the image of
D under the analytic Koebe function (see Figure 4.5) with the slit on the negative
real axis except in this case the tip of the slit is at −1

6
instead of −1

4
. To see this,

let 1+z
1−z = w = u + iv. Note that since z ∈ D, w = 1+z

1−z is the right half-plane

{w = u + iv ∈ C
∣∣Rew = u > 0,−∞ < v < ∞}. Then z = w−1

w+1
. Substituting this

into h(z) and g(z) and simplifying, we get:

h

(
w − 1

w + 1

)
=

1

8

[
2

3
w3 + w2 − 5

3

]
g

(
w − 1

w + 1

)
=

1

8

[
2

3
w3 − w2 +

1

3

]
.

Recall that f = Re(h+ g) + i Im(h− g). Thus,

f

(
w − 1

w + 1

)
=

1

6
Re
{
w3 − 1

}
+

1

4
i Im

{
w2 − 1

}
.

Using w = u+ iv, and taking the real and imaginary parts, this becomes

1

6

(
u3 − 3uv2 − 1

)
+ i

1

2
uv.

If we let uv = 0 (and so, v = 0), then the imaginary part vanishes and because u > 0,
the real part varies from −1

6
to +∞. Thus, for uv = 0, f(D) contains the line segment

on the real axis from −1
6

to +∞. On the other hand, if we let uv = c 6= 0, then the

imaginary part is constant and the real part is u3

6
− c2

2u
which varies between −∞ and

+∞. Thus, for any c 6= 0, f(D) contains the entire line parallel to the real axis and
through the point ic. Therefore, f(D) is the entire complex plane except the slit on
the negative real axis from −1

6
to −∞.

Exercise 4.48. Let f = h+ g with h(z)− g(z) = z
(1−z)2 and ω(z) = z2. Compute

h and g explicitly so that f ∈ SOH and determine f(D).
Try it out!

Exploration 4.49. If we shear h(z) − g(z) = z
1−z with ω(z) = z2+az

1+az
, where

−1 < a ≤ 1, then the image of D under f = h + g is a slit domain (like the image
of D under the analytic and harmonic Koebe maps) with the tip of the slit varying
as a varies. Use ShearTool to graph these domains while decreasing a from 1 to −1.
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Try to place the cursor on the tip of the slit in the f(z)−domain box and look at the
coordinates below to estimate the distance of the tip from the origin. How close to the
origin can you get the tip of the slit? How far from the origin can you get the tip of the
slit? Try finding other valid ω expressions that result in slit domains when shearing
h(z)− g(z) = z

1−z (This exploration is developed further in Small Project 4.59).
Try it out!

Because of the importance and extremal nature of the analytic Koebe function (see
Example 4.12), it is conjectured that this “harmonic” Koebe function is extremal in
similar ways. Note that the coefficients of this harmonic function

f(z) =
∞∑
n=0

anz
n +

∞∑
n=1

bnz
n

= Re

(
z + 1

3
z3

(1− z)3

)
+ i Im

(
z

(1− z)2

)(50)

satisfy the properties |an| = 1
6
(n+1)(2n+1), |bn| = 1

6
(n−1)(2n−1), and

∣∣|an|−|bn|∣∣ = n.

Conjecture 1 (Harmonic Bieberbach).

Let f(z) =
∞∑
n=0

anz
n +

∞∑
n=1

bnz
n ∈ SOH . Then

|an| ≤
1

6
(n+ 1)(2n+ 1),

|bn| ≤
1

6
(n− 1)(2n− 1),∣∣|an| − |bn|∣∣ ≤ n.

(51)

In particular,

(52) |a2| ≤
5

2

Exercise 4.50. Verify that the “harmonic” Koebe function given in (50) satisfies
equality in eqs. (51) and (52).

Try it out!

Currently, the best established bound is that for all functions f ∈ SOH , |a2| < 49
(see [9]). There is room for improvement here, if one can find a right approach.

Large Project 4.51. Read and understand the proof that |a2| ≤ 2 for analytic
functions in S (for example, see [1], section 5.1). Read and understand two different
proofs that give bounds on |a2| for harmonic functions in SOH (see [5], Theorem 4.1 and
[9], p. 96). Investigate ways to modify any of these proofs or other proofs in order to
establish that for f ∈ SOH , |a2| ≤ K for some K, where 5

2
≤ K < 49.
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Optional

Open Problem 4.52. Prove the Harmonic Bieberbach Conjecture.

In addition, because the tip of the the “harmonic” Koebe function is at −1
6
, we

have the following conjecture that is the analogue of the analytic 1
4

Koebe Theorem.

Conjecture 2. The range of every function in class SOH contains the disk G ={
w : |w| < 1

6

}
.

Open Problem 4.53. Prove Conjecture 2. The best result so far is that the range
of every f ∈ SOH contains the disk

{
w : |w| < 1

16

}
(see [5]), so it would be interesting

to increase the radius of this disk to some K, where 1
16
< K ≤ 1

6
.

Recall Definition 4.38 of a domain convex in the general direction ϕ. The shearing
theorem by Clunie and Sheil-Small can easily be generalized to apply to such domains.

Corollary 4.54. A harmonic function f = h + g locally univalent in D is a
univalent mapping of D onto a domain convex in the direction ϕ ⇐⇒ h − e2iϕg is an
analytic univalent mapping of D onto a domain convex in the direction ϕ.

Example 4.55. Harmonic right half-plane map
The analytic right half-plane function z

1−z maps D onto a convex domain (that is, it
is convex in all directions ϕ). So, in particular, it is convex in the direction of the
imaginary axis (ϕ = π

2
). Let’s apply Corollary 4.54 with ϕ = π

2
to z

1−z and use a
dilatation that simplifies calculations. Consider

(53) h(z)− e2iϕg(z) = h(z) + g(z) =
z

1− z
and let

ω(z) = g′(z)/h′(z) = −z.
Computing h and g as in the previous two examples, yields

h(z) =
z − 1

2
z2

(1− z)2

g(z) =−
1
2
z2

(1− z)2
.

(54)

Hence, the harmonic function is

f(z) = h(z) + g(z) = Re

(
z

1− z

)
+ i Im

(
z

(1− z)2

)
∈ SOH .

Exercise 4.56. Verify that shearing h(z) + g(z) = z
1−z with ω(z) = −z, yields eq.

(54).
Try it out!
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This is the harmonic map we discussed in Example 4.29.

Exploration 4.57. Shear h + g = z
1−z using ω = −zn, where n = 1, 2, 3, . . .

and sketch f(D) using ShearTool. Describe what happens to f(D) and n varies. Pay
particular attention to the number of points the green lines go to as n increases.

Try it out!

One significance of D being mapped to the same domains under these two functions
is that the uniqueness of the Riemann Mapping Theorem for analytic functions does
not hold for harmonic functions. This leaves the open question:

Open Problem 4.58. What is the analogue of the Riemann Mapping Theorem
for harmonic functions?

Small Project 4.59. Let f = h + g with h(z) − g(z) =
z

(1− z)2
and ω(z) =

z2 + az

1 + az
.

(1) Show that for −1 ≤ a ≤ 1, |ω(z)| < 1,∀z ∈ D.
(2) Compute h and g explicitly so that f ∈ SOH .
(3) Show that for a = −1, f(D) is a right half-plane.
(4) Show that for −1 < a ≤ 1, f(D) is a slit domain like the Koebe domain. For

each value of a, determine where the tip of the slit is located.

Optional

Example 4.60. Harmonic square map
Here is one more shearing example that we will use in some later sections and in our
discussion of minimal sections. Let

(55) h(z)− g(z) =
1

2
log

(
1 + z

1− z

)
which is an analytic function that maps D onto a horizontal strip convex in the direction
of the real axis and let

ω(z) = g′(z)/h′(z) = −z2.

Using the ShearTool we see that the shear of h − g with −z2 results in a univalent
harmonic function that maps onto the interior of the region bounded by a square (see
Figure 4.14).

Let’s compute h(z) and g(z) explicitly and prove that the image is a square region.
Applying the Shearing Method, we have

h′(z)− g′(z) =
1

1− z2
⇒ h′(z) + z2h′(z) =

1

1− z2

⇒ h′(z) =
1

1− z4
=

1

4

[
1

1 + z
+

1

1− z
+

1

i+ z
+

1

i− z

]
.
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Figure 4.14. The image of D when shearing h(z)− g(z) = 1
2

log
(

1+z
1−z

)
with ω(z) = −z2.

Integrating h′(z) and normalizing so that h(0) = 0, yields

(56) h(z) =
1

4
log

(
1 + z

1− z

)
+
i

4
log

(
i+ z

i− z

)
.

We can use this same method to solve for normalized g(z), where g(0) = 0. Note that
we can also find g(z) by using eqs. (55) and (56). Either way, we get

g(z) = −1

4
log

(
1 + z

1− z

)
+
i

4
log

(
i+ z

i− z

)
.

So

f(z) = h(z) + g(z) = Re

[
i

2
log

(
i+ z

i− z

)]
+ i Im

[
1

2
log

(
1 + z

1− z

)]
∈ SOH .
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What is f(D)? Notice that

f(z) =

[
− 1

2
arg

(
i+ z

i− z

)]
+ i

[
1

2
arg

(
1 + z

1− z

)]
=u+ iv.

Let z = eiθ ∈ ∂D. Then

i+ z

i− z
=
i+ eiθ

i− eiθ
−i− e−iθ

−i− e−iθ
=

1− i(eiθ + e−iθ)− 1

1 + i(eiθ − e−iθ) + 1
= −i cos θ

1− sin θ
.

Thus,

u = −1

2
arg

(
i+ z

i− z

)∣∣∣∣∣
z=eiθ

=

{
π
4

if cos θ > 0,

−π
4

if cos θ < 0.

Likewise, we can show that

v =

{
π
4

if sin θ > 0,

−π
4

if sin θ < 0.

In summary, we have that z = eiθ ∈ ∂D is mapped to

u+ iv =


z1 = π

2
√

2
ei
π
4 = π

4
+ iπ

4
if θ ∈ (0, π

2
),

z3 = π
2
√

2
ei

3π
4 = −π

4
+ iπ

4
if θ ∈ (π

2
, π),

z5 = π
2
√

2
ei

5π
4 = −π

4
− iπ

4
if θ ∈ (π, 3π

2
),

z7 = π
2
√

2
ei

7π
4 = π

4
− iπ

4
if θ ∈ (3π

2
, 2π).

Thus, this harmonic function maps D onto the interior of the region bounded by a
square with vertices at z1, z3, z5 and z7.

Note that this same function can be obtained by using the Poisson integral formula.
In fact, using the Poisson formula we can find a harmonic function that maps D onto
a regular n-gon for any n ≥ 3. In particular, let

f(z) =
1

2π

∫ 2π

0

Re

(
1 + ze−it

1− ze−it

)
eiφ(t)dt,
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where φ(t) = π(2k+1)
n

(2πk
n
≤ t < 2π(k+1)

n
, k = 0, ..., n− 1). In this case, we can derive

that

h(z) =
∞∑
m=0

1

nm+ 1
znm+1,

g(z) =
∞∑
m=1

−1

nm− 1
znm−1,

h′(z) =
1

1− zn
,

g′(z) =
−zn−2

1− zn
, and

ω(z) = −zn−2.

(57)

Exercise 4.61. Let f = h + g with h(z) − g(z) =
1

3
log

(
1 + z + z2

1− 2z + z2

)
and

ω(z) = −z.

(1) Show that h′(z) = 1
1−z3 and g′(z) = −z

1−z3 .
(2) According to the previous paragraph, what should be the image of D under

f = h+ g?
(3) Use ShearTool to sketch the image of f .
(4) Compute h and g explicitly so f ∈ SOH .

Try it out!

Exercise 4.62. Let f = h + g with h(z) + g(z) =
1

2
log

(
1 + z

1− z

)
and ω(z) =

−z2 (note the difference between this exercise and Example 4.60). Compute h and g
explicitly so that f ∈ SOH and use ComplexTool to graph f(D).

Try it out!

4.5. Properties of the dilatation

Because of the importance of the dilatation, we will examine some of its properties.
A result from complex analysis is that an analytic function will map infinitesimal

circles to infinitesimal circles at any point where its derivative is nonzero. For harmonic
functions, this result does not hold. This can be seen in the following exploration.

Exploration 4.63. In ComplexTool, enter values one at a time of 0.1, 0.4, 0.7,
and 0.999 into the Outer radius box in the center panel to plot disks of various outer
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radii under the analytic right half-plane map

F (z) =
z

1− z
and the harmonic right half-plane map

f(z) =
z − 1

2
z2

(1− z)2
−

1
2
z2

(1− z)2
.

[Note: You may need to resize of the image by clicking on the down arrow H above
the image and chose a different size; also,you can move the axes so that the image is
centered by positioning the cursor over the image, clicking on the mouse button, and
dragging the image to the left]. In all the cases look at the images of small circles
under F and under f . What appears to be the image of circles under the harmonic
function f?

Try it out!

Now, let’s explore the ideas of the geometric dilatation, Df , and the analytic di-
latation, ω(z) which we discussed earlier.

Exercise 4.64.

(a.) Prove that the formulas

∂f

∂z
=

1

2

(
∂f

∂x
− i∂f

∂y

)
and

∂f

∂ z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

are equivalent to the formulas (45) and (46) given in section 4.3.
(b.) Prove that if f = h+ g is harmonic, then

∂f

∂z
= h′(z) and

∂f

∂ z
= g′(z).

Try it out!

Think of the differential of f as df = fzdz + f zd z. Thus we have

|df | = |fzdz + f zd z| = |h′(z)dz + g′(z)d z|.
Now bound this differential, and use the fact that if dz is very small, so also d z will be
very small and approximately equal to dz. When we examine upper and lower bounds,
we have

(|h′(z)| − |g′(z)|)|dz| ≤ |df | ≤ (|h′(z)|+ |g′(z)|)|dz|.
Note that for sense-preserving harmonic functions, the left hand side is always positive.
Now we take a ratio of the upper and lower bounds to get the geometric dilatation Df

defined by

Df =
|h′|+ |g′|
|h′| − |g′|

.

Since this is a ratio of the maximum to minimum |df |, if we evaluate Df at a point
z0, that means that we will find a number that represents a ratio between the most
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and the least that an infinitesimal circle will be deformed by the function. Thus, if
the function maps an infinitesimal circle to an infinitesimal ellipse, then the geometric
dilatation gives the ratio of the major axis to the minor axis of the ellipse.

Exercise 4.65.

(a.) Prove that for analytic functions, Df is always 1.
(b.) Prove that for sense-preserving harmonic functions, Df ≥ 1.

(c.) Find a formula for Df for z + z3

3
. What are the maximum and minimum of

this function over the unit disk D?

Try it out!

Exercise 4.66. Examine the geometric dilatation for z+ z3

3
in greater detail. For

the points z = 0, 0.5, 0.9, 0.9eiπ/4, and 0.9i, find Df (z). Using ComplexTool, examine
the images of circles of radius 0.05 centered at those points. Estimate the ratio of the
major axis to the minor axis of the image ellipse. Does it match with your computation
for Df?

Try it out!

While the geometric dilatation provides some very useful information about the
function, some information is lost when we take the modulus of |h′(z)| and |g′(z)|.
Instead, it is often useful to examine the analytic part versus the anti-analytic part of
the function f . Thus we define what is sometimes called the second complex dilatation
of f ,

ωf (z) =
f z(z)

fz(z)
=
g′(z)

h′(z)
,

where the representation in the last equality makes sense only for harmonic functions.
When the function f is clear, we drop the subscript and refer only to the dilatation as
ω. Because this function ω(z) is analytic if and only if f(z) is harmonic, the second
complex dilatation is also called the analytic dilatation of f .

Exercise 4.67.

(a.) Prove that ω(z) = f z(z)
fz(z)

is analytic if and only if f(z) is harmonic.

(b.) Prove that ω(z) is identically 0 if and only if f is analytic.
(c.) Prove that for sense-preserving non-analytic harmonic functions f , 0 < |ω(z)| <

1.

Try it out!

Now one can naturally ask what the relationship is between the geometric dilatation
and analytic dilatation.

Exercise 4.68. Prove that Df (z) ≤ K if and only if |ωf (z)| ≤ K−1
K+1

.
Try it out!
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Exploration 4.69. Re-examine the function z + 1
3
z3, now evaluating ω(z) at the

points z = 0, 0.5, 0.9, 0.9eiπ/4, and 0.9i. What do you observe about the relationship
between ω at these points and images of a small circle centered at these points?

Try it out!

In Section 4.3, we remarked that if f = h+ g is a sense-preserving harmonic map
that has |ω(z)| = 1 for all z ∈ arc of ∂D, then the image of the arc is either:

• a concave arc; or
• stationary.

To further explore this result, we will use ShearTool to graph the image of D under
f = h + g, when h − g = z and ω has various values in order to see the effect of
changing ω.

Exploration 4.70.

(1) Shear h(z) − g(z) = z using ω(z) = eiπn/6z, where n = 0, . . . , 6 and sketch
f(D) using ShearTool. Describe what happens to f(D) as n varies.

(2) Shear h(z) − g(z) = z using ω(z) = zn, where n = 1, 2, 3, 4 and sketch f(D)
using ShearTool.
(a) What patterns do you notice relating f(D) and n?
(b) Make a sketch on paper of what f(D) looks like for n = 5. Then graph

that shear using ShearTool.
(c) Make a sketch on paper of what f(D) looks like for n = 6. Then graph

that shear using ShearTool.
(3) Shear h(z) − g(z) = z using ω(z) = z+a

1+az
, for various values of a ∈ D and

sketch f(D) using ShearTool. Describe what happens to f(D) as a varies.

Try it out!

Small Project 4.71. Investigate the shearing of h(z) − g(z) = z − 1
n2 z

n (n =
2, 3, 4, . . . ) with ω for various values of ω (note that the image of D under the analytic
function z− 1

n
zn is not CHD for n = 4, 5, 6, . . . ; however, it is if we use z− 1

n2 z
n). Use

the approach of Exploration 4.70 as a starting point and then explore new approaches.
Optional

Up to this point, we have only used dilatations that are finite Blaschke products.
A finite Blaschke product B(z) can be expressed in the form

B(z) = eiθ
n∏
j=1

(
z − aj

1− ajz

)mj
,

where θ ∈ R, |aj| < 1, and mj is the multiplicity of the zero aj. The dilatations
given in Exploration 4.70 and finite products of them are examples of finite Blaschke
products. Harmonic univalent mappings whose dilatation is a finite Blaschke product
have been studied (see [13]). However, little is known about mappings whose dilatation
is not a finite Blaschke product. And so an interesting problem is to investigate the
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properties of harmonic univalent mappings whose dilatation is not a finite Blaschke
product. One important type of mappings that are not a finite Blaschke product is a
singular inner function. Hence, we will now investigate harmonic univalent mappings
whose dilatation is a singular inner function.

First, we need to know what singular inner functions are. Let f : D → C be an
analytic function and denote its radial limit by

f ∗(eiθ) := lim
r→1, r<1

f(reiθ).

Definition 4.72. A bounded analytic function f is called an inner function if
|f ∗(eiθ)| = 1 almost everywhere (with respect to Lebesgue measure on ∂D). If f has
no zeros on D, then f is called a singular inner function.

Every inner function can be written in the form

f(z) = eiαB(z)e

(
−

∫
eiθ + z

eiθ − z
dµ
(
eiθ
))
,

where α, θ ∈ R, µ is a positive measure on ∂D, and B(z) is a Blaschke product. The

function f(z) = e
z+1
z−1 is an example of a singular inner function.

Exercise 4.73. Show that if ω(z) = e
z+1
z−1 , then |ω(z)| < 1,∀z ∈ D.

Try it out!

It has been difficult to construct examples of harmonic mappings whose dilatation
is a singular inner function. For awhile there were no known examples [17] until
Weitsman [27] provided two examples. We present Weitsman’s examples (see Example
4.75 and Example 4.80) giving a much shorter proof of his second example with this
proof providing a method to find more examples.

One way to find an example of a harmonic map with a singular inner function as
its dilatation is to use the shearing technique. However, being able to find a closed
form for f = h + g is not often possible. For example, let h(z) − g(z) = z and the

dilatation be ω(z) = e
z+1
z−1 . Then by the shearing technique

h(z) =

∫
1

1− e
z+1
z−1

dz.

This integral does not have a closed form and so we cannot find an explicit represen-
tation for f = h+ g in this case.

Exercise 4.74. Using the shearing technique with h(z) − g(z) = z − 1
n
zn and

ω(z) = e
z+1
z−1 , express h as an integral. It is not possible to integrate h to get a closed-

form solution.
Try it out!

The following is an example in which the shearing technique does allow us to find
specific values for h and g.
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Example 4.75. Consider shearing the analytic function

h(z)− g(z) =
z

1− z
+

1

2
e
z+1
z−1

with
ω(z) = e

z+1
z−1 .

To see that h − g is convex in the direction of the real axis, we will use a remark
by Pommerenke [18].

Theorem 4.76. Let f be an analytic function in D with f(0) = 0 and f ′(0) 6= 0,
and let

ϕ(z) =
z

(1 + zeiθ)(1 + ze−iθ)
,

where θ ∈ R. If

Re

{
zf ′(z)

ϕ(z)

}
> 0, for all z ∈ D,

then f is convex in the direction of the real axis.

Note that in this example

h′(z)− g′(z) =
1

(1− z)2

[
1− e

z+1
z−1

]
.

Using θ = π in Theorem 4.76, we have

Re
[
1− e

z+1
z−1

]
> 0

because
∣∣e z+1

z−1

∣∣ < 1. Hence h− g is convex in the direction of the real axis.

Shearing h− g with ω(z) = e
z+1
z−1 and normalizing yields

h(z) =

∫
1

(1− z)2
dz =

z

1− z
,

and solving for g we get

g(z) = −1

2
e
z+1
z−1 .

The image given by this map is similar to the image given by the right half-plane
map z

1−z except in this case there are an infinite number of cusps (see Figure 4.15).

Exercise 4.77. Let f = h + g with h(z)− g(z) = z
1−z and ω(z) = e

z+1
z−1 . Use the

shearing method to compute h and g explicitly so f ∈ SOH and use ComplexTool to
sketch f(D) [Hint: In finding the specific function h, use a u-substitution to evaluate
the integral].

Try it out!

Another technique to find harmonic mappings whose dilatations are singular inner
functions involves using the following theorem by Clunie and Sheil-Small [5].
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Figure 4.15. Image of D under f(z) =
z

1− z
− 1

2
e
z+1
z−1 .

Theorem 4.78. Let f = h+ g be locally univalent in D and suppose that h+ εg
is convex for some |ε| ≤ 1. Then f is univalent.

Theorem 4.78 gives us a nice way to show that a harmonic function is univalent.
To develop our present technique, we will let ε = 0 in the theorem. This means that if
h is analytic convex and if ω is analytic with |ω(z)| < 1, then f = h+ g is a harmonic
univalent mapping.

Actually, the original theorem by Clunie and Sheil-Small gives us a bit more infor-
mation about f . It states that f is close-to-convex. Geometrically, a close-to-convex
function f is one whose image f(reiθ) has no “large hairpin” turns; that is, the tan-
gent vector at f(reiθ) does not turn backward through an angle greater or equal to
π anyway along the image of the curve |z| = r. However, at this point we are just
interested in showing that f is univalent, so you do not need to be concerned about
the close-to-convex property.

Also, to establish that a function f is convex, the following theorem is useful.

Theorem 4.79. Let f be analytic and univalent in D. Then f maps onto a convex
domain if and only if

Re

[
1 +

zf ′′(z)

f ′(z)

]
≥ 0, for allz ∈ D.

In the following example we will show how these ideas can be used to construct a
harmonic univalent function whose dilatation is a singular inner function.

Example 4.80. Let

h(z) = z − 1

4
z2 with ω(z) = g′(z)/h′(z) = e

z+1
z−1 .

We will use Theorem 4.79 to show that h is convex. Let

T (z) = 1 +
zh′′(z)

h′(z)
= 1 +

−1
2
z

1− 1
2
z

=
1− z

1− 1
2
z
.

272



Notice that T (z) is a Möbius transformation. By the mapping properties of Möbius
transformations we can show that T maps D onto |z − 2

3
| = 2

3
which is the circle

centered at 2
3

of radius 2
3
. Hence, Re{T (z)} > 0 and h is convex.

Now solve for g.

g(z) =

∫
h′(z)ω(z) dz =

∫
(1− 1

2
z)e

z+1
z−1 dz = −1

4
(z − 1)2e

z+1
z−1 .

Hence,

f(z) = h(z) + g(z) = z − 1

4
z2 − 1

4
(z − 1)2e

z+1
z−1 .

Thus, by Theorem 4.78, f = h + g is univalent. The image of D under f1(z) =

z − 1
4
z2 − 1

4
(z − 1)2e

z+1
z−1 is similar to the map of a harmonic polynomial but with an

infinite number of cusps in the middle section on the right side (see Figure 4.16).

Figure 4.16. Image of D under f1(z) = z − 1
4
z2 − 1

4
(z − 1)2e

z+1
z−1 .

Exercise 4.81. Let h(z) = z+ 1
11
z3 and g(z) = − 1

11
(z−3)(z+ 1)2e

z−1
z+1 . Show that

f = h+ g is univalent and use ComplexTool to graph f(D).
Try it out!

Exercise 4.82. Use the approach above to show that compute f = h + g is

harmonic univalent, where h(z) = z + 2 log(z + 1) and ω(z) = e
z−1
z+1 . The graph of D

under f is shown in Figure 4.17.
Try it out!

It was mentioned earlier that it is not often possible to find a closed form for
f = h + g when the dilatation is a singular inner function. However, one can use
ShearTool to explore images of f(D) when the dilatation is a singular inner product.

Exploration 4.83.

(1) If we shear h(z) − g(z) = z
(1−z)2 with ω(z) = e

z+1
z−1 , then f = h + g will be

univalent and convex in the direction of the real axis. Use ShearTool to sketch
f(D).
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Figure 4.17. Image of D under f(z) = h+ g in Exercise 4.82.

(2) Use ShearTool to sketch f(D), where h(z)− g(z) = z− 1
2
z2 with ω(z) = e

z2+1

z2−1 .

(3) Use ShearTool to sketch f(D), where h(z) − g(z) = 1
2

log
(

1+z
1−z

)
with ω(z) =

e
z+1
z−1 .

Try it out!

Open Problem 4.84. What are the properties of harmonic univalent mappings
whose dilatation is a singular inner product?

4.6. Harmonic Linear Combinations

A common way to try to construct new functions with a given property is to
take the linear combination of two functions with that property. This is done with
derivatives and integrals in beginning calculus. And in Exploration 4.14, this done
with the analytic Koebe mapping, fk, and the right half-plane mapping, fr, where

fk(z) =
z

(1− z)2
and fr(z) =

z

1− z
,

to derive the univalent analytic map

f3(z) = tfk(z) + (1− t)fr(z) =
z − tz2

(1− z)2
,

where 0 ≤ t ≤ 1.
Is it true that the linear combination of two 1−1 functions is also a 1−1 function?

Let’s look at the case for real-valued functions. Suppose f1 : R → R and f2 : R → R
are 1−1 functions. Will f3(x) = tf1(x)+(1−t)f2(x) also be 1−1 when 0 ≤ t ≤ 1? Not
necessarily. Consider the example of f1(x) = x3, f2(x) = −x3, and t = 1

2
. Both f1 and

f2 are 1− 1; they satisfy the horizontal line test. But f3(x) = tf1(x) + (1− t)f2(x) = 0
which is not 1− 1.
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y

x

y

x

y

x

f (x) = x
1   1

1
3

f (x) = -x
1   1

2
3 f (x) = 0

not 1   1
3

Figure 4.18. f1(x) = x3 and f2(x) = −x3 are 1 − 1, but f3(x) =
tf1(x) + (1− t)f2(x) = 0 s not 1− 1.

In this case, the difficulty is that f1 is an increasing 1−1 function, f2 is a decreasing
1− 1 function, and when t = 1

2
, the increase of f1 cancels out the decrease of f2. We

can alleviate this difficulty by requiring that f1, f2 are either both increasing or both
decreasing. This idea can be applied to complex-valued functions.

Condition A. Suppose f is complex-valued harmonic and non-constant in D.
There exists sequences z′n, z′′n converging to z = 1, z = −1, respectively, such that

lim
n→∞

Re{f(z′n)} = sup
|z|<1

Re{f(z)}

lim
n→∞

Re{f(z′′n)} = inf
|z|<1

Re{f(z)}.
(58)

Note that the normalization in (58) can be thought of in some sense as if f(1) and
f(−1) are the right and left extremes in the image domain in the extended complex
plane.

Example 4.85. We will show that Condition A is satisfied by f(z) = z + 1
3
z3 (see

Figure 4.19).

Figure 4.19. Image of D under f(z) = z + 1
3
z3

One can get a feel that f satisfies Condition A by using the Sketch option in Com-
plexTool to draw several paths {z′n} ∈ D that approach 1 and see that the corresponding
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images of these paths approach the right-side cusp of the image of D, a hypocycloid of
4 cusps (see Figure 4.19). Likewise, various paths {z′′n} ∈ D that approach −1 result
in image paths that approach the left-side cusp of the hypocycloid.

To prove that f satisfies Condition A, note that

f(eiθ) = eiθ +
1

3
e−3iθ = (cos θ +

1

3
cos 3θ) + i(sin θ − 1

3
sin 3θ).

So, Re{f(eiθ)} = cos θ+1
3

cos 3θ. Hence, −4
3
≤ Re{f(eiθ)} ≤ 4

3
which means sup|z|<1 Re{f(z)} =

4
3
. Letting z′n = 1− 1

n
→ 1, we have that

lim
n→∞

Re{f(z′n)} =
4

3
= sup
|z|<1

Re{f(z)}.

Similarly, lim
n→∞

Re{f(z′′n)} = −4

3
= inf
|z|<1

Re{f(z)}.

Exercise 4.86. Use the Sketch option in ComplexTool to determine which of the
following harmonic functions satisfy Condition A:

(a) f(z) = z + 1
2z

2 (b) Re

[
1

2
log

(
1 + z

1− z

)]
+ i Im

[
i

2
log

(
i+ z

i− z

)]

(c) Re

(
z

1− z

)
+ i Im

(
z

(1− z)2

)
(d) Re

[
i

2
log

(
i+ z

i− z

)]
+ i Im

[
1

2
log

(
1 + z

1− z

)]

(e) Re

(
z + 1

3z
3

(1− z)3

)
+ i Im

(
z

(1− z)2

)
Try it out!

To prove a result about the linear combinations of harmonic functions, we will
need the following result by Hengartner and Schober [15] that employs condition A.
However, we won’t use Theorem 4.87 afterwards.

Theorem 4.87 (Hengartner and Schober). Suppose f is holomorphic (i.e., ana-
lytic) and non-constant in D. Then

Re{(1− z2)f ′(z)} ≥ 0, z ∈ D

if and only if

(1) f is univalent in D,
(2) f is convex in the imaginary direction, and
(3) condition A holds.

We now seek to study conditions under which f3 is globally univalent.
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Theorem 4.88. Let f1 = h1 + g1, f2 = h2 + g2 be univalent harmonic mappings
convex in the imaginary direction and ω1 = ω2. If f1, f2 satisfy condition A, then
f3 = tf1 + (1− t)f2 is convex in the imaginary direction (and univalent) (0 ≤ t ≤ 1).

Proof. To see that f3 is locally univalent, use g′1 = ω1h
′
1 and g′2 = ω2h

′
2 = ω1h

′
2.

Then

ω3 =
tg′1 + (1− t)g′2
th′1 + (1− t)h′2

=
tω1h

′
1 + (1− t)ω1h

′
2

th′1 + (1− t)h′2
= ω1.

Next, by Clunie and Sheil-Small’s shearing theorem (see Theorem 4.40), we know that
each hj +gj (j = 1, 2) is univalent and convex in the imaginary direction. Also, hj +gj
satisfies Condition A since Re{fj} = Re{hj + gj}. Applying Theorem 4.87 we have

Re{(1− z2)(h′j(z) + g′j(z))} ≥ 0, (j = 1, 2).

Consider

Re{(1−z2)(h′3(z) + g′3(z))}
= Re{(1− z2)[t(h′1(z) + g′1(z)) + (1− t)(h′2(z) + g′2(z))]}
= tRe{(1− z2)(h′1(z) + g′1(z))}+ (1− t) Re{(1− z2)(h′2(z) + g′2(z))} ≥ 0.

By applying Theorem 4.87 in the other direction, we have that h3 + g3 is convex in
the imaginary direction, and so by the shearing theorem, f3 is convex in the imaginary
direction. �

Example 4.89. Consider the functions

f1(z) = Re

[
i

2
log

(
1 + z

1− z

)]
+ i Im

[
− 1

2
log

(
i+ z

i− z

)]
,

f2(z) = Re

[
1

2
log

(
1 + z

1− z

)]
+ i Im

[
i

2
log

(
i+ z

i− z

)]
.

Now, f1 maps D onto a square region (see Figure 4.20); the image is the same as for
the harmonic square map in Example 4.60, but the function is different. In particular,
f1 has different arcs of the unit circle being mapped to the vertices, and the dilatation
for f1 is ω(z) = z2 which is different than the dilatation for the harmonic square map
in Example 4.60. Condition A is satisfied for f1 (see Example 4.92 for more details).

f2 maps D onto a region similar to a hypocycloid with 4 cusps except instead of
cusps the domain has ends that extend out to infinity (see Figure 4.21). The dilatation
of f2 is also ω(z) = z2 and Condition A is satisfied.

By Theorem 4.88, f3 = tf1 + (1− t)f2 is univalent. The image of D when t = 1
2

is
shown in Figure 4.22.
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Figure 4.20. Image of D under f1(z) = Re

[
i

2
log

(
1 + z

1− z

)]
+ i Im

[
− 1

2
log

(
i+ z

i− z

)]
.

Figure 4.21. Image of D under f2(z) = Re

[
1

2
log

(
1 + z

1− z

)]
+ i Im

[
i

2
log

(
i+ z

i− z

)]
.

Figure 4.22. Image of D under f3(z) = 1
2
f1(z) + 1

2
f2(z)

Exploration 4.90. Let

f1(z) = Re

[
i√
3

ln

(
1 + e−i

π
3 z

1 + ei
π
3 z

)]
+ i Im

[
1

3
ln

(
1 + z + z2

1− 2z + z2

)]
,

f2(z) = Re

(
z

1− z

)
+ i Im

(
z

(1− z)2

)
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Show that f1 and f2 satisfies the conditions of Theorem 4.88 and then use Com-
plexTool to plot images of f3 = tf1 + (1− t)f2 for various values of t.

Try it out!

Large Project 4.91. Theorem 4.88 gives necessary but not sufficient conditions
on f1 and f2 for the linear combination f3 = tf1 +(1−t)f2 to be univalent. That f3 can
be univalent when f1 does not satisfy Condition A is demonstrated by the functions

f1(z) = Re

(
z + 1/3z3

(1− z)3

)
+ i Im

(
z

(1− z)2

)
,

f2(z) = Re

(
z

1− z

)
+ i Im

(
z

(1− z)2

)
.

Construct f3 for various values of t and use ComplexTool to see the images of D under
f3.

In fact, the following functions suggest that several of the hypotheses of Theorem
4.88 can fail and still f3 be univalent:

f1(z) = z − 1

m
zm and f2(z) = z − 1

n
zn,

where m,n ≥ 2. For various values of m, n, and t construct f3 and use ComplexTool
to see the images of D under f3.

Investigate the examples above, and then construct other examples in which f3

is univalent but the hypotheses of Theorem 4.88 do not hold. Using these examples
make a conjecture for hypotheses of a new theorem that guarantees f3 will be univalent.
Prove this new theorem.

Optional

Now, let us look at an example that initially is surprising and is related to the
nonconvex polygons described by Duren, McDougall, and Schaubroeck [11].

Example 4.92. Let f1 = h1 + g1 be the harmonic square map in Example 4.89,
where

h1(z) =
i

4
log

(
1 + z

1− z

)
− 1

4
log

(
i+ z

i− z

)

g1(z) =
i

4
log

(
1 + z

1− z

)
+

1

4
log

(
i+ z

i− z

)
.

We can write this as

f1(z) = Re

[
i

2
log

(
1 + z

1− z

)]
+ i Im

[
− 1

2
log

(
i+ z

i− z

)]
.
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Using the same approach as in Example 4.60, we see that z = eiθ ∈ ∂D is mapped to

u1 + iv1 =


z1 = π

2
√

2
ei
π
4 if θ ∈ (−π

2
, 0),

z3 = π
2
√

2
ei

3π
4 if θ ∈ (0, π

2
),

z5 = π
2
√

2
ei

5π
4 if θ ∈ (π

2
, π),

z7 = π
2
√

2
ei

7π
4 if θ ∈ (π, 3π

2
).

So, f1 maps D onto a square region with vertices at z1, z3, z5 and z7 (see Figure 4.23).
The dilatation for f1 is ω = z2 and Condition A is satisfied. For example, for any
sequence of points, z′n, in the fourth quadrant approaching 1,

lim
n→∞

Re{f1(z′n)} =
π

2
√

2
= sup
|z|<1

Re{f1(z)}

and for any sequence of points, z′′n, in the second quadrant approaching −1,

lim
n→∞

Re{f1(z′′n)} = − π

2
√

2
= inf
|z|<1

Re{f1(z)}.

Figure 4.23. Image of D under f1

Next, let f2 = h2 + g2, where

h2(z) = − 1

4
e−i

3π
4 log

(
ei
π
4 + z

ei
π
4 − z

)
− 1

4
e−i

π
4 log

(
ei

3π
4 + z

ei
3π
4 − z

)

g2(z) =
1

4
ei

3π
4 log

(
ei
π
4 + z

ei
π
4 − z

)
+

1

4
ei
π
4 log

(
ei

3π
4 + z

ei
3π
4 − z

)
.
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Similar to above

f2(z) = Re

{
i

2
√

2

[
log

(
ei
π
4 + z

ei
π
4 − z

)
+ log

(
ei

3π
4 + z

ei
3π
4 − z

)]}

+ i Im

{
1

2
√

2

[
log

(
ei
π
4 + z

ei
π
4 − z

)
− log

(
ei

3π
4 + z

ei
3π
4 − z

)]}
,

z = eiθ ∈ ∂D is mapped to

u2 + iv2 =


z0 = π

2
√

2
if θ ∈ (−π

4
, π

4
),

z2 = iπ
2
√

2
if θ ∈ (π

4
, 3π

4
),

z4 = − π
2
√

2
if θ ∈ (3π

4
, 5π

4
),

z6 = − iπ
2
√

2
if θ ∈ (5π

4
, 7π

4
).

That is, f2 maps D onto a rotated square region with vertices at z0, z2, z4 and z6 (see
Figure 4.24) with ω = z2, and it also satisfies Condition A.

Figure 4.24. Image of D under f2

By Theorem 4.88, f3 = tf1 + (1− t)f2 is univalent. What is the image of D under

f3? Let’s look at the specific case when t =
1

2
. You might think that f3(D) would be

just an overlaying of f1(D) and f2(D) (see Figure 4.25(a)). However, it is not. Instead,
it is the nonconvex star shown in Figure 4.25(b).

Why is the correct image the nonconvex star in Figure 4.25(b)? Let’s look where
arcs of the unit circle are mapped under f3. Notice that f1(eiθ) and f2(eiθ) depend
upon which of eight arcs θ is in. For example, if θ ∈ (−π

4
, 0), then f1(eiθ) = z1 and

f2(eiθ) = z0, and so in this interval f3(eiθ) = z1+z0
2

(that is, it is the midpoint between z1

and z0). However, if θ ∈ (0, π
4
), then f1(eiθ) = z3 and f2(eiθ) = z0, and f3(eiθ) = z3+z0

2
.
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(a) (b)

Figure 4.25. Which is the image of f3(D)?

Specifically,

f3(eiθ) =



w1 = z1+z0
2

= π
2
√

2
cos π

8
ei
π
8 if θ ∈ (−π

4
, 0),

w2 = z3+z0
2

= π
2
√

2
cos 3π

8
ei

3π
8 if θ ∈ (0, π

4
),

w3 = z3+z2
2

= π
2
√

2
cos π

8
ei

5π
8 if θ ∈ (π

4
, π

2
),

w4 = z5+z2
2

= π
2
√

2
cos 3π

8
ei

7π
8 if θ ∈ (π

2
, 3π

4
),

w5 = z5+z4
2

= π
2
√

2
cos π

8
ei

9π
8 if θ ∈ (3π

4
, π),

w6 = z7+z4
2

= π
2
√

2
cos 3π

8
ei

11π
8 if θ ∈ (π, 5π

4
),

w7 = z7+z6
2

= π
2
√

2
cos π

8
ei

13π
8 if θ ∈ (5π

4
, 3π

2
),

w8 = z1+z6
2

= π
2
√

2
cos 3π

8
ei

15π
8 if θ ∈ (3π

2
, 7π

4
).

Note that the vertices w1, w3, w5 and w7 lie equally spaced on a circle of radius router =
π

2
√

2
cos π

8
≈ 1.026, while the vertices w2, w4, w6 and w8 lie equally spaced on a circle of

radius rinner = π
2
√

2
cos 3π

8
≈ 0.425.

We can visualize the boundary of f3(D) by plotting the eight vertices z0, z1, . . . z7

and drawing the midpoints w1, . . . , w8 (see Figure 4.26).

z1 w1

z 0

z2z3

z7

z4

z5
z6

z3

w2

z 0

z1
z2

z7

z4

z5
z6

w3

z1

z 0

z2
z3

z7

z4

z5
z6

w2

w3

w1
w4

w8
w5 w6

w7

Figure 4.26. Visualizing the image of the boundary of f3(D)
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We can also explore the linear combination of these two functions that mapped
onto rotated square regions by using the applet, LinComboTool (see Figure 4.27).

Figure 4.27. The applet LinComboTool

Open up LinComboTool. Make sure that at the top of the page, the Number
of Polygonal Pa... is 2. In Panel #1 enter the left end points of the intervals
for the arcs of the unit circle used in function f1 (these endpoints need to be pos-
itive numbers). Then enter the real and imaginary values of the image of this arc
under the function f1. For example, if we take the interval (0, π

2
) for Arc 1 (note that

we are starting with this interval because we need to use nonnegative values), then
enter 0 for Arc 1, pi/(2*sqrt(2))*cos(pi/4) for the real value of its image, and
pi/(2*sqrt(2))*sin(pi/4) for the imaginary value of its image. Remember that for
Arc 4, we will use 3pi/2. If there are not enough boxes for the arcs, click on the Add
button to add an arc. Similarly, click on Remove, if there are too many boxes for the
arcs. When you are done entering the points, click on Graph to produce the image
f1(D). Then go to Panel #2 and enter the points for f2 and graph f2(D). After these
are both graphed, click on Create LinCombogon and the corresponding image will
appear in the lower lefthand box (see Figure 4.28).

Exercise 4.93. Using LinComboTool, start with the same arc values and corre-
sponding point values as in Example 4.92. Note that you can change the value of t
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Figure 4.28. Image of D under f3

by sliding up and down the red dot near the top of the page. Describe what hap-
pens as t varies from 0 to 1. In the example above we showed that when t = 1

2
,

router = π
2
√

2
cos π

8
≈ 1.026 and rinner = π

2
√

2
cos 3π

8
≈ 0.425. Compute router and rinner

for any t (0 ≤ t ≤ 1).
Try it out!

Remark 4.94. In Theorem 4.88, we do not need that ω1 = ω2. Looking over the
proof of this theorem, what is really needed is just that f3 is locally univalent. This
can be achieved if we have that

(59) |ω3| =
∣∣∣∣ tg′1 + (1− t)g′2
th′1 + (1− t)h′2

∣∣∣∣ < 1.

Exercise 4.95. We can have one pair of functions f1, f2 mapping onto image
domains G1, G2, respectively, and another pair of functions f̃1, f̃2 that also map onto
these same image domains G1, G2, but the linear combinations f3 and f̃3 map onto a
different image domains.
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Repeat the steps in Example 4.92 using the same function for f2 but replacing f1

with the harmonic square map in Example 4.60, where

h1(z) =
1

4
log

(
1 + z

1− z

)
+
i

4
log

(
i+ z

i− z

)
g1(z) = −1

4
log

(
1 + z

1− z

)
+
i

4
log

(
i+ z

i− z

)
.

Note that

h′1(z) =
1

1− z4
, g′1(z) =

−z2

1− z4

h′2(z) =
1

1 + z4
, g′2(z) =

z2

1 + z4
.

(a.) In this case, ω1(z) = −z2 while ω2(z) = z2. Using eq. (59) in Remark 4.94
above, show that f3 is locally univalent.

(b.) Use LinComboTool find the image of f3(D) using this f1 and f2.
(c.) Explain why this happens by using the approach in Example 4.92 to compute

the new values of w1, . . . , w8 and then use the visualization technique in the
example to plot the eight vertices z0, . . . , z7 and draw the midpoints w1, . . . , w8.

Try it out!

Exercise 4.96. Repeat the steps in Exercise 4.95 using the same function for f1

but replacing f2 with the harmonic hexagon map that can be derived from eq (57) for
h′ and g′ at the end of Example 4.60 , where

h′2(z) =
1

1− z6
⇒

h2(z) =
1

6
log

(
1 + z

1− z

)
+
e
−iπ
3

6
log

(
1 + e

iπ
3 z

1− e iπ3 z

)
+
e
−i2π

3

6
log

(
1 + e

i2π
3 z

1− e i2π3 z

)
g′2(z) =

−z4

1− z6
⇒

g2(z) =− 1

6
log

(
1 + z

1− z

)
− e

iπ
3

6
log

(
1 + e

iπ
3 z

1− e iπ3 z

)
− e

i2π
3

6
log

(
1 + e

i2π
3 z

1− e i2π3 z

)
.

(a.) In this case, ω1(z) = −z2 while ω2(z) = −z4. Using eq. (59) in the remark
above, show that f3 is locally univalent.

(b.) Use LinComboTool find the image of f3(D) using this f1 and f2.
(c.) Explain why this happens by using the approach in Example 4.92 to compute

the new values of the vertices of f3(D).

Try it out!
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Figure 4.29. Image of D under f3 in Exercise 4.95

We can generalize Theorem 4.88 to include the linear combination of n functions
f1, . . . , fn.

Theorem 4.97. Let f1 = h1 + g1, . . ., fn = hn + gn be n univalent harmonic
mappings convex in the imaginary direction and ω1 = · · · = ωn. If f1, . . ., fn satisfy
condition A, then F = t1f1 + · · · + tnfn is convex in the imaginary direction, where
0 ≤ tn ≤ 1 and t1 + · · ·+ tn = 1.

Exercise 4.98. Prove Theorem 4.97.
Try it out!

Exploration 4.99. Using the Theorem 4.97, create three maps in three different
panels of LinComboTool, where each map takes 4 arcs on the unit circle to 4 vertices of
a square. Make sure that these maps satisfy the conditions of the theorem. Then click
on the Create LinCombogon button to see the resulting image domain. Explore
this idea by using different maps in the panels. For an example, see Figure 4.30

Try it out!
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Figure 4.30. Example of image of D under the linear combination of
three squares

Large Project 4.100. In Example 4.92 and in Exercise 4.95 we took the linear
combinations of two harmonic square mappings and ended up with fundamentally
different images. Explore this with other n-gons. In particular, use LinComboTool
to determine what and how many fundamentally different (i.e., not rotations or not
scalings) images can be constructed when taking the linear combination with t = 1

2
of

two harmonic 5-gon maps? 6-gon maps? n-gon maps. Make sure that Condition A
holds in every case and that |ω3| < 1.

Optional

Large Project 4.101. In Exercise 4.96 we took the linear combinations of a
harmonic 4-gon mapping and a harmonic 6-gon mapping with dilatations −z2 and
−z4, respectively. Use LinComboTool to determine what combinations are possible
and what images can be constructed when taking the linear combination with t = 1

2
of a harmonic m-gon and n-gon, where m < n. Make sure that Condition A holds in
every case and that |ω3(z)| < 1.

Optional

287



4.7. Convolutions

Another way of combining two univalent functions is the Hadamard product or
convolution. For analytic functions

f(z) =
∞∑
n=0

anz
n and F (z) =

∞∑
n=0

Anz
n,

their convolution is defined as

f(z) ∗ F (z) =
∞∑
n=0

anAnz
n.

Example 4.102. Consider the convolution of the right half-plane function (see
Example 4.11)

f(z) =
z

1− z
=
∞∑
n=1

zn

and the Koebe function (see Example 4.12)

F (z) =
z

(1− z)2
=
∞∑
n=1

nzn.

Then

f(z) ∗ F (z) =
z

1− z
∗ z

(1− z)2

=
∞∑
n=1

zn ∗
∞∑
n=1

nzn

=(z + z2 + z3 + z4 + · · · ) ∗ (z + 2z2 + 3z3 + 4z4 + · · · )
=(z + 2z2 + 3z3 + 4z4 + · · · )

=
z

(1− z)2
.

0 0convoluted
 with

results
in

Figure 4.31. Right half-plane map convoluted with the Koebe function
yields the Koebe function.
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Example 4.103. Now, consider the convolution of the Koebe function, f(z) =
z

(1− z)2
, and the horizontal strip map, F (z) =

1

2
log

(
1 + z

1− z

)
. What is the Hadamard

product, f(z) ∗ F (z)? We need to compute the Taylor series for F . To do so, notice
that

log(1− z) =

∫
−1

1− z
dz = −

∫ ∞∑
n=0

zn dz =
∞∑
n=0

−1

n+ 1
zn+1.

Likewise,

log(1 + z) =
∞∑
n=0

(−1)n+1 1

n+ 1
zn+1.

Hence,

1

2
log

(
1 + z

1− z

)
=
∞∑
n=0

(−1)n+1 1

n+ 1
zn+1 −

∞∑
n=0

−1

n+ 1
zn+1

=
∞∑
n=0

1

2n+ 1
z2n+1.

Thus,

f(z) ∗ F (z) =
z

(1− z)2
∗ 1

2
log

(
1 + z

1− z

)
=
∞∑
n=1

nzn ∗
∞∑
n=0

1

2n+ 1
z2n+1

=(z + 2z2 + 3z3 + 4z4 + 5z5 + · · · ) ∗ (z +
1

3
z3 +

1

5
z5 + · · · )

=z + z3 + z5 + · · · .

Since
1

1− z
= 1 + z + z2 + z3 + · · · , we have that

1

1− z2
= 1 + z2 + z4 + z6 + · · · and

z

1− z2
= z + z3 + z5 + · · · . That is,

f(z) ∗ F (z) =
z

(1− z)2
∗ 1

2
log

(
1 + z

1− z

)
=

z

1− z2
.

Exercise 4.104. Let f(z) = − log(1− z) and F (z) =
z

(1− z)2
. Determine f(z) ∗

F (z).
Try it out!

Proposition 4.105.
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0 convoluted
with

results
in

0

0

Figure 4.32. The Koebe function convoluted with a horizontal strip
map yields a double-slit map.

(a) The right half-plane mapping, f(z) =
z

1− z
, acts as the convolution identity;

that is, if F is an analytic function, then
z

1− z
∗ F (z) = F (z).

(b) The Koebe function, f(z) =
z

(1− z)2
, acts as a differential operator; that is,

if F (z) is an analytic function, then
z

(1− z)2
∗ F (z) = zF ′(z).

(c) Convolution is commutative; that is, if f1, f2 are analytic functions, then
f1 ∗ f2 = f2 ∗ f1.

(d) If f1, f2 are analytic functions, then (f1(z) ∗ f2(z))′ = zf ′1(z) ∗ f2(z).

Exercise 4.106. Prove Proposition 4.105 (a)-(d).
Try it out!

Note that if f1, f2 ∈ S, then f1 ∗ f2 may not be in S. For example,

z

(1− z)2
∗ z

(1− z)2
=
∞∑
n=1

nzn ∗
∞∑
n=1

nzn

=
∞∑
n=1

n2zn /∈ S.

Why do we know that
∞∑
n=1

n2zn /∈ S?

However, we do have the following results. Note that if the analytic function,
f ∈ S, maps onto a domain that is convex, then we will denote that by writing f ∈ K.
Similarly, if the harmonic function, f ∈ SH, maps onto a domain that is convex, then
we will write f ∈ KH.

Theorem 4.107 (Ruscheweyh and Sheil-Small, [21]). Let f, f1 ∈ K. Then f ∗f1 ∈
K. In addition, if f2, f3 ∈ S map onto a close-to-convex, and a starlike domain,
respectively. Then f ∗f2, f ∗f3 are in S and map onto a close-to-convex, and a starlike
domain, respectively.

290



Now let’s consider the case of harmonic convolutions.

Definition 4.108. For harmonic univalent functions

f(z) = h(z) + g(z) = z +
∞∑
n=2

anz
n +

∞∑
n=1

bn z
n and

F (z) = H(z) + G(z) = z +
∞∑
n=2

Anz
n +

∞∑
n=1

Bn z
n,

define the harmonic convolution as

(60) f(z) ∗ F (z) = h(z) ∗H(z) + g(z) ∗G(z) = z +
∞∑
n=2

anAnz
n +

∞∑
n=1

bnBn z
n.

As mentioned above, for the convolution of analytic functions it is known that if
f1, f2 ∈ K, then f1 ∗ f2 ∈ K. Is such a similar result true for harmonic univalent
convex mappings?

There are a few known results about harmonic convolutions of functions on D.

Theorem 4.109 (Clunie and Sheil-Small, [5]). If f ∈ KH and ϕ ∈ S, then the
functions

f ∗ (αϕ+ ϕ) ∈ SH

map D onto a close-to-convex domain, where (|α| ≤ 1).

Clunie and Sheil-Small posed the following open problem (see [5]).

Open Problem 4.110. Let f ∈ KH, then what are the collection of harmonic
functions F such f ∗ F ∈ KH?

As partial answers to this open question, there are the following results.

Theorem 4.111 (Ruscheweyh and Salinas, [20]). Let g be analytic in D. Then

f ∗̃ g = Re{f} ∗ g + Im{f} ∗ g ∈ KH

for all f ∈ KH ⇐⇒ for each γ ∈ R, g + iγzg′ is convex in the imaginary direction.

Theorem 4.112 (Goodloe, [12]). Let fm, fn ∈ KH be the canonical harmonic
functions that map D onto the regular m-gon and n-gon, respectively. Then fm ∗ fn ∈
KH and the image of D is a p-gon, where p = lcm(m,n).

291



Exercise 4.113. Compute fk = f4 ∗f6, where f4 = h4 + g4 is the canonical square
map (see Example 4.89) given by

h4(z) =
i

4
log

(
1 + z

1− z

)
− 1

4
log

(
i+ z

i− z

)
=

∫
1

1− z4
dz

g4(z) =
i

4
log

(
1 + z

1− z

)
+

1

4
log

(
i+ z

i− z

)
=

∫
−z2

1− z4
dz.

and f6 = h6 + g6 is the canonical regular hexagon map (see Exercise 4.96) given by

h6(z) =
1

6
log

(
1 + z

1− z

)
+
e
−iπ
3

6
log

(
1 + e

iπ
3 z

1− e iπ3 z

)
+
e
−i2π

3

6
log

(
1 + e

i2π
3 z

1− e i2π3 z

)
=

∫
1

1− z6
dz

g6(z) =− 1

6
log

(
1 + z

1− z

)
− e

iπ
3

6
log

(
1 + e

iπ
3 z

1− e iπ3 z

)
− e

i2π
3

6
log

(
1 + e

i2π
3 z

1− e i2π3 z

)
=

∫
−z4

1− z6
dz.

Sketch fk(D) using ComplexTool.
Try it out!

In considering Open Problem 4.110, let’s look at a simple problem: if f1, f2 ∈ KH,
then when is f1 ∗ f2 ∈ SH?

Recall Lewy’s Theorem that f = h+ g with h′(z) 6= 0 in D is locally univalent and
sense-preserving if and only if ω(z) = g′(z)/h′(z)| < 1, ∀z ∈ D.

Theorem 4.114 (Dorff, [6]). Let f1 = h1 + g1, f2 = h2 + g2 ∈ KH with hk(z) +
gk(z) = z

1−z for k = 1, 2. If f1 ∗ f2 is locally univalent and sense-preserving, then
f1 ∗ f2 ∈ SH and is convex in the direction of the real axis.

Proof. Since h(z) + g(z) =
z

1− z
and F (z) ∗ z

1− z
= F (z) for any analytic

function F , we have that

h2 − g2 = (h1 + g1) ∗ (h2 − g2)

= h1 ∗ h2 − h1 ∗ g2 + h2 ∗ g1 − g1 ∗ g2

h1 − g1 = (h1 − g1) ∗ (h2 + g2) =

h1 ∗ h2 + h1 ∗ g2 − h2 ∗ g1 − g1 ∗ g2.

Thus,

(61) h1 ∗ h2 − g1 ∗ g2 = 1
2
[(h1 − g1) + (h2 − g2)].

We will now show that (h1 − g1) + (h2 − g2) is convex in the direction of the real
axis. Note that

h′(z)−g′(z) =
(
h′(z)+g′(z)

)(h′(z)− g′(z)

h′(z) + g′(z)

)
=
(
h′(z)+g′(z)

)(1− ω(z)

1 + ω(z)

)
=

p(z)

(1− z)2
,
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where Re{p(z)} > 0,∀z ∈ D.
So, letting ϕ(z) = z/(1− z)2, we have

Re

{
z[(h′1(z)− g′1(z)) + (h′2(z)− g′2(z))]

ϕ(Z)

}
= Re

{
z

(1−z)2 [p1(z) + p2(z)]
z

(1−z)2

}
= Re

{
p1(z) + p2(z)

}
> 0.

Therefore, by Theorem 4.76 in Section 4.5 and eq.(61), h1 ∗ h2 − g1 ∗ g2 is convex in
the direction of the real axis.

Finally, since we assumed that f1 ∗̃f2 is locally univalent, we apply Clunie and Sheil-
Small’s Shearing Theorem (see Theorem 4.40) to get that f1 ∗̃ f2 = h1 ∗ h2 − g1 ∗ g2 is
convex in the direction of the real axis. �

It is known (see [7]), that for any right half-plane mapping f = h+ g ∈ KH,

h(z) + g(z) =
z

1− z
.

Hence, Theorem ?? applies to harmonic right half-plane mappings.

Example 4.115. Let f0 = h0 + g0 be the canonical right half-plane mapping given
in Example 4.11 with h0(z) + g0(z) = z

1−z with ω(z) = −z. Then

h0(z) =
z − 1

2
z2

(1− z)2

g0(z) =
1
2
z2

(1− z)2
.

Next, let f1 = h1 + g1, where h1(z) + g1(z) = z
1−z with ω(z) = z. Then

h1(z) =
1

4
log

(
1 + z

1− z

)
+

1

2

z

1− z

g1(z) = −1

4
log

(
1 + z

1− z

)
+

1

2

z

1− z
.

Note that f1 is a right half-strip mapping (see Figure 4.33).
Consider F1 = f0 ∗ f1 = H1 + G1. Note that

H1(Z) = h0(z) ∗ h1(z) =
1

2

[
h1(z) + zh′1(z)

]
=

1

8
log

(
1 + z

1− z

)
+

3
4
z − 1

4
z3

(1− z)2(1 + z)

G1(z) = g0(z) ∗ g1(z) =
1

2

[
g1(z)− zg′1(z)

]
= −1

8
log

(
1 + z

1− z

)
+

1
4
z − 1

2
z2 − 1

4
z3

(1− z)2(1 + z)
,

with

ω̃(z) = −z
(

2z2 + z + 1

z2 + z + 2

)
.
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Figure 4.33. Image of D under f1.

The image of D under F1 = f0 ∗ f1 is shown in Figure 4.34.

Figure 4.34. Image of D under F1 = f0 ∗ f1.

Exercise 4.116. Compute F = H + G, where F = f0 ∗ f0. Sketch F (D) using
ComplexTool.

Try it out!

Throughout the rest of this section we will consider the question ”For which di-
latation functions, ω = g′/h′, is the function f = h + g locally univealent. In doing
so, let

f0(z) = h0(z) + g0(z) =
z − 1

2
z2

(1− z)2
−

1
2
z2

(1− z)2

be the canonical right half-plane mapping given in Example 4.29.
Also, as mentioned in the proof above, the collection of functions f = h+ g ∈ SOH

that map D onto the right half-plane, R = {w : Re(w) > −1/2}, have the form

h(z) + g(z) =
z

1− z
.

We will use the following method to prove that local univalency holds:
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Method 1. (Cohn’s Rule, see [19], p 375) Given a polynomial

f(z) = a0 + a1z + · · ·+ anz
n

of degree n, let

f ∗(z) = zn f(1/ z) = an + an−1z + · · ·+ a0z
n.

Denote by p and s the number of zeros of f inside the unit circle and on it, respectively.
If |a0| < |an|, then

f1(z) =
anf(z)− a0f

∗(z)

z

is of degree n− 1 with p1 = p− 1 and s1 = s the number of zeros of f1 inside the unit
circle and on it, respectively.

Theorem 4.117. Let f = h + g ∈ KO
H with h(z) + g(z) = z

1−z and ω(z) = eiθzn

(n ∈ N and θ ∈ R). If n = 1, 2, then f0 ∗ f ∈ SOH and is convex in the direction of the
real axis.

Proof. Let the dilatation of f0 ∗f be given by ω̃ = (g0 ∗g)′/(h0 ∗h)′. By Theorem
4.114 and by Lewy’s Theorem, we just need to show that |ω̃(z)| < 1,∀z ∈ D.

First, note that if F is analytic in D and F (0) = 0, then

h0(z) ∗ F (z) =
1

2

[
F (z) + zF ′(z)

]
g0(z) ∗ F (z) =

1

2

[
F (z)− zF ′(z)

]
.

Also, since g′(z) = ω(z)h′(z), we know g′′(z) = ω(z)h′′(z) + ω′(z)h′(z).
Hence

(62) ω̃(z) = − zg′′(z)

2h′(z) + zh′′(z)
=
−zω′(z)h′(z)− zω(z)h′′(z)

2h′(z) + zh′′(z)
.

Using h(z) + g(z) = z
1−z and g′(z) = ω(z)h′(z), we can solve for h′(z) and h′′(z) in

terms of z and ω(z):

h′(z) =
1

(1 + ω(z))(1− z)2

h′′(z) =
2(1 + ω(z))− ω′(z)(1− z)

(1 + ω(z))2(1− z)3
.
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Substituting these formulas for h′ and h′′ into the equation for ω̃, we derive:

ω̃(z) =
−zω′(z)h′(z)− zω(z)h′′(z)

2h′(z) + zh′′(z)

=− z
ω2(z) + [ω(z)− 1

2
ω′(z)z] + 1

2
ω′(z)

1 + [ω(z)− 1
2
ω′(z)z] + 1

2
ω′(z)z2

.

(63)

Now, consider the case in which ω(z) = eiθz. Then eq (63) yields

ω̃(z) =− ze2iθ

(
z2 + 1

2
e−iθz + 1

2
e−iθ

)(
1 + 1

2
eiθz + 1

2
eiθz2

) = −ze2iθ p(z)

q(z)
.

Note that q(z) = z2 p(1/z). In such a situation, if z0 is a zero of p, then 1
z0

is a zero
of q. Hence,

ω̃(z) =− ze2iθ (z + A)(z +B)

(1 + Az)(1 + Bz)
.

Using Method 1, we have

p1(z) =
a2p(z)− a0p

∗(z)

z
=

3

4
z +

(
1

2
e−iθ − 1

4

)
.

So, p1 has one zero at z0 = 1
3
− 2

3
e−iθ ∈ D. By Cohn’s Rule, p has two zeros, namely

A and B, with |A|, |B| < 1.
Next, consider the case in which ω(z) = eiθz2. In this case,

|ω̃(z)| =
∣∣z2
∣∣∣∣∣∣z3 + e−iθ

1 + eiθz3

∣∣∣∣ = |z|2 < 1.

�

Example 4.118. Let f2 = h2 + g2 be the harmonic mapping in D such that
h1(z) + g2(z) = z

1−z and ω2(z) = −z2. Then we can compute

h2(z) =
1

8
ln

(
1 + z

1− z

)
+

1

2

z

1− z
+

1

4

z

(1− z)2

g2(z) =− 1

8
ln

(
1 + z

1− z

)
+

1

2

z

1− z
− 1

4

z

(1− z)2

and the image of D under f2 is the right half-plane, R = {w ∈ C
∣∣Re{w} ≥ −1

2
}. Note

that f2(eit) = 1
2

+ i π
16

, if 0 < t < π, and f2(eit) = 1
2
− i π

16
, if π < t < 2π (see Figure

4.35).
Let

F2 = h0 ∗ h2 + g0 ∗ g2 = H2 + G2.
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Figure 4.35. Image of D under f2.

Then we can compute that

H2(z) =
1

16
ln

(
1 + z

1− z

)
+

1

4

z

1− z
+

1

8

z

(1− z)2
+

1

2

z

(1− z)3(1 + z)

G2(z) =− 1

16
ln

(
1 + z

1− z

)
+

1

4

z

1− z
− 1

8

z

(1− z)2
+

1

2

z3

(1− z)3(1 + z)
.

(64)

It can be shown analytically that F2(D) is the entire complex plane minus two half-lines
given by x ± π

16
i, x ≤ −1

4
. This is not clear if we use ComplexTool with the standard

settings to view this image (see Figure 4.36). However, using both this image and
the image of just the unit circle (see Figure 4.37), this result seems reasonable [Note:
to graph the image of ∂D in ComplexTool, change the settings in the middle box of
ComplexTool to Interior circles: 0 and Rays: 0].

Figure 4.36. Image of D under F2 = f0 ∗ f2.

Remark 4.119. If we assume the hypotheses of the previous theorem with the
exception of making n ≥ 3, then for each n we can find a specific ω(z) = eiθzn such
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Figure 4.37. Image of ∂D under F2 = f0 ∗ f2.

that f0 ∗ f /∈ SOH . For example, if n is odd, let ω(z) = −zn and then eq (63) yields

ω̃(z) = −zn
zn+1 +

(
n
2
− 1
)
z − n

2

1 +
(
n
2
− 1
)
zn − n

2
zn+1

.

It suffices to show that for some point z0 ∈ D, |ω̃(z0)| > 1. Let z0 = − n
n+1
∈ D. Then

ω̃(z0) =

(
n

n+ 1

)n (
n
n+1

)n+1 −
(
n
2
− 1
)(

n
n+1

)
− n

2

1−
(
n
2
− 1
)(

n
n+1

)n − (n
2

)(
n
n+1

)n+1

= 1 +

[(
n+1
n

)n − ( n
n+1

)n+1
]

+
[
1− n

n+1

]
(
n
2
− 1
)

+
(
n
2

)(
n
n+1

)
+
(
n+1
n

)n .

(65)

Note that
[(

n+1
n

)n−( n
n+1

)n+1]
+
[
1− n

n+1

]
> 0. Also,

(
n
2
−1
)

+
(
n
2

)(
n
n+1

)
+
(
n+1
n

)n
> 0

since
(
n
2
− 1
)

+
(
n
2

)(
n
n+1

)
> n − 3

2
> e and

(
n+1
n

)n
is an increasing series converging

to e. Thus, if n ≥ 5 is odd, |ω̃(z0)| > 1. If n = 3, it is easy to compute that

|ω̃(z0)| =
(

3
4

)3
∣∣∣34− 1

2
·3·43− 3

2
·44

44− 1
2
·33·4− 3

2
·34

∣∣∣ > 2. Now, if n is even, let ω(z) = zn and z0 = − n
n+1

.

This simplifies to the same ω̃(z0) given eq (65) and the argument above also holds for

n ≥ 6. If n = 4, |ω̃(z0)| =
(

4
5

)4
∣∣∣45−4·54−2·55

55−44·5−2·45

∣∣∣ > 15.

Exploration 4.120. Using ComplexPlot, graph ω̃(D) given in eq (63) for ω(z) =
−zn, where n = 1, 2, 3, 4. Explain how these images support Theorem 4.117 and
Remark 4.119.

Try it out!

Theorem 4.121. Let f = h + g ∈ KO
H with h(z) + g(z) = z

1−z and ω(z) = z+a
1+az

with a ∈ (−1, 1). Then f0 ∗ f ∈ SOH and is convex in the direction of the real axis.
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Proof. Using ω(z) = z+a
1+az

, where −1 < a < 1, we have

ω̃(z) =− z
(
z2 + 1+3a

2
z + 1+a

2

)(
1 + 1+3a

2
z + 1+a

2
z2
)

=− z f(z)

f ∗(z)

=− z (z + A)(z +B)

(1 + Az)(1 + Bz)

=− z p(z)

q(z)
.

Again using Method 1,

p1(z) =
a2p(z)− a0p

∗(z)

z
=

(a+ 3)(1− a)

4
z +

(1 + 3a)(1− a)

4
.

So p1 has one zero at z0 = −1+3a
a+3

which is in the unit circle since −1 < a < 1. Thus,
|A|, |B| < 1. �

Large Project 4.122. In Theorem 4.114, we require that the resulting convolu-
tion function satisfy the dilatation condition

|ω(z)| =
∣∣∣∣g′(z)

h′(z)

∣∣∣∣ < 1,∀z ∈ D.

Determine various ω functions for which the dilatation condition holds and ones for
which it does not hold. See Theorem 4.117, Theorem 4.121, and Remark 4.119 for
examples.

Optional

Large Project 4.123. Similar to the right half-plane map, f = h + g is an

asymmetric vertical strip map if h(z) + g(z) = 1
2i sinα

log
(

1+zeiα

1+ze−iα

)
, where 0 < α < π.

Theorem 4.114 can be stated in terms of asymmetric vertical strip mappings instead
of right half-plane mappings.

Theorem: Let f = h + g ∈ KO
H with ω = g′/h′ be

such that h+g = 1
2i sinα

log
(

1+zeiα

1+ze−iα

)
, where 0 < α < π.

Then f0 ∗ f ∈ SOH and is convex in the direction of the
real axis.

Determine various ω functions for which the dilatation condition holds for this
theorem and ones for which it does not hold.

Optional
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4.8. Conclusion

We have presented an introduction to harmonic univalent mappings and described
a few topics to entice a beginner. Our emphasis is on the geometric aspects of harmonic
univalent mappings that students can explore using the exercises, the exploratory prob-
lems, and the projects along with the applets. There are more interesting and deeper
topics in harmonic univalent mappings. Here is a short list along with some resources:
(a) coefficient estimates and conjectures ([5], [9], [23]); (b) a generalized Riemann
Mapping Theorem ([9], [14], [26]); (c) properties of special classes of functions such as
convex, close-to-convex, starlike, and typically real ([5], [9], [23]); (d) harmonic polyno-
mials ([4], [24], [28]); (e) extremal problems ([9]); (f) harmonic meromorphic functions
([16], [25]); (g) inner mapping radius ([2], [8]); and (h) multiply connected domains
([9], [10]). Another topic is the connection between harmonic mappings and minimal
surfaces. This topic is discussed in the chapter on minimal surfaces in this book. In
addition, there are several nice general resources to learn more about harmonic univa-
lent functions. These include Peter Duren’s book [9], Clunie and Sheil-Small’s original
article [5], Bshouty and Hengartner’s article [3], and Schober’s article [22]. Finally,
Bshouty and Hengartner complied a list of open problems and conjectures [2].
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4.9. Additional Exercises

The Family S of Analytic, Normalized, Univalent Functions
Exploration 4.124.

(a) Using ComplexTool guess the smallest k > 0 such that (z+ k)2 is univalent in
D.

(b) Prove your guess from (a).
(c) Using ComplexTool guess the smallest k > 0 such that (z+ k)3 is univalent in

D.
(d) Prove your guess from (c).

Exercise 4.125. Show that f(z) = z + a3z
3 is univalent in D ⇐⇒ |a3| ≤ 1

3
.

Determine f(D) analytically when a3 = −1
3
.

Exercise 4.126. Work out the details to show that z
(1−z)2 =

∑∞
n=1 nz

n = z+2z2 +

3z3 + · · ·

Exercise 4.127. Determine f(D) analytically f(z) =
z − cz2

(1− z)2
, where 0 < c < 1.

Exercise 4.128. Prove that f(z) =
1

2
log

(
1 + z

1− z

)
is univalent. Determine f(D)

analytically.

Exploration 4.129. Consider the function

fc(z) =
1

2c

[(
1 + z

1− z

)c
− 1

]
.

(a) Show that if c = 2, then fc(z) is the Koebe function.
(b) Show that if c = 1, then fc(z) is the right half-plane mapping.
(c) Use ComplexTool to view the image of D under fc for various values 0 < c < 2.

For what values of c does fc appear to be univalent.

Exercise 4.130. Find the image of D analytically under the univalent function

f(z) =
z

1− z2
.

The Family SH of Normalized, Harmonic, Univalent Functions

Exercise 4.131. Determine if f(x, y) = u(x, y)+ iv(x, y) = (x3 +xy2)+ i(x2y+y3)
is complex-valued harmonic.

Exercise 4.132. Prove that f(x, y) = u(x, y) + iv(x, y) is harmonic ⇐⇒ ∂2f

∂z∂z
=

0.

Exercise 4.133. Rewrite f(x, y) = u(x, y) + iv(x, y) = (x− 1
2
x2 + 1

2
y2) + i(y−xy)

in terms of z and z and then determine if f is analytic.
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Exercise 4.134. Prove that for all functions f ∈ SOH , the sharp inequality |b2| ≤ 1
2

holds.

Exercise 4.135. Verify that the image of D under the harmonic function f(z) =
z + 1

2
z2 is a hypocycloid with 3 cusps.

Exercise 4.136. If a domain is convex in the direction eiϕ for every value of
ϕ ∈ [0, π), then the domain is called a convex domain. For example, a disk is a convex
domain. For which values of n = 1, 2, 3, . . . are the following functions that map D
onto a convex domain?

(a) f(z) = zn,
(b) f(z) = z − 1

n
zn (see Example 4.8 and Definition 4.9),

(c) f(z) = z
(1−z)n (see Examples 4.11 and 4.12 to get you started).

The Shearing Technique

Exploration 4.137. Let f = h+ g with h(z)− g(z) = z− 1
n
zn and ω(z) = zn−1.

Use ShearTool to sketch the graph of f(D) for different values of n and then compute
h and g explicitly so that f ∈ SOH .

Exercise 4.138. Let f = h+ g with h(z)−g(z) = z
(1−z)2 and ω(z) = −z. Compute

h and g explicitly so that f ∈ SOH and determine f(D).

Exercise 4.139. Let f = h+ g with h(z)− g(z) =
z

(1− z)2
and ω(z) = z

z + 1
2
z

1 + 1
2
z

.

(a) Show that |ω(z)| < 1,∀z ∈ D.
(b) Compute h and g explicitly so that f ∈ SOH .
(c) Show that f(D) is a slit domain like the Koebe domain. Determine where the

tip of the slit is located.
(d) What is the significance of this example in relationship to the Riemann Map-

ping Theorem?

Exercise 4.140. Let f = h+ g with h(z) + g(z) =
z

1− z
and ω(z) = eiθz, where

θ ∈ [0, 2π). Use ShearTool to sketch the graph of f(D) for different values of n and
then compute h and g explicitly so that f ∈ SOH .

Exploration 4.141. We can find harmonic functions, fn = hn + gn, that map
onto regular n-gons by generalizing the ideas from Example 4.60. Use ShearTool to
explore the images of D under f = h+ g, where f comes from shearing

hn(z)− gn(z) =
n−1∑
k=0

−2 cos
(

2πk
n

)
n

log
(

1− zei
2πk
n

)
with ω(z) = −zn−2.
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Exploration 4.142. Let f = h + g with h(z) − g(z) =
1

2
log

(
1 + z

1− z

)
and

ω(z) = m2z2, where m = eiθ(0 ≤ θ ≤ π
2
).Use ShearTool to sketch the graph of f(D)

for different values of n and then compute h and g explicitly so that f ∈ SOH [Preview:
This Exploration fits nicely with minimal surfaces, because when m = 1 f lifts to
a canonical minimal surface, Scherk’s doubly-periodic, and when m = i f lifts to a
different canonical minimal surface, the helicoid].

Dilatations

Exploration 4.143. Shear h(z)− g(z) = z
1−z using ω(z) = az, where −1 ≤ a ≤ 1

and sketch f(D) using ShearTool. Describe what happens to f(D) as a varies.

Exploration 4.144. Shear h(z) − g(z) = z
1−z using ω(z) = zn, where n =

1, 2, 3, 4, 5 and sketch f(D) using ShearTool. Describe what happens to f(D) as a
varies.

Exploration 4.145. Shear h(z) − g(z) = log
(

1−z
1+z

)
using ω(z) = eiπn/6z, where

n = 0, . . . , 6 and sketch f(D) using ShearTool. Describe what happens to f(D) as n
varies.

Exploration 4.146. Shear h(z) − g(z) = z
1−z + ae

z+1
z−1 using ω(z) = e

z+1
z−1 , where

−0.5 ≤ a ≤ 0.5 and sketch f(D) using ShearTool. Describe what happens to f(D) as
a varies.

Exercise 4.147. Let hα(z) = z
1+ze−iα

, where 0 < α < π, and ωα(z) = e
−i
(
z+e−iα
1+ze−iα

)
.

Compute fα = hα + gα and show that fα ∈ SOH . Use ComplexTool to sketch fα(D)
for various values of α [Note: as α approaches 0, you should get the image shown in
Figure 4.15].

Exercise 4.148. Let hγ(z) = 1
2i sin γ

log
(

1+zeiγ

1+ze−iγ

)
, where π

2
≤ γ < π, and ωγ(z) =

e−
(

2 sin(π−γ)
(π−γ) h(z)−1

)
. Compute fγ = hγ + gγ and show that fγ ∈ SOH . Use ComplexTool

to sketch fγ(D) for various values of γ [Note: as γ approaches π, you should get the
image shown in Figure 4.15, but each fγ(D) is different than any fα(D) in the Exercise
4.147].

Harmonic Linear Combinations

Exercise 4.149. Let

f1(z) = Re
{
− z − 2 log(1− z)

}
+ i Im

{
z
}
,

f2(z) = Re

{
z + 1/3z3

(1− z)3

}
+ i Im

{
z

(1− z)2

}
.

(a) Show that f1 can be derived by shearing h(z)− g(z) = z with g′(z) = zh′(z).
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(b) Use ComplexTool to plot the image of D under f1. Recall that f2 is the
“harmonic Koebe” function. What is the image of D under f2?

(c) Use ComplexTool to see that f3 = tf1 + (1− t)f2 is not univalent for at least
one value of t, (0 ≤ t ≤ 1). Why does this not contradict Theorem 4.88?

Exploration 4.150. Let

f1(z) = Re

{
z

(1− z)2

}
+ i Im

{
1

2
log

(
1 + z

1− z

)}
,

f2(z) = Re

{
i

2
log

(
1− iz
1 + iz

)}
+ i Im

{
1

2
log

(
1 + z

1− z

)}
.

Show that f1 and f2 satisfies the conditions of Theorem 4.88 and then use ComplexTool
to plot images of f3 = tf1 + (1− t)f2 for various values of t.

Exploration 4.151. Let

f1(z) = Re

{
z

1− z
− 1

2
e
z+1
z−1

}
+ i Im

{
z

1− z
+

1

2
e
z+1
z−1

}
,

f2(z) = Re

{
z − 1

4
z2 − 1

4
(z − 1)2e

z+1
z−1

}
+ i Im

{
z − 1

4
z2 +

1

4
(z − 1)2e

z+1
z−1

}
.

Show that f1 and f2 satisfies the conditions of Theorem 4.88 and then use ComplexTool
to plot images of f3 = tf1 + (1− t)f2 for various values of t.

Exercise 4.152. Repeat the steps in Example 4.92 using the same function for f1

but replacing f2 with the harmonic square map in Example 4.60, where

h2(z) =
1

4
log

(
1 + z

1− z

)
+
i

4
log

(
i+ z

i− z

)
g2(z) = − 1

4
log

(
1 + z

1− z

)
+
i

4
log

(
i+ z

i− z

)
.

(a.) In this case, ω1(z) = z2 while ω2(z) = −z2. Using eq. (59) in the remark
above, show that f3 is locally univalent.

(b.) Use LinComboTool find the image of f3(D) using this f1 and f2.
(c.) Explain why this happens by using the approach in Example 4.92 to compute

the new values of w1, . . . , w8 and then use the visualization technique in the
example to plot the eight vertices z0, . . . , z7 and draw the midpoints w1, . . . , w8.

Exploration 4.153. Using LinComboTool, start with the same arc values and
corresponding point values as in Example 4.92. In Panel #1 increase the arc values
by increments of π

16
while not changing the point values, and decrease the arc values

in Panel #2 by the same amount. Note that you can do this either by changing
the specific value in the Arc n box or by just using the cursor to move the four blue
dots the same amount in the same direction in Panel #1 and the same amount in
the opposite direction in Panel #2 on the unit circle of the domain in each panel.
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Describe how the image domain changes as the arc values in Panel #1 increase by a
total of π

4
and decrease in Panel #2 by the same amount.

Exploration 4.154. Using LinComboTool, create a map in Panel #1 that maps 3
arcs on the unit circle to 3 vertices of an equilateral triangle. Then create a second map
in Panel #2 that maps 3 different arcs on the unit circle to 3 vertices of a rotated
equilateral triangle. Make sure that these maps satisfy the conditions of Theorem
4.88. Click on the Create LinCombogon button to see the resulting image domain.
Explore this idea by using different maps in the panels to get at least three different
resulting image domains.

Exploration 4.155. Using LinComboTool, create a map in Panel #1 that maps
6 arcs on the unit circle to 6 vertices of a regular hexagon. Then create a second map in
Panel #2 that maps 6 different arcs on the unit circle to 6 vertices of a rotated regular
hexagon. Make sure that these maps satisfy the conditions of Theorem 4.88. Click on
the Create LinCombogon button to see the resulting image domain. Explore this
idea by using different maps in the panels to get at least three different resulting image
domains.

Convolutions

Exercise 4.156. Let

f(z) =

∫
1

1− z2
dz =

1

2
log

(
1 + z

1− z

)
and

F (z) =

∫
1

1− z3
dz =

1

3
e
i5π
3 log

(
1 + e

iπ
3 z
)

+
1

3
e
i5π
3 log

(
1 + e

i5π
3 z
)
− 1

3
log
(
1− z

)
.

Using eq (57) at the end of Example 4.60, determine f ∗ F and the image of D under
this convolution. In general, what is f ∗ F when f ′(z) = 1

1−zm and F (z) = 1
1−zn ?

Exercise 4.157. In Theorem 4.109, let f be the canonical right half-plane mapping
f0 ∈ KH and let ϕ(z) = z

(1−z)2 ∈ S. Compute F = f0 ∗ ( ϕ + ϕ) and use ComplexTool

to sketch F (D).

Exercise 4.158. Derive the expressions for H2 and G2 given in eq (64).

Small Project 4.159. Compute fa = ha + ga, where ha(z) + ga(z) = z
1−z and

ω(z) = z+a
1+az

. From Theorem 4.121, we know that Fa = f0 ∗ fa ∈ SH for −1 < a < 1.
Compute Fa and use ComplexTool to sketch Fa(D) for various values of a(−1 < a < 1).
Describe what happens as a varies between 1 and −1.
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CHAPTER 5

Mappings to Polygonal Domains

Jane McDougall and Lisbeth Schaubroeck (text), Jim Rolf (applets)

5.1. Introduction

One of the richest source of problems in analysis is determining when, and how,
one can create a univalent (one-to-one) function from one region to another. Because
of the Riemann Mapping Theorem, as discussed in reference introduction chapter, this
question may be simplified to asking when you can map the unit disk D univalently
onto a target region. This is because if we had a region R that we wanted to map to
the another, we could first map it to D by an analytic function, and then apply any
result we know about mappings from D to other regions of the plane. The Riemann
Mapping Theorem tells us that we can find an analytic function to map D to our region
in question, but does not tell us how. In this chapter, we present two different ways of
solving this problem for polygonal domains. The first gives an analytic function, while
the second diverges from analytic function theory and gives a harmonic function to do
the job.

First, we examine the Schwarz-Christoffel formula, which always provides a uni-
valent mapping from D to any simply-connected polygonal domain in C (the phrase
“simply-connected” means that the region in the plane is only one piece, and has no
holes in it). This formula leads to some very rich mathematics, the study of special
functions. Special functions arise because the Schwarz-Christoffel formula is given in
terms of an integral formula, and often the integral can not be computed by elementary
methods.

The bulk of this chapter is the study of how to use the Poisson Integral Formula
create a harmonic function from D to a polygonal domain. For certain boundary
conditions, this formula is computationally simple, but is not always guaranteed to
provide a univalent function. In the course of this chapter, we will learn that univalence
is guaranteed for some special cases. The shape of the target polygon will have great
importance to our work, as will the boundary correspondence. We will solve the
problem completely in the case where the target polygon is a regular star, and lead
the student to investigate further shapes.

The applets used in this chapter are:
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(1) ComplexTool - is used to plot the image of domains in C under complex-valued
functions.

(2) PolyTool - is used to visualize the harmonic function that is the extension of
a particular kind of boundary correspondence. The user of this applet can
dynamically change the boundary correspondence and watch the harmonic
function change.

(3) StarTool - is used to examine the functions that map the unit disk D onto an
n-pointed star. The user can modify the shape of the star (by changing n and
r) and the boundary correspondence (by changing p).

5.2. Schwarz-Christoffel Maps

In this section we consider conformal maps from the unit disk and the upper half-
plane onto various simply connected polygonal domains. By the Riemann Mapping
Theorem, we can map the unit disk conformally onto any simply connected domain,
with a mapping function that is essentially unique. The proof of this theorem is not
constructive and so does not help us to obtain the mapping function explicitly. We can
however find an explicit formula for the case in which the target domain is polygonal,
from the Schwarz-Christoffel theory. This integral formula was developed in the mid
19th century by the two mathematicians for whom it is named. In most first texts
on complex analysis the formula is presented as a mapping from the upper half plane
H onto a target polygon with interior angles αkπ and exterior angles βkπ , where we
require that αk +βk = 1 and αk > 0. (Note that negative exterior angles are possible.)
A conformal mapping onto the polygon is given by the Schwarz Christoffel formula

(66) f(z) = A1

∫ z

0

1

(w − x1)β1(w − x2)β2(· · · )(w − xn)βn
dw + A2, z ∈ H.

The real values xi are preimages of the n vertices of the polygon, and different choices
of the constants A1 and A2 (A1 6= 0) rotate, scale and/or translate the target n-gon.
Although it is simple to write down a mapping function that has the correct angles,
it is difficult to prescribe the lengths of the sides. Furthermore, careful choice of the
points xi is necessary to yield an integral that can even be evaluated. We will exploit
symmetry where possible.

Example 5.1. We obtain a Schwarz-Christoffel map onto a rectangle. This exam-
ple can be found in many first texts on complex analysis, (see for instance example 22
of section 14, [13]). Following [13], we let the target vertices of a rectangle be v1 = K,
v2 = K + iK ′ v3 = −K + iK ′, v4 = −K where K and K ′ > 0. We choose x1 = 1,
x2 = λ, x3 = −λ, and x4 = −1 where λ > 1. We obtain the integral formula

f(z) =

∫ z

0

1

(w − 1)1/2 (w − λ)1/2 (w + 1)1/2 (w + λ)1/2
dw, z ∈ H,
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or

(67) f(z) =

∫ z

0

1

(w2 − 1)1/2 (w2 − λ2)1/2
dw =

∫ z

0

1√
(w2 − 1) (w2 − λ2)

dw

It is not immediately obvious how to evaluate this integral, but with a slight modifi-
cation we can recognize an elliptic integral of the first kind.

Definition 5.2. An elliptic integral of the first kind is an integral of the form

F (φ, k) =

∫ sinφ

0

1√
(1− w2)(1− k2w2)

dw.

An alternate form is F (φ, k) =
∫ φ

0
1√

1−k2 sin2 θ
dθ.

The two integrals in Definition 5.2 are identical after the change of variables
w = sin θ, dw = cos θdθ =

√
1− w2dθ which connects them. (Technology note: The

computer algebra system Mathematica uses this alternate form, representing the inte-
gral by EllipticF[φ,m], where m = k2.)

In equation 67, set λ = 1/k so that

f(z) =

∫ z

0

1√
(w2 − 1) (w2 − 1/k2)

dw

= k

∫ z

0

1√
(w2 − 1) (k2w2 − 1)

dw

= A1

∫ z

0

1√
(1− w2) (1− k2w2)

dw

(where A1 = −ik).
If we set A1 = 1 then our mapping formula becomes simply

f (z) = F (arcsin z, k)

The choice of k > 0 affects the aspect ratio 2K/K ′ of the rectangle (for a square this
ratio would be 1). We can write down the relationship between k and the aspect ratio.

Exercise 5.3. Follow these steps to identify the relationship between k and the
aspect ratio of the rectangle.

(1) Use the facts that A2 = 0, and x1 = 1 maps to v1 = K to get

K = A1

∫ 1

0

1√
(1− w2) (1− k2w2)

dw

(2) Use the preceding step, combined with the fact that x2 = λ = 1/k maps to
v2 = K + iK ′, to find that

K ′ = A1

∫ 1/k

1

1√
(w2 − 1) (1− k2w2)

dw.
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(3) Conclude that

K/K ′ = −i F (π/2, k)

F (arcsin 1/k, k)− F (π/2, k)
.

Try it out!

Thus we have expressed the aspect ratio of the target rectangle in terms of k, but
to solve for k requires a numerical method. An example plot is given in Figure 5.1 for
the case k = 1/2, when we have

f (z) = F (arcsin z, 1/4)

and the aspect ratio is 2K/K ′ ∼= 1.563. Note that we are only mapping a part of the
upper half plane in the domain, so the target rectangle is incompletely filled. With
k = 1/6 we find that the target polygon is approximately a square, with aspect ratio
is approximately 0.991.

Figure 5.1. Portion of upper half plane (left) and portion of target
rectangle (right) to which it maps (k = 1/2)

We are interested in mappings on the unit disk. By precomposing our mapping
function with a Möbius transformation from the unit disk to the upper half plane, we
obtain a mapping function from the disk onto the target polygon.

Exercise 5.4. Show that the fractional linear transformation z′ = φ (z) = z−i
z+i

maps the upper half plane to the unit disk. Try it out!

In addition to the problem of prescibing the lengths of the sides of the target poly-
gon, a further problem arises with this approach for target polygons more complicated
than a rectangle. Typically we will produce an integral that cannot be evaluated,
even with special functions. These two issues are nicely resolved if we instead obtain
Schwarz-Christoffel formula that maps the unit disk directly to the target polygon and
with the preimages of the vertices falling on the unit circle–these points can be chosen,
for example, to be roots of unity to guarantee that the polygonal sides are all of the
same length. To obtain this formula we simply carry out a change of variables that
maps the disk to the upper half plane, using the map defined in the previous exercise.
Interestingly, the transformed integral formula is of exactly the same form.
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Exercise 5.5. Set w = φ−1 (w′) = i1+w′

1−w′ which maps the disk in the w′ plane to
the upper half w-plane. Show that the Schwarz Christoffel formula retains the same
form as equation 66. Try it out!

The Schwarz Christoffel map that we will use on the unit disk is then

f(z) = C1

∫ z

0

1

(w − ζ1)β1(w − ζ2)β2(· · · )(w − ζn)βn
dw + C2, z ∈ D,

where βiπ is the exterior angle of the ith vertex of the target polygon, and the pre-
images ζi of the vertices are on the unit circle. Again, the constants C1 and C2 with
C1 6= 0 simply resize and translate the polygon.

It turns out that integrals that would be otherwise impossible to evaluate can
be computed for polygons with certain symmetries. To exploit these symmetries we
make an appropriately symmetric choice of ζi as nth roots of unity corresponding to
symmetrically placed vertices in the target polygon.

Example 5.6. We obtain the Schwarz-Christoffel map onto a regular n-gon. The
exterior angles of a regular n-gon are 2π/n, so βi = 2/n.∫ z

0

1

(w − ζ1)β1(w − ζ2)β2 · · · (w − ζn)βn
dw =

∫ z

0

1

[(w − ζ1)(w − ζ2) · · · (w − ζn)]2/n
dw

Suppose that the ζi are the nth roots of unity. Now we can use the fact that
n∏
i=1

(w − ζi) = wn − 1

to simplify to
∫ z

0
1

(wn−1)2/n
dw. By factoring out (−1)2/n we can adjust the multiplicative

constant and chose our mapping function

f (z) = (−1)−2/n

∫ z

0

1

(wn − 1)2/n
dw =

∫ z

0

1

(1− wn)2/n
dw.

Here f has been defined from the Schwarz-Christoffel formula with choices of constant

C1 = (−1)−2/n (which rotates the figure by 4π/n radians) and C2 = 0. This last formula
can be readily evaluated using hypergeometric functions.

5.2.1. Basic Facts about Hypergeometric Functions. The integral in the
last example cannot be expressed in terms of elementary functions, but can be easily
evaluated and plotted using a computer algebra system by using some basic facts
about hypergeometric functions. Hypergeometric functions are special power series
that, besides their many other applications, can be used to evaluate the integrals
obtained above. A geometric series is a power series in which ratios of successive terms
are constant. Generalizing this, for a hypergeometric series ratios of successive terms
are rational functions of the index rather than just constants. Here we will make use of
the most widely utilized hypergeometric functions–the so-called “two F ones,” where
the rational function has numerator and denominator of the second order.
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Definition 5.7. The Hypergeometric function 2F1(a, b; c; z) is the power series

2F1 (a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

where a, b and c ∈ C and

(x)n = x(x+ 1) · · · (x+ n− 1)

is the shifted factorial, or Pochhammer symbol.

Exercise 5.8. Use your knowledge of convergence of power series and apply the
ratio test to show that we get convergence of the hypergeometric function 2F1 (a, b; c; z)
on compact subsets of the unit disk (hint: note that (x)n+1 / (x)n = x + n). Try it
out!

Exercise 5.9. Show that the hypergeometric function 2F1 (a, b; c; z) can be written
in integral form as

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt

where the Gamma function is defined by

Γ(z) =

∫ ∞
0

tz−1e−tdt.

For integer values of n, the Gamma function is related to the factorial by Γ(n) =
(n− 1)!.

This is known as the Euler integral representation of the 2F1 function. Show this
by expanding the factor (1− tz)−a with the binomial theorem as a power series. By
interchanging the summation and integral, show that we obtain the required 2F1 series.
Note that you will also need to use the fact that the Pochhammer symbol is related

by (x)n = Γ(x+n)
Γ(x)

to the Gamma function. Try it out!

Example 5.10. For a square (a regular 4-gon), the Schwarz Christoffel map from
the unit disk is given by z 2F1(1

4
, 1

2
; 5

4
; z4). To see this, with n = 4 in the above integral

representation we obtain ∫ z

0

1√
1− w4

dw

Let a = 1/4, b = 1/2, and c = 5/4. We use the Euler integral representation for

2F1 (a, b; c; z) but with the (symmetric) roles of a and b interchanged so that the
power c− b− 1 becomes c− a− 1 and simplifies to 0:

2F1

(
1/4, 1/2; 5/4; z4

)
=

Γ(5/4)

Γ(1/4)Γ(1)

∫ 1

0

t−3/4(1− t)0

(1− tz4)1/2
dt = 1/4

∫ 1

0

1

t3/4
1√

1− tz4
dt
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Now change variables: Let w4 = tz4 so 4w3dw = z4dt. Then

2F1

(
1/4, 1/2; 5/4; z4

)
= 1/4

∫ z

0

z3

w3

1√
1− w4

4w3dw

z4

=
1

z

∫ z

0

1√
1− w4

dw

Thus

f (z) =

∫ z

0

1√
1− z4

dz = z 2F1

(
1/4, 1/2; 5/4; z4

)
The previous example shows that it is relatively simple to obtain the conformal

map from the disk onto the square.

Exercise 5.11. Use the following tables of values of the Pochhammer symbols to
graph the function made up of the first several terms of the series for z2F1(1

4
, 1

2
; 5

4
; z4).

If you graph your result using ComplexTool, you should get a picture similar to Figure
5.2.

n (1/4)n
0 1
1 1/4
2 5/16
3 45/64
4 585/256
5 9945/1024

n (5/4)n
0 1
1 5/4
2 45/16
3 585/64
4 9945/256
5 208845/1024

n (1/2)n
0 1
1 1/2
2 3/4
3 15/8
4 105/16
5 945/32

Try it out!

Figure 5.2. ComplexTool image of an approximation of the conformal
map (using the first 5 terms)

Exercise 5.12. Show that the conformal map from the disk onto the regular n-gon
is (up to rotations, translations and scalings) given by z 2F1 (1/n, 2/n; (n+ 1) /n; zn) .
Try it out!
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We now examine the conformal map onto a symmetric non-convex polygon in the
shape of a star.

Example 5.13. Suppose we want to map onto a (non-convex) m-pointed star, so
there are n = 2m vertices. The interior angles alternate between πα1 and πα2 where
α1 < α2 (sharp star point at α1). The exterior angles then alternate between a positive
value β1 and a negative value β2 (assuming we have a non-convex star).

β  π2

α  π2

β  π1

α  π1

Figure 5.3. Interior and exterior angles of a symmetric star

Also, β1 + β2 must satisfy m (β1 + β2) = 2 so β1 + β2 = 2/m = 4/n. We use
βodd = β1 > 0 and βeven = −β2 > 0. Thus we have

∫ z

0

∏
i even

(w − ζ1)βeven∏
i odd

(w − ζi)βodd
dw.

Letting ζi be nth roots of unity,
n∏

i even

(z − ζi) = zm − 1 and
n∏

i odd

(z − ζi) = zm + 1,

so ∫ z

0

(wm − 1)−β2

(wm + 1)β1
dw,
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where β1 + β2 = 4/n. By appropriate choice of the constant C1 in the Schwarz-
Christoffel formula we obtain the mapping function

f (z) =

∫ z

0

(1− wm)−β2

(1 + wm)β1
dw.

Example 5.14. The following appears as an exercise in [9], Chapter V, Section
6: Prove that the integral that maps the unit disk exactly onto a 5-pointed star with
interior angles alternating at π/5 and 7π/5 is given by

f(z) =

∫ z

0

(1− w5)2/5

(1 + w5)4/5
dw.

The corresponding exterior angles are 4π/5 and −2π/5, so β1 = 4/5 and β2 = −2/5.
Thus we have n = 10 and m = 5 and∫ z

0

(zm − 1)−β2

(zm + 1)β1
dz =

∫ z

0

(z5 − 1)
2/5

(z5 + 1)4/5
dz

To compute this integral we must use the Appell F1 function of two variables defined
below.

Definition 5.15. The Appel F1 function is defined by

F1 (a; b1, b2; c;x, y) =
∞∑
n=0

∞∑
m=0

(a)n+m (b1)m (b2)n
m!n! (c)n+m

xmyn,

or, in integral form (see Chapter 9, [1]):

F1 (a; b1, b2; c;x, y) =
Γ (c)

Γ (a) Γ (c− a)

∫ 1

0

ua−1 (1− u)c−a−1 (1− ux)−b1 (1− uy)−b2 du.

Working in reverse we find that

F1

(
1/5; 4/5,−2/5; 6/5; z5,−z5

)
=

Γ(6/5)

Γ(1/5)Γ(1)

∫ 1

0

u−4/5 (1− u)0 (1− uz5
)−4/5 (

1 + uz5
)2/5

du

= 1/5

∫ 1

0

(1− uz5)
2/5

u4/5 (1 + uz5)4/5
du.

To obtain our Schwarz-Christoffel formula we must now change variables, letting w5 =
uz5 so 5w4dw = z5du. Then

F1

(
1/5; 4/5,−2/5; 6/5; z5,−z5

)
= 1/5

∫ z

0

z4

w4

(1− w5)
2/5

(1 + w5)4/5

5w4dw

z5

=
1

z

∫ z

0

(1− w5)
2/5

(1 + w5)4/5
dw
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Thus

f (z) =

∫ z

0

(1− w5)
2/5

(1 + w5)4/5
dw = z F1

(
1/5; 4/5,−2/5; 6/5; z5,−z5

)
and the mapping function is shown in Figure 5.4.

Figure 5.4. Image of the conformal map of the unit disk onto the 5-
pointed star

Exercise 5.16. Show that the conformal map from the disk onto the m pointed
star with exterior angle β1 > 0, and β2 = 2/m − β1 (up to rotations, translations
and scalings) is given by z F1 (1/n; β1, β2, (n+ 1) /n; zn,−zn) where F1 is the Appell
F1 function. Try it out!

5.3. The Poisson Integral Formula

While the Schwarz-Christoffel formula gives analytic, and thus angle-preserving,
functions from the D to any polygon, we can see that it often starts with an integral
that requires advanced mathematics to evaluate. If our goal is not necessarily an
analytic function, we could work with the Poisson Integral Formula. This does not
give us an analytic function, but instead, a harmonic function from the unit disk to
the target domain.

You may be familiar with the Poisson Integral Formula as a way of constructing a
real-valued harmonic function that satisfies certain boundary conditions. For example,
if the boundary conditions give the temperature of the boundary of a perfectly insulated
plate, then the harmonic function gives the steady-state temperature of the interior
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of the plate. Another application is to find electrostatic potential given boundary
conditions. A brief summary of that procedure is given here. For more detailed
discussion, consult [10] or [14].

Theorem 5.17 (Poisson Integral Formula). Let the complex valued function f̂(eiθ)
be piecewise continuous and bounded for θ in [0, 2π] .Then the function f (z) defined
by

(68) f(z) =
1

2π

∫ 2π

0

1− |z|2

|eit − z|2
f̂(eit)dt

is the unique harmonic function in the unit disk that satisfies the boundary condition

lim
z→eiθ

f(z) = f̂(eiθ)

for all θ where f̂ is continuous.

Proof. This proof can be found in any standard complex analysis textbook, for
example, [7] or [10]. Here is the proof for “nice” functions (ones that are real-valued
harmonic, and who don’t have jump discontinuities on the boundary). First observe
that Cauchy’s integral formula tells us that if we have a function f(z) that is analytic
inside and on the circle |z| = R, then, for |z| < R,

f(z) =
1

2πi

∫
|ζ|=R

f(ζ)

ζ − z
dζ.

We also observe (for reasons that will become obvious in a few sentences) that for

fixed z, with |z| < 1, the function
f(ζ) z

1− ζ z
is analytic in the variable ζ on and inside

|ζ| < 1, since the denominator is nonzero. (Exercise for the reader: Think about why
the denominator is nonzero.) Thus, by the Cauchy Integral Theorem, we know that

1

2πi

∫
|ζ|=1

f(ζ) z

1− ζ z
= 0.

Combining the two equations gives

f(z) =
1

2πi

∫
|ζ|=1

(
f(ζ)

ζ − z
− f(ζ) z

1− ζ z

)
dζ

=
1

2πi

∫
|ζ|=1

1− ζ z + z(ζ − z)

(ζ − z)(1− ζ z)
f(ζ)dζ

=
1

2πi

∫
|ζ|=1

1− |z|2

(ζ − z)(1− ζ z)
f(ζ)dζ.
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Now let us parameterize the circle |ζ| = 1 by ζ(t) = eit, giving us dζ = ieit and

f(z) =
1

2πi

∫ 2π

0

1− |z|2

(eit − z)(1− eit z)
f(eit)ieitdt

=
1− |z|2

2π

∫ 2π

0

1

(eit − z)eit(e−it − z)
f(eit)eitdt

=
1− |z|2

2π

∫ 2π

0

f(eit)

(eit − z)(e−it − z)
dt.

Taking the real part of both sides of the equation gives us a harmonic function (since
the real part of an analytic function is harmonic), and also yields equation (68).

�

Exercise 5.18. Verify that the “Poisson kernel,”
1− |z|2

|eit − z|2
, can be rewritten as

Re{e
it + z

eit − z
} = Re{1 + ze−it

1− ze−it
}. Try it out!

You can also note that this is a function that, in general, is very difficult to integrate.
However, if there is an arc on which the function f̂(eit) is constant, then the integration
is easy to do.

Exercise 5.19. Verify that
(69)
1

2π

∫ b

a

K Re

{
eit + z

eit − z

}
dt = K

b− a
2π

+
K

π
arg

(
1− ze−ib

1− ze−ia

)
=
K

π

[
arg

(
eib − z
eia − z

)
− b− a

2

]
.

Try it out!

The beauty of the last formulation of equation (69) is that it can be visualized
geometrically. Consider the picture with eia and eib on the unit circle, and z somewhere
within the unit circle. Then the vector from z to eia is eia − z, and the vector from z

to eib is eib− z, so that the angle between those two vectors is given by arg

(
eib − z
eia − z

)
,

as is shown if Figure 5.5.

Example 5.20. Assume that the unit disk is a thin insulated plate, with a tem-
perature along the boundary of 50 degrees for the top semicircle and 20 degrees along
the bottom semicircle. From physics, we know that the function which describes the
temperature within the unit disk must be a harmonic function. Use the results above
to find that harmonic function.

Example solution:
Apply the formula given above to the situation where a1 = 0, b1 = π,K1 = 50 and

then add it to the result where a2 = π, b2 = 2π,K2 = 20. The result is the function
f(z) = 1

2π
(70π+60 arg

(
1+z
1−z

)
). (Notice that the 70 is 50+20, and that 60 = 2(50−20).)
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eia
z

eib

θ

Figure 5.5. Geometric interpretation of θ = arg

(
eib − z
eia − z

)
.

When z ranges across the unit disk, the function 1+z
1−z covers the right half-plane (you

can check this experimentally by graphing the function 1+z
1−z using ComplexTool), so the

argument of it is between −π/2 and π/2. This gives function values for f(z) between
20 and 50, which makes good sense. Another way of thinking of the solution is that
it gives the average temperature ± half of the difference between the maximum and
minimum temperatures.

Using the result of Exercise 5.19, we can see that computing the Poisson Integral
Formula for a piecewise constant boundary is particularly simple. Many applications of
the Poisson Integral Formula come from having the boundary correspondence remain
constant on arcs of the unit circle.

Most introductory analysis books give the Poisson integral formula for real-valued
f̂(eiθ). In the next section, we will see that the Poisson Integral Formula remains valid

for complex valued f̂(eiθ), in the Rado-Kneser-Choquet Theorem. Before we prove
that important result, let’s first explore what could happen if we try to use the Poisson
Integral Formula with complex boundary values.

Example 5.21. The simplest example of this is obtained by letting the first third
of the unit circle (that is, the arc from 0 to ei2π/3) map to 1, the next third to ei2π/3

and the last third to ei4π/3. Let’s work through the details of this integration, working
from equation (69) and see what happens.

320



f(z) =
1

2π

(
(
2π

3
− 0) + 2 arg

(
1− ze−i2π/3

1− ze0

)
+ei2π/3(

4π

3
− 2π

3
) + 2ei2π/3 arg

(
1− ze−i4π/3

1− ze−i2π/3

)
+ei4π/3(2π − 4π

3
) + 2ei4π/3 arg

(
1− ze−2πi

1− ze−i4π/3

))
=

2π

3(2π)

(
1 + ei2π/3 + ei4π/3

)
+

1

π

(
arg

(
1− ze−i2π/3

1− ze0

)
+ ei2π/3 arg

(
1− ze−i4π/3

1− ze−i2π/3

)
+ ei4π/3 arg

(
1− ze−2πi

1− ze−i4π/3

))
= 0 +

1

π

(
arg

(
1− ze−i2π/3

1− z

)
+ ei2π/3 arg

(
1− ze−i4π/3

1− ze−i2π/3

)
+ ei4π/3 arg

(
1− z

1− ze−i4π/3

))
Figure 5.6 shows the image of the unit disk as graphed in ComplexTool. Notice

that it appears to be one-to-one on the interior of the unit disk. It certainly is not one-
to-one on the boundary! (Entering this formula into ComplexTool is a bit unwieldy.
For that reason we will soon use the PolyTool applet, as described on the next page.)

Figure 5.6. ComplexTool image of the harmonic function mapping to
the triangle

Exercise 5.22. Find a general formula that maps the unit disk harmonically to
the interior of a convex regular n-gon. Try it out!

Small Project 5.23. Refer to chapter insert reference to harmonic function chap-
ter and its discussion of the shear construction. Find the pre-shears of the polygonal
mappings in exercise 5.22. In other words, what analytic function do you shear to
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get that polygonal function? A good first step is to determine the dilatation of this
function. See [2] for more details.

Exercise 5.24. For a non-convex example, consider the function that maps quar-
ters of the unit circle to the four vertices {1, i,−1, i

2
}. Verify that this function is

3i

8
+

1

π

(
arg

(
1 + iz

1− z

)
+ i arg

(
1 + z

1 + iz

)
− arg

(
1− iz
1 + z

)
+
i

2
arg

(
1− z
1− iz

))
.

When you graph this function in ComplexTool, you will notice that it appears to NOT
be one-to-one. Furthermore, you can see that f(0) = 3i

8
, so that the image of f(D) is

not the interior of the polygon. Try it out!

Figure 5.7. The PolyTool Applet

At this point, you should start using the PolyTool applet. In this applet, you
can specify which arcs of the unit circle will map to which points in the range, and
the applet will compute and graph the harmonic function defined by that boundary
correspondence. When you first open this applet, you see a circle on the left and a
blank screen on the right. You can create a harmonic function that maps portions
of the boundary of the circle to vertices of a polygon in one of two ways. First, you
can click on the unit circle in the left panel to denote an arc endpoint, and continue
choosing arc endpoints there, and then choose the target vertices by clicking in the
right graph. (Note that as you click, text boxes in between the panels fill in with
information about where you clicked.) Once you have the boundary correspondence
you want, click the Graph button. Alternatively, you can click the button that says Add
to get text boxes to input. For example, to create the function in Exercise 5.24, click
Add, then fill in the first row of boxes for Arc 1: with 0 maps to 1+0i. When you
want another set of arcs, click Add again. Note that the Arc boxes denote the starting
point of the arc (i.e. for the arc from 0 to π/3, use 0 in the Arc box). Continue filling,
and when you are ready to compute the Poisson Integral to get the harmonic function,
click the Graph button. Once you have a function graphed, you can “drag” around
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either the arc endpoints (in the domain on the left) or the target points (in the range
on the right) and watch the function dynamically change.

Exploration 5.25. Can you find ways of rearranging the boundary conditions to
make this example univalent? For example, what if the bottom half of the unit circle
gets mapped to i/2, and the top half of the unit circle is divided into thirds for the
other three vertices? This isn’t univalent, but in some sense is closer to univalent than
the mapping defined in Exercise 5.24. Is there a modification to be made so that it is
univalent? Try it out!

Exercise 5.26. This is an extension of Exploration 5.25. Sheil-Small [11] proved
(by techniques other than those discussed so far) that the harmonic extension of the
boundary correspondence below maps the unit disk univalently onto the desired shape:

arc from to maps to
−i i i
i −3

5
+ 4

5
i −1

−3
5

+ 4
5
i −3

5
− 4

5
i i

2−3
5
− 4

5
i −i 1

For this function, first convince yourself that it appears to be univalent, and then
find the function f(z).Try it out!

Definition 5.27. Let {eitk} be a partition of ∂D, where t0 < t1 < . . . < tn =

t0 + 2π. Let f̂(eit) = vk for tk−1 < t < tk. We call the harmonic extension of this step
function (as defined by the Poisson Integral Formula) f(z).

In the next section, we will first prove the theorem that allows the explorations
that we have already done. We will then begin to explore why certain functions are
univalent, and others are not.

5.4. Rado-Kneser-Choquet Theorem

As you put some of the previous examples into the applet, you may notice that
the function sometimes seems to be one-to-one on the interior of the domain. Look
again at the examples, and compare functions which map to convex domains versus
functions that map to non-convex domains.

Exploration 5.28. Make a conjecture about when functions are one-to-one, using
the previous exercises as a springboard. Do this before reading the Rado-Kneser-
Choquet Theorem! Try it out!

In general, we completely understand the behavior of harmonic extensions (as de-
fined in Definition 5.27) that map to convex regions:

Theorem 5.29 (Rado-Kneser-Choquet Theorem). Let Ω subset of C be a bounded

convex domain whose boundary is a Jordan curve Γ. Let f̂ map ∂D continuously onto
Γ and suppose that f̂(eit) runs once around Γ monotonically as eit runs around ∂D.

323



Then the harmonic extension given in the Poisson Integral Formula is univalent in D
and defines a harmonic mapping of D onto Ω.

For the proof of this important theorem, we will use the following Lemma:

Lemma 5.30. Let ψ be a real-valued function harmonic in D and continuous in D.
Suppose ψ has the property that, after a rotation of coordinates, ψ(eit)− ψ(e−it) ≥ 0
on the interval [0, π], with strict inequality ψ(eit) − ψ(e−it) > 0 on some subinterval
[a, b] with 0 ≤ a < b ≤ π. Then ψ has no critical points in D.

The condition on ψ seems a bit mysterious at first, and so we should discuss it.
One kind of function for which this property holds is a ψ that is at most bivalent
on ∂D. What does “at most bivalent” mean? We know that univalent means that a
function is one-to-one. Bivalent means that a function is two-to-one, or that there may
be z1 6= z2 such that f(z1) = f(z2), but that if f(z1) = f(z2) = f(z3), then at least 2
of z1, z2, z3 must be equal. Alternatively, a function ψ described in Lemma 5.30 is one
that is continuous on ∂D where ψ(eit) rises from a minimum at e−iα to a maximum
at eiα, then decreases again to its minimum at e−iα as eit runs around the unit circle,
without having any other local extrema, but allowing arcs of constancy.

Proof of Lemma 5.30. To show that ψ has no critical points in D, we must
show that ∂ψ

∂z
6= 0 in D. This is equivalent to saying that

1

2

(
∂ψ

∂x
− i∂ψ

∂y

)
6= 0.

At this point, we will simplify the proof by simply proving that ψz(0) 6= 0, and claim
that will be sufficient. Indeed, if z0 is some other point in D, consider a function
ϕ(z) that is a conformal self-map of D with ϕ(0) = z0, and consider the composition
F (ζ) = ψ(ϕ(ζ)). Observe that F is harmonic in D, continuous in D, and satisfies
the same condition about F (eit)− F (e−it) as ψ does. Applying the chain rule to F (ζ)
gives that Fζ(ζ) = ψz(ϕ(ζ))ϕ′(ζ), since ϕ is analytic and thus has ϕ ζ = 0. (In general,
the chain rule is more complicated for harmonic functions. Here, since ϕ is analytic,
the chain rule takes its familiar form.) Plugging in 0 for ζ gives Fζ(0) = ψz(z0)ϕ′(0),
implying that if Fζ(0) = 0 then also ψζ(z0) = 0. Thus when we have proven that
ψz(0) 6= 0, we will be able to generalize to ψz(z0) 6= 0 for all z0 in D.

Now we use the Poisson Integral Formula to prove that ψz(0) 6= 0. Substituting in

ψ (or ψ̂(eit) = limr→1 ψ(reit) on ∂D) gives

ψ(z) =
1

2π

∫ 2π

0

1− |z|2

|eit − z|2
ψ̂(eit)dt =

1

2π

∫ 2π

0

1− z z
(eit − z)(e−it − z)

ψ̂(eit)dt.

324



We note that when we differentiate both sides with respect to z that the integral
depends only on t, so we are just left differentiating the integrand. Doing this, we find

∂

∂z

(
ψ̂(eit)

1− z z
(eit − z)(e−it − z)

)
=

ψ̂(eit)

e−it − z

∂

∂z

(
1− z z
eit − z

)
=

(
ψ̂(eit)

e−it − z

)
·
(
eit(e−it − z)

(eit − z)2

)
= ψ̂(eit)

(
eit

(eit − z)2

)
,

leading to the conclusion that

ψz(0) =
1

2π

∫ 2π

0

ψ̂(eit)e−itdt.

From the hypotheses of the lemma, we know that there is some t ∈ (0, π) such that
ψ(eit)− ψ(e−it) > 0. Thus

Imψz(0) = Im

(
1

2π

∫ 2π

0

ψ̂(eit)e−itdt

)
= − 1

2π

∫ 2π

0

ψ̂(eit) sin(t)dt

= − 1

2π

(∫ π

0

ψ̂(eit) sin(t)dt+

∫ 0

−π
ψ̂(eit) sin(t)dt

)
since ψ̂ is periodic

= − 1

2π

(∫ π

0

ψ̂(eit) sin(t)dt−
∫ π

0

ψ̂(e−it) sin(t)dt

)
= − 1

2π

∫ π

0

(ψ̂(eit)− ψ̂(e−it)) sin(t)dt < 0.

The last inequality relies on the fact that sin(t) is non-negative on the interval [0, π].
We have now shown that Imψz(0) 6= 0, thus proving the lemma.

�

Proof of Theorem 5.29. Without loss of generality, assume that f̂(eit) runs
around Γ in the counterclockwise direction as t increases. (Otherwise, take conjugates.)
We will show that if the function f is not locally univalent in D, then Lemma 5.30 will
give a contradiction.

Suppose that f = u+ iv is not locally univalent, or that the Jacobian of f vanishes

at some point z0 in D. This means that the matrix

(
ux vx
uy vy

)
has a determinant of 0
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at z0. From linear algebra, we know that this means that the system of equations

aux + bvx = 0

auy + bvy = 0

has a nonzero solution (a, b). Thus the real-valued harmonic function ψ = au+ bv has
a critical point at z0 (since (a, b) 6= (0, 0)). However, the hypothesis of Theorem 5.29
implies that ψ satisfies the hypothesis of Lemma 5.30. Thus we have a contradiction,
and the theorem is proved.

�

Notice that the description of f̂ in Theorem 5.29 does not require that it be one-to-
one on ∂D, but permits arcs of constancy. Furthermore, the proof just completed does
not require continuity of f̂ . This means that we can restate Theorem 5.29 in terms of
the step function of Definition 5.27.

Corollary 5.31. Let f(z) be defined as in Definition 5.27. Suppose the vertices
v1, v2, . . . vn, when traversed in order, define a convex polygon, with the interior of the
polygon denoted by Ω. Then the function f(z) is univalent in D and defines a harmonic
mapping from D onto Ω.

Exercise 5.32. Give a detailed proof of the statement, “However, the hypothesis
of Theorem 5.29 implies that ψ satisfies the hypothesis of Lemma 5.30.” Try it out!

Interestingly enough, this theorem does not guarantee anything about univalence
if the domain Ω is not convex. In fact, the expectation is that univalence will not be
achieved. For example, look at Exercise 5.26 on page 323.

Exploration 5.33. Extend the explorations begun in Exploration 5.25 on page
323. Now, instead of modifying the boundary correspondence, start with the corre-
spondence in Exercise 5.26. Then, move the vertex that is at i/2, moving it closer to
i. A very nice picture comes from having the vertex set be {1, i,−1, 9i

10
}. In this last

one you can see the lack of univalence very clearly. Try it out!

5.4.1. Boundary behavior. In this section, we explore what seems to be true
with some of the above examples: There appears to be some very interesting boundary
behavior of our harmonic extensions of step functions. Examine this behavior in the
following exploration.

Exploration 5.34. Using ComplexTool or PolyTool, graph the polygonal function
created in Example 5.21. Now investigate the behavior of the boundary using the
sketching tool of the applet. In particular, approach the break point between arcs
(such as z = 1) along different paths. First approach radially, then approach along a
line that is not a radius of the circle. Observe how these different paths that approach
1 cause the image of the path to approach different points along the line segment
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that makes up a portion of the boundary of the range (as you get very close to an
arc endpoint, the image of the sketch may jump to a vertex–here, examine where the
image is immediately before that jump). Technology hint: in PolyTool, you can hit
the Graph button to clear all previous sketching but keep the polygonal map. Repeat
this exercise with some of the other examples of polygonal functions. Try to answer
some of the following questions:

(1) Given a point ζ on the boundary of the polygon, is it possible to find a path
γ approaching ∂D such that γ(z) approaches ζ?

(2) As you approach an arc endpoint in ∂D radially, what point on the boundary
of the polygon do you approach?

Try it out!

As you performed the exploration above, you probably discovered some of the
known properties of the boundary behavior of harmonic extensions of step functions.
These results were originally proven by Hengartner and Schober [6], who proved a
more general form of the theorem below. We now restate their theorem as it applies
to the step functions of Definition 5.27.

Theorem 5.35. Let f be the harmonic function extension of a step function in
Definition 5.27. Denote by Γ the polygon defined by the vertices vk. By definition, the
radial limits limr→1 f(reiθ) lie on Γ for almost every θ. Then the unrestricted limit

f̂(eiθ) = lim
z→eiθ

f(z)

exists at every point eiθ ∈ ∂D\{eit1 , eit2 , ..., eitn} and lies on Γ. Furthermore,

(1) f̂(eiθ) is continuous and sense-preserving on ∂D\{eit1 , eit2 , ..., eitn};
(2) the one-sided limits as t→ tk are

lim
t→t−k

f̂(eit) = vk and lim
t→t+k

f̂(eit) = vk+1;

(3) the cluster set of f at each point eitk ∈ {eit1 , eit2 , ..., eitn} is the linear segment
joining vk to vk+1.

Proof. Parts (1) and (2) of the theorem follow directly from the definition of the
function f and from properties of the Poisson Integral Formula. Thus we only need to
show part (3). Now let us consider eitk . If z approaches eitk along the circular arc

(70) arg

(
eitk + z

eitk − z

)
=
λπ

2
, −1 < λ < 1,

then f(z) converges to the value

1

2
(1− λ)vk +

1

2
(1 + λ)vk+1.

Therefore the cluster set of f at tk is the line segment joining vk and vk+1, and part
(3) is proven.
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Exercise 5.36. The hard part of the proof above is to understand why equation
70 is a circular arc. Prove that it is, indeed, a circular arc. Try it out!

5.5. Star Mappings

From the Rado-Kneser-Choquet Theorem, we see that all is known about convex
polygons. However, not all is known about non-convex polygons. We first examine
non-convex polygons from their simplest mathematical form: the ones of regular stars.

Definition 5.37. By an n-pointed “star,” or “r-star”, we mean an equilateral
polygon 2n-gon with the vertex set,{

rα2k, α2k+1 : k = 1, 2, . . . , n and α = eiπ/n
}
,

where r is some real constant.

Notice that when r = 1, the n-pointed star is a regular 2n-gon, and when r <
cos(π/n) or r > sec(π/n), the star is a strictly non-convex 2n-gon. Our preimages of
the vertices of the 2n-gon will be arcs centered at the 2nth roots of unity (notice that
this is different from our previous examples).

Figure 5.8. The 0.3-star for n = 3

Example 5.38. We will find the harmonic mapping of the unit disk into the 0.3-
star. More precisely, will find the harmonic extension of the following boundary cor-
respondence:
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for t from to f̂(eit)
−π
6

π
6

.3
π
6

π
2

eiπ/3
π
2

5π
6

0.3ei2π/3
5π
6

7π
6
−1

7π
6

3π
2

0.3ei4π/3
3π
2

11π
6

ei5π/3

After going through details similarly to previous examples, we discover the har-
monic extension is

f(z) =
1

π

[
0.3 arg

(
1− ze−iπ/6

1− zeiπ/6

)
+eiπ/3 arg

(
1 + iz

1− ze−iπ/6

)
+ 0.3ei2π/3 arg

(
1− ze−i5π/6

1 + iz

)
− arg

(
1− ze−i7π/6

1− ze−i5π/6

)
+ 0.3ei4π/3 arg

(
1− iz

1− ze−7iπ/6

)
+ei5π/3 arg

(
1− ze−i11π/6

1− ze−i3π/2

)]
.

When we graph this function using ComplexTool, we discover that it appears to be
univalent. We certainly have not yet proved its univalence, however.

Exercise 5.39. Prove that if f(z) is the harmonic extension to the r-star as defined
in Definition 5.37, then f(0) = 0. Interpret this result geometrically. Try it out!

Exercise 5.40. Modify the previous function to have r = 0.15 and see whether it
appears univalent. Try it out!

To work with these stars, we may sometimes want to vary the boundary corre-
spondence. That is, we may want to not split up ∂D completely evenly among the
2n vertices. It will become useful to us to have an unequal correspondence in the
boundary arcs, but maintain some symmetry. To do this, we will still consider arcs
centered at the 2n-th roots of unity, but alternating between larger and smaller arcs.
If we examine the geometry of this matter, we realize that an even split would make
each arc have length 2π

2n
= π/n. Two consecutive arcs would together have length

2π/n. To still maintain some symmetry, but let the arcs alternate in size, we want two
consecutive arcs to still add to 2π/n, but not split evenly. We introduce the parameter
p , with 0 < p < 1, as a tool to explain how the arcs are split. We will want two
consecutive arcs split into p2π/n and (1 − p)2π/n. Note that the sum is still 2π/n.
This is formally described in the definition below:

Definition 5.41. Let n ≥ 2 be a fixed integer, r be a positive real number, and
α = eiπ/n. Define a boundary correspondence almost everywhere on ∂D by mapping
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arcs with endpoints {αe−ipπ/n, αeipπ/n, 0 ≤ k ≤ n− 1} as follows:

(71) f̂(eit) =

{
rα2k , eit ∈ (α2ke−ipπ/n, α2keipπ/n)
α2k+1 , eit ∈ (α2k+1e−i(1−p)π/n, α2k+1ei(1−p)π/n)

.

Let f be the Poisson extension of f̂ .

eiπ/n

r2pπ/n

2(1 - p)π
n

Figure 5.9. The first two arcs and their images according to Definition
71. The dots on the left-hand-side indicate points of discontinuity of the
boundary correspondence.

Note that the arc (α2ke−ipπ/n, α2keipπ/n) centered at α2k is mapped to the vertex
rα2k and the arc (α2k+1e−i(1−p)π/n, α2k+1ei(1−p)π/n) centered at α2k+1 is mapped to the
vertex α2k+1.

Exercise 5.42. Show that the interval in the second half of Equation 71,

(α2k+1e−i(1−p)π/n, α2k+1ei(1−p)π/n),

can be written more compactly as (α2keipπ/n, α2k+2e−ipπ/n). Try it out!

At this point, you should start working with the StarTool applet. The default for
this applet is the 3-pointed star, discussed in Example 5.38. Note that the arcs and
their target vertices are color-coded (with a light blue arc mapping to a light blue
vertex, for example). The default p-value is 0.5, which corresponds to evenly spaced
arcs. You can use the slider bars (the plus/minus button for n) or type in the text
boxes to change the values for n, p, and r. The maximum n-value allowed by the
applet is n = 18, which is certainly sufficient for the explorations below. As with
ComplexTool, there is the option to Sketch on the graph to get a better feel for the
mapping properties of these stars. There is also an option to Show roots of ω(z).
The roots of ω(z) will be helpful in future discussion, but are not essential for the
starting explorations. In general, try to first get a good feel for what happens for
“small” values of n, such as 4, 5, 6, or 7.

Exploration 5.43. Do some explorations with different values of n and r. See if
you can find a pattern for univalence of the star function. Here are some avenues for
exploration.
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Figure 5.10. A star with n = 5, r = 0.15, and p = 0.9

(1) What is the relationship between the r value you choose and the p-value
necessary for univalence? Is there a range of p that works?

(2) What happens as p goes to 0 or 1?
(3) For a given p-value, can you determine the “maximal” r? That is, how large

can you make r and maintain univalence?
(4) Is there a minimum r-value, one for which there is no p-value that will achieve

univalence?
(5) For a fixed r, as you change n, what happens to the p that you need to achieve

univalence?
(6) What is the full relationship between r, n, and p? (It is unlikely that you will

answer this question now, but make some conjectures about it.)

Try it out!

5.6. Harmonic Function Theory

Chapter Refer to the harmonic functions chapter gives a detailed explanation of
harmonic functions. Much of that material will be helpful for our future investigations,
so we repeat it here.

5.6.1. The Basics. Any harmonic function f can be written as f = h+ g, where

h and g are analytic functions. The analytic dilatation, ω(z) = g′(z)
h′(z)

, is, in some sense,

a measure of how much the harmonic function does not preserve angles. A dilatation
of ω(z) ≡ 0 means that the function is analytic, so must be conformal. A dilatation
near 1 indicates that the function distorts angles greatly. A result of Lewy states that
a harmonic function is univalent if its Jacobian, Jf (z) = |h′|2 − |g′|2 is nonzero. You
would expect that Jf (z) = 0 would indicate a local failure of univalence, and that is
indeed the case.

Theorem 5.44 (Lewy’s Theorem). For a harmonic function f defined on a domain
Ω, if f locally univalent in Ω, then Jf (z) 6= 0 for all z ∈ Ω.
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Note that this is the same result as Theorem 17 (it’s 17 right now, reference to get
it right) in Chapter reference harmonic mappings chapter.

Exercise 5.45. Verify that the condition that Jf (z) 6= 0 is equivalent to |ω(z)| 6= 1.
Conclude that a function that is sense-preserving must have Jf (z) > 0 and |ω(z)| < 1.
Try it out!

Of particular interest in this setting is determining how to split up the argument
function (which is harmonic and sense-preserving) into h and g.

Exercise 5.46. Show that the function f(z) = K arg(z) has canonical decompo-

sition h(z) =
1

2i
K log(z) and g(z) =

1

2i
K log(z). Try it out!

Exercise 5.47. In this exercise, we will prove a property that will be important
for the next section.

(a) Show that if f(z0) = 0, there exists a positive δ and a function ψ such that,
for 0 < |z − z0| < δ we can write

(72) f(z) = h(z) + g(z) = an(z − z0)nψ(z)

where ψ(z) =

(
bm
an

(z − z0)m
)

(z − z0)−n + · · · , m ≥ n, and the ellipses indi-

cate that the series continues in n.
(b) Show that part (a) implies that |ψ(z)| < 1 for z sufficiently close to z0.
(c) Show that part (b) implies that the zeros of a sense-preserving function are

isolated, since f(z) 6= 0 near z0.

Try it out!

5.6.2. The Argument Principle.
5.6.2.1. Analytic Argument Principle. The Argument Principle for analytic func-

tions gives a very nice way to describe the number of zeros and poles inside a contour.
For example, try the following exercise.

Exploration 5.48. Open ComplexTool. Change the Interior circles to 0 and
the Rays to 0. This will graph just the boundary of the circle of interest. As you
graph the following functions, think about how many times the image of the circle
“winds around,” or encloses, the origin. Count how many times the image of the circle
winds around the origin, making sure that you count the counterclockwise direction as
positive and the clockwise direction as negative. If the circle winds around the origin
once, you know that there must be a zero of f(z) inside that circle. (Think about this
last sentence and make sure you understand it.)

• Graph f(z) = z2, using a circle of radius 1. Use the “Sketch” button and trace
around the circle in the domain to get a good feeling for how many times its
image winds around the origin. You should already know the answer. (Any
other radius will work too. Why is that?)
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• Graph f(z) = z(z−0.3). Use circles of radius 0.2, 0.3 and 0.5. (You may have
to zoom in on the image of the circle of radius 0.2 to really understand what
it is doing. )
• Graph f(z) = z4 − 6z + 3. Use circles of radius 0.9, 1.5, 1.7, and 2.

• Graph f(z) = z4−6z+3
z−1

, using circles of radius 0.9 and 1.5.

• Graph f(z) = z4−6z+3
(z−1)2

, using circles of radius 0.9, 1.5 and 2.

• Go back through the previous 3 items, now changing the function while keeping
the radius fixed.
• Make up your own function and do some more experiments.

Based on the explorations above, what is your connection between the winding number
of the image of a circle and the number of zeros and poles inside the circle?

Try it out!

Theorem 5.49. Let C be a simple closed contour lying entirely within a domain
D. Suppose f is analytic in D except at a finite number of poles inside C and that
f(z) 6= 0 on C. Then

1

2πi

∮
C

f ′(z)

f(z)
dz = N0 −Np,

where N0 is the total number of zeros of f inside C and Np is the total number of
poles of f inside C. In determining N0 and Np, zeros and poles are counted according
to their order or multiplicities.

z2
z1 0

Figure 5.11. A path around a branch cut

First, let’s explore the connection between the winding number and the integral
1

2πi

∮
C

f ′(z)

f(z)
dz. To see this connection, we will start with a related integral,

∫ z2
z1

f ′(z)
f(z)

dz,

where z1 and z2 are points very close to each other, but lying on opposite sides of a
branch cut of log f(z), and we take a “counterclockwise” path along C from z1 to z2.
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(See Figure 5.11.) Now we do the following computation:∫ z2

z1

f ′(z)

f(z)
dz = log f(z)|z2z1

= ln |f(z2)| − ln |f(z1)|+ i(arg(f(z2))− arg(f(z1)).

When we take the limit as z1 → z2, we get that ln |f(z2)| − ln |f(z1)| → 0 and
i(arg(f(z2)) − arg(f(z1)) → 2πi(winding number). (Think carefully about this last
statement and make sure you understand it.)

Proof. The proof of the Argument Principle relies on the Cauchy integral formula
and deformation of contours. Take a moment to review these important concepts. We
begin by deforming the contour C to a series of smaller contours around the isolated

zeros and poles of f . If there are no zeros or poles, then f ′(z)
f(z)

is analytic, so the integral

is zero, as desired. We will then analyze the zeros and poles individually, and add
the results together to get the desired conclusion. More formally, when f has zeros
or poles in D, they must be isolated, and because f is analytic on C, there are only
a finite number of distinct zeros or poles in D. Denote the zeros and poles by zj, for
j = 1, 2, . . . , n. Let γj be a circle of radius δ > 0 centered at zj, where δ is chosen small
enough that the circles γj all lie in D and do not meet each other. Join each circle γj
to C by a Jordan arc λj in D. Consider the closed path Γ formed by moving around C
in the positive (counterclockwise) direction while making a detour along each λj to γj,
running once around this circle in the clockwise (negative) direction, then returning
along λj to C. See Figure 5.12.

C

zjγ j

λ j

Figure 5.12. The contour Γ

This curve Γ contains no zeros or poles of f , so ∆Γ argF (z) = 0 by the analyticity of
f on and inside of Γ. (By ∆Γ argF (z) = 0, we mean the total change in the arugment
of F (z) as we travel along the contour Γ.) When considering the total change in
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argument along Γ of f(z), the contributions of the arcs λj along Γ cancel out, so that

∆C arg f(z) =
n∑
j=1

∆γj arg f(z),

where each of the circles γj is now traversed in the positive (counterclockwise) direction.
Thus now we may consider each individual γj and sum the results.

Suppose that f has a zero of order n at z = zj. Then f(z) = (z− zj)nfn(z), where
fn(z) is an analytic function satisfying f ′n(zj) 6= 0. (If you can’t remember why this is
true, look in any standard introductory complex analysis book.) Then

f ′(z) = n(z − zj)n−1fn(z) + (z − zj)nf ′n(z)

and

f ′(z)

f(z)
=

n(z − zj)n−1fn(z) + (z − zj)nf ′n(z)

(z − zj)nfn(z)

=
n

z − zj
+
f ′n(z)

fn(z)
.

Now we note that when we integrate the above expression along γj, we get n(2πi) + 0,

because f ′n(z)
fn(z)

is analytic inside the contour.

Now suppose that f has a pole of order m at z = zk. This means that f can be
rewritten as f(z) = (z−zk)−mfm(z), where fm is analytic an nonzero at z = zk. Then,
as previously, we have

f ′(z)

f(z)
=
−m(z − zk)−m−1fm(z) + (z − zk)−mf ′m(z)

(z − zk)−mfm(z)

=
−m
z − zk

+
f ′m(z)

fm(z)
.

Once again, when we integrate the above expression along γk, we get −m(2πi) + 0.
Summing over j = 1, 2, . . . n gives us the integral over Γ and the desired result.

�

5.6.2.2. Argument Principle for Harmonic Functions. There are many versions of
the argument principle for harmonic functions. We will only need the simple proof
presented in this section, developed by Duren, Hengartner, and Laugesen ([4]).

Theorem 5.50. Let D be a Jordan domain with boundary C. Suppose f be a
sense-preserving harmonic function on D, continuous in D and f(z) 6= 0 on C. Then
∆C arg f(z) = 2πN , where N is the total number of zeros of f(z) in D, counted
according to multiplicity.

Proof. First, we suppose that f has no zeros in D. This means that N = 0
and the origin is not an element of f(D ∪ C). A fact from topology says that in this
case, ∆C arg f(z) = 0, and the theorem is proved. We will prove this fact. Let φ
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be a homeomorphism of the closed unit square S onto D ∪ C with φ : ∂S → C a
homeomorphism. See Figure 5.13.

S

F

f
φ D     C

Figure 5.13. The composition of f and φ.

The composition F = f ◦ φ is a continuous mapping of S onto the plane with
no zeros, and we want to prove that ∆∂S argF (z) = 0. Begin by subdividing S into
finitely many small squares Sj so that on each Sj, the argument of F varies by at
most π/2. Then ∆∂Sj argF (z) = 0 (since F (Sj) cannot enclose the origin). Now when
we consider ∆∂S argF (z), it is the sum

∑
j ∆∂Sj argF (z) because the contributions to

the sum from the boundaries of each Sj cancel out, except where the boundary of Sj
agrees with the boundary of S. Thus ∆∂S argF (z) = 0, as desired.

Now consider the case where f does have zeros in D. Because the zeros are isolated,
and because f is not zero on C, there are only a finite number of distinct zeros in D.
We proceed in a manner similar to the proof of the analytic argument principle, and,
denote the zeros by zj, for j = 1, 2, . . . , n. Let γj be a circle of radius δ > 0 centered
at zj, where δ is chosen so small that the circles γj all lie in D and do not meet each
other. Join each circle γj to C by a Jordan arc λj in D. Consider the closed path
Γ formed by moving around C in the positive direction while making a detour along
each λj to γj, running once around this circle in the clockwise (negative) direction,
then returning along λj to C. (See Figure 5.12 on page 334.) This curve Γ contains
no zeros of f , so ∆Γ argF (z) = 0 by the first case in this proof. When considering
the total change in argument along Γ of f(z), the contributions of the arcs λj along Γ
cancel out, so that

∆C arg f(z) =
n∑
j=1

∆γj arg f(z),

where each of the circles γj is now traversed in the positive (counterclockwise) direction.
Thus now we may consider each individual γj and sum the results.
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Now suppose that f has a zero of order n at a point z0. Then, as observed in
Exercise 5.47 on page 332, f can be locally written as

f(z) = an(z − z0)n(1 + ψ(z))

where an 6= 0 and |ψ(z)| < 1 on a sufficiently small circle γ defined by |z − z0| = δ.
This shows that

∆γ arg f(z) = n∆γ arg(z − z0) + ∆γ arg(1 + ψ(z)) = 2πn.

Therefore, if f has zeros of order nj at the points zj, the conclusion is that

∆C arg f(z) =
n∑
j=1

∆γj arg f(z) = 2π
n∑
j=1

nj = 2πN,

and the theorem is proved.
�

5.7. Dilatations of Polygonal Maps are Blaschke Products

Having learned the basic principles of harmonic function theory, we are now ready
to use the tools of harmonic functions to study the polygonal maps. To understand
when the star maps are univalent, we must first examine their dilatation. As we
discover in this section, the dilatation of a polygonal map is always in the form of a
Blaschke product.

Definition 5.51. A Blaschke factor is Bz0(z) = z0−z
1− z0z

, and a finite Blaschke
product or order n is a product of n Blaschke factors, possibly multiplied by a constant
ζ such that |ζ| = 1:

ζ
n∏
k=1

zk − z
1− zkz

.

Note that the multiplication by ζ is simply a rotation.

Remark 5.52. It is important to note that the Blashke product definition given
above is a bit non-standard. The standard definition of Blaschke Product, as given in
Chapters reference the introduction and other chapters assumes that |zk| < 1. Here we
do not place that restriction on zk with the purpose of simplifying our computations.

Exercise 5.53. Consider the function you generated in Exercise 5.24. Complete
all of the following:

• Find the formulas for h(z) and g(z).
• Find the derivatives h′(z) and g′(z).
• Verify that the derivatives simplify to

h′(z) =
1

(2πi)(1− z4)

(
(
3

2
− 3

2
i)z2 − 3iz + (

5

2
+

5

2
i)

)
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and g′(z) =
1

(2πi)(1− z4)

(
(
5

2
− 5

2
i)z2 + 3iz + (

3

2
+

3

2
i)

)
• Find the zeros of the dilatation, ω(z), of f(z),and find the modulus of the

zeros.

Try it out!

In this section, we will use the result of Exercise 5.46 on page 332 to see that the
dilatation of the harmonic polygonal functions to an n-gon is a Blaschke factor of order
at most n− 2. This result was proven by T. Sheil-Small in [11], and is also discussed
in [3].

For the interval tk−1 < t < tk, we note that

f̂(z) =
vk
2π

(tk − tk−1) +
vk
π

arg

(
1− ze−itk

1− ze−itk−1

)
by Definition 5.27. By Exercise 5.46, we have

h(z) =
vk
2π

(tk − tk−1) +
vk
2πi

log

(
1− ze−itk

1− ze−itk−1

)
=

vk
2π

(tk − tk−1) +
vk
2πi

(
log(1− ze−itk)− log(1− ze−itk−1)

)
and

g(z) =
vk

2πi
log

(
1− ze−itk

1− ze−itk−1

)
=

vk
2πi

(
log(1− ze−itk)− log(1− ze−itk−1)

)
.

Adding all of the n factors together, and taking derivatives, we get:

h′(z) =
n∑
k=1

vk
2πi

(
−e−itk

1− ze−itk
− −e−itk−1

1− ze−itk−1

)
(73)

=
n∑
k=1

vk
2πi

(
1

z − eitk
− 1

z − eitk−1

)
.(74)

The function g′(z) is identical except for having vk instead of vk:

g′(z) =
n∑
k=1

vk
2πi

(
−e−itk

1− ze−itk
− −e−itk−1

1− ze−itk−1

)
(75)

=
n∑
k=1

vk
2πi

(
1

z − eitk
− 1

z − eitk−1

)
.(76)
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Combining like factors gives us a more compact form, with

(77) h′(z) =
1

2πi

n∑
k=1

vk − vk+1

z − eitk
and g′(z) =

1

2πi

n∑
k=1

vk − vk+1

z − eitk
.

It will be useful for the upcoming discussion to note that
∑n

k=1(vk − vk+1) = 0,
since vn+1 = v1.

Exercise 5.54. Prove that
∑n

k=1(vk − vk+1) = 0, since vn+1 = v1. Interpret this
result geometrically.

Try it out!

We will rely heavily upon the observation that

(78) h′(1/ z) = z2g′(z) or g′(1/ z) = z2h′(z).

Equation 78 arises from the following computation:

h′(1/ z)− z2g′(z) =
−1

2πi

n∑
k=1

vk − vk+1

1/z − e−itk
− z2

2πi

n∑
k=1

vk − vk+1

z − eitk

=
−z
2πi

n∑
k=1

eitk( vk − vk+1)

eitk − z
− z2

2πi

n∑
k=1

vk − vk+1

z − eitk

=
z

2πi

n∑
k=1

eitk( vk − vk+1)

z − eitk
− z2

2πi

n∑
k=1

vk − vk+1

z − eitk

=
1

2πi

n∑
k=1

( vk − vk+1)(zeitk − z2)

z − eitk

=
1

2πi

n∑
k=1

( vk − vk+1)(z)(eitk − z)

z − eitk

=
−1

2πi

n∑
k=1

( vk − vk+1)(z)

= 0.

Exercise 5.55. We have just proven the first half of Equation 78. Using that
result, prove the second part of Equation 78 with minimal calculation. Try it out!

Exercise 5.56. Interpret this result geometrically. That is, note that if you have
a value z0 ∈ D such that g′(z0) = 0, then what do you know about the zeros of h? How
are the locations of the zeros of h related to the locations of the zeros of g? Completion
of this exercise will give some intuition about the proof that is to come. Try it out!
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For simplicity of notation, let us consider the functions h′(z) and g′(z). We can
already tell that if we got a common denominator for h′(z) or g′(z), that the denomi-

nator would be
n∏
k=1

(z − eitk), and we would guess that the ratio of the two would give

us a product of rational functions. At this point, that is all we can tell–it is not obvious
that this product should be a Blaschke product. The remainder of this section will be
devoted to determining that this is, indeed, a Blaschke product, as well as finding us
the order of that product. Obtaining a common denominator for both h′ and g′, we
can look at them as

h′(z) =
P (z)

S(z)
and g′(z) =

Q(z)

S(z)
,

where S(z) =
n∏
k=1

(z − eitk) . Now we need to consider what P and Q look like. Consider

that by brute force, each term of the P (z) looks like (vk − vk+1)
n∏

j=1;j 6=k

(z − eitj), or, put

more simply, a polynomial of degree at most n− 1. Now let us consider the zn−1 term

of P (z). It is simply vk − vk+1 for each piece of the sum, so it must be
n∑
k=1

(vk − vk+1),

which we already observed to be 0. Thus we have shown that P (z) has degree at most
n− 2. The same argument works for Q(z), since it has the same structure as P (z) but
with conjugates over the vk.

We now turn our attention to the denominator, which is S(z) =
n∏
k=1

(z − eitk).

Exercise 5.57. Show that the following equation holds:

S(1/ z) =

(
1

z

)n
(−1)n S(z)

n∏
k=1

eitk .

Try it out!

Put another way, we could write

(79) S(1/ z) =

(
1

z

)n
(−1)nS(z)

n∏
k=1

e−itk .

Now we can combine Equations 78 and 79 to get a relationship between P (z) and Q(z).
Directly substituting into the first part of Equation 78, we see that
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h′(1/ z) = z2g′(z)

P (1/ z)

S(1/ z)
= z2Q(z)

S(z)

P (1/ z)(
1
z

)n
(−1)nS(z)

∏n
k=1 e

−itk
= z2Q(z)

S(z)

This leads to the important relationship

(80) zn−2 P (1/ z) = (−1)nQ(z)
n∏
k=1

e−itk

Exercise 5.58. Using the result above, show that

(81) zn−2 Q(1/ z) = (−1)nP (z)
n∏
k=1

e−itk .

Try it out!

Since the function f is orientation-preserving, we know that h′(z) 6= 0 in D. This
implies that P (z) 6= 0 in D. In particular, P (0) 6= 0. Substituting 0 into equation 81,
we find that the left hand side must not be zero, which forces the degree of Q to be
at least n − 2. However, we had previously determined that the degree of Q must be
at most n− 2. Thus the degree of Q is n− 2. Similarly, the degree of P is also n− 2.
Since the degree of Q is n− 2, let us write

Q(z) = zm
n−m−2∏
k=1

(z − zk)

to show that Q may have m zeros at the origin and n −m − 2 zeros elsewhere (note
that the zk need not be distinct). Now using Equation 81, we can write

zn−2

(
1

z

)m n−m−2∏
k=1

(
1

z
− zk

)
= (−1)nP (z)

n∏
k=1

e−itk .

The left hand side of the above equation may be rewritten as

zn−m−2 1

zn−m−2

n−m−2∏
k=1

(1− zzk) .

At this point we can see that since the zeros of Q are zk, the zeros of P are the zeros of
n−m−2∏
k=1

(1− zzk), which are precisely 1/ zk. Now we are able to see that the Blaschke
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product is what it is. Furthermore, the fact that P must be nonzero in D implies that
|zk| < 1 for all k.

Exercise 5.59. Why is it true that |zk| < 1 for all k? Try it out!

Exercise 5.60. Find the relationship between the number of zeros of Q and the
number of zeros of P . In particular, if Q has degree n− 2 with m zeros at the origin
and n−m− 2 zeros away from the origin, then how many of the zeros of P are at the
origin? How many of the zeros of P are away from the origin? Try it out!

We now summarize the results of our work in this section (as originally proved by
T. Sheil-Small, see [11] Theorem 1 or [3]).

Theorem 5.61. Let f be the harmonic extension of the step function f̂(eit) as
given in Definition 5.27. Then

g′(z) =
Q(z)

S(z)
and h′(z) =

P (z)

S(z)
,

where Q(z), P (z), and S(z) are defined as above, and P and Q are polynomials of
degree at most n− 2. Furthermore, their ratio ω(z) satisfies |ω(z)| = 1 when |z| = 1,
so takes the form of a Blaschke product of degree at most n− 2.

5.8. An Important Univalence Theorem

In this section, we examine a theorem of Sheil-Small that tells when the harominc
function in Definition 5.27 is univalent. In particular, the location of the zeros of the

analytic dilatation ω(z) = g′(z)
h′(z)

are sufficient to tell when it is univalent.

Exploration 5.62. Open up the StarTool applet. Check the box in front of Show
roots of ω(z). You will see extra dots appear in the right-hand pane (the range of
the function), as well as a unit circle for reference. These dots denote the locations
of the zeros of the dilatation ω(z). Now experiment with the values of p and r to see
if there is a relationship between the roots of ω(z) and whether the resulting star is
univalent. Do this for various values of n to see if your result seems to hold. Try it
out!

The theorem below was proven by Sheil-Small, and is Theorem 11.6.6 of [12].

Theorem 5.63. Let f be a harmonic function of the form in Definition 5.27. Here
the function f is the harmonic extension of a piecewise constant boundary function
with values on the m vertices of a polygonal region Ω, so that, by Theorem 5.61, the
dilatation of f is a Blaschke product with at most m− 2 factors. Then f is univalent
in D if and only if all zeros of ω lie in D. In this case, f is a harmonic mapping of D
onto Ω.
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Proof. First, suppose that f is univalent in D. If a Blaschke factor is defined as
ϕz0(z) = z0−z

1− z0z
, with the constant z0 not having modulus 1, then we notice that since

the dilatation ω is a product of a finite number of Blaschke factors, ω(z) 6= 0 on the
unit circle. This is because the zero of the Blaschke factor is z0, and if |z0| = 1, we get
that ϕz0(z) = z0 for all z. If ω has a zero at some point z0 outside of D, then it has a
pole at 1/ z0 ∈ D. If it also has zeros in D, then there are points in D where |ω(z)| < 1
and other points where |ω(z)| > 1. This implies that the Jacobian of f changes sign in
D, which would force the Jacobian to equal 0 at some point in D, contradicting Lewy’s
theorem, which says that the Jacobian is non-zero since f is locally univalent. Thus
there are only two possibilities for a univalent f : Either all of the zeros of ω(z) lie in
D, or all lie outside D. But if the zeros of ω lie outside of D, then |ω(z)| > 1 in D and
f has negative Jacobian, contradicting its construction as a sense-preserving boundary
function. Therefore, all of the zeros of ω must lie in D.

Conversely, assume all of the zeros of ω lie within D. By the nature of Blaschke
products, |ω(z)| < 1 in D. We will use the argument principle to show that f is
univalent in D and maps D onto Ω. Choose an arbitrary point w0 ∈ Ω. Let Cε be the
path in D consisting of arcs of the unit circle along with small circular arcs of radius ε
about the points bk (the points bk are the arc endpoints in the domain disk), as shown
in Figure 5.14.

bk

cε

ε

Figure 5.14. Tiny circles around the bk

If ε is sufficiently small, the image of Cε will not go through w0, and will have
winding number +1 around w0. Since |ω(z)| < 1 inside Cε, it follows from the argument
principle for harmonic functions that f(z)−w0 has one simple zero inside Cε (or, put
another way, f(z) = w0 has exactly one solution for z ∈ D). Thus Ω ⊂ f(D). Now do a
similar construction with w0 /∈ Ω to show that w0 /∈ f(D). Thus f maps D univalently
onto Ω. �
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This theorem necessitates that we look at and understand the analytic dilatation
of the harmonic extension. We started that in the exercise in the previous section, and
will now continue that in the next section.

5.9. The Dilatation for Star Mappings

In this section, we will use Definition 5.41 of Section 5.5 as the starting point.
We will build upon the basic formula for the functions h′(z) and g′(z), and then will
simplify the dilatation ω(z) as a Blaschke product. By doing so, we will completely
determine which star functions are univalent.

Using Equations (73) and (75) of Section 5.7, along with Definition 5.41, we can
find the following equations for h′(z) and g′(z) for the star functions:

h′(z) =
rα0

2πi

(
1

z − α0eipπ/n
− 1

z − α0e−ipπ/n

)
+
α

2πi

(
1

z − α2e−ipπ/n
− 1

z − α0eipπ/n

)
+
rα2

2πi

(
1

z − α2eipπ/n
− 1

z − α2e−ipπ/n

)
+ . . .

=
r

2πi

n−1∑
k=0

α2k

(
1

z − α2keipπ/n
− 1

z − α2ke−ipπ/n

)
(82)

+
1

2πi

n−1∑
k=0

α2k+1

(
1

z − α2k+2e−ipπ/n
− 1

z − α2keipπ/n

)
and

g′(z) =
r

2πi

n−1∑
k=0

α2k

(
1

z − α2keipπ/n
− 1

z − α2ke−ipπ/n

)
(83)

+
1

2πi

n−1∑
k=0

α2k+1

(
1

z − α2k+2e−ipπ/n
− 1

z − α2keipπ/n

)
Our goal is to find the ratio of Blaschke products guaranteed by Sheil-Small’s work.
To that end, we must first establish a few general algebraic identities involving sums
of the quantities of the type found in the expansions of h′(z) and g′(z) above.

It is a basic complex identity that if ζ is an mth root of unity, then

(84)
m∏
k=1

(z − ζk) = zm − 1.

Exercise 5.64. Prove Equation (84). Interpret this result geometrically. Try it
out!
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Exercise 5.65. Show that

(85)
m−1∏
k=0

(z − ζka) = zm − am.

Hint: Replace z with z/a in Equation (84). Try it out!

Now we work to answer the hard question: How do we add together all of the sums
in equations (82) and (83), given that their numerators are not simply the constant 1?
As an intermediate step toward acheiving this, we will establish the following important
identity.

Lemma 5.66. If ζ is an mth root of unity, then

(86)
m−1∑
k=0

ζk

z − ζka
=

mam−1

zm − am
.

Exercise 5.67. Prove the lemma, using the following steps.

(1) Recall Equation (85) and note how it fits in with this formula.
(2) Note that since we have n distinct linear factors in the denominator, we can

expect to find that

mam−1

zm − am
=

m−1∑
k=0

ak
z − ζka

.

(3) We will find an arbitrary ak0 . By setting z = ζk0a, establish that

ak0 =
mam−1∏

k 6=k0(ζ
k0a− ζka)

=
m∏

k 6=k0(ζ
k0 − ζk)

.
(4) Show that

∏
k 6=k0

(ζk0 − ζk) = mζ−k0 . It will be helpful to remember that ζk0 is

an mth root of unity, so ζk0m = 1.
(5) Conclude that ak0 = ζk0 .
(6) Equation (86) should follow.

Try it out!

We now recall the result of Exercise 5.42 on page 330 that

α2k+2e−ipπ/n = α2k+1ei(1−p)π/n and α2keipπ/n = α2k+1e−i(1−p)π/n,

to give us the two equations
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1

2πi

n−1∑
k=0

α2k+1

z − α2k+2e−ipπ/n
=
−1

2πi

(
nei(1−p)(n−1)π/n

zn + ei(1−p)π

)
and

− 1

2πi

n−1∑
k=0

α2k+1

z − α2keipπ/n
=

1

2πi

(
ne−i(1−p)(n−1)π/n

zn + e−i(1−p)π

)
.

Exercise 5.68. Prove that

− 1

2πi

n−1∑
k=0

α2k+1

z − α2keipπ/n
=

1

2πi

(
ne−i(1−p)(n−1)π/n

zn + e−i(1−p)π

)
.

Try it out!

Combining all of these together, we see that we can write

h′(z) =
n

2πi

(
rei(

n−1
n

)pπ

zn − eipπ
+
−re−i(n−1

n
)pπ

zn − e−ipπ

+
−ei(n−1

n
)(1−p)π

zn + ei(1−p)π
+
e−i(

n−1
n

)(1−p)π

zn + e−i(1−p)π

)
.(87)

We need to keep our goal in mind: We know from Theorem 5.61 that g′(z)
h′(z)

can be

written as a Blaschke product. To do this, we will have to find a common denominator
and combine the four terms of h′(z) to see the quotient. As an initial step, we find
that we can write the common denominator more simply than it first appears.

Exercise 5.69. Prove that (zn− eipπ)(zn− e−ipπ) = (zn + ei(1−p)π)(zn + e−i(1−p)π).
We will call this product Sn(z). Try it out!

Exercise 5.70. Using basic algebra (finding a common denominator, simplifying,
and using properties of z + z), prove that

h′(z) =
n

πSn(z)

(
zn
(
r sin

(
(n− 1)pπ

n

)
− sin

(
(n− 1)(1− p)π

n

))
(88)

+r sin
(pπ
n

)
+ sin

(
(1− p)π

n

))
.

Try it out!

Through methods similar to those of the simplification of h′(z), we can also prove
that

g′(z) =
nzn−2

πSn(z)

(
zn
(
r sin

(pπ
n

)
+ sin

(
(n− 1)(1− p)π

n

))
(89)

+r sin

(
(n− 1)pπ

n

)
− sin

(
(n− 1)(1− p)π

n

))
.
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With this simplified form of g′(z), we can use

(90) c =
sin (n−1)(1−p)π

n
− r sin (n−1)pπ

n

r sin pπ
n

+ sin (1−p)π
n

to write

(91) g′(z) =
nzn−2

π

(
r sin

(pπ
n

)
+ sin

(
(1− p)π

n

))
zn − c
Sn(z)

.

Now we are ready to pull together the result of Theorem 5.63 and the dilatation
that we just simplified. When the zeros of this dilatation are within the unit disk, then
the harmonic function f = h+ g that defines the star is univalent. By a straightforward
computation, we find that the dilatation of f is

(92) ω(z) =
zn−2(zn − c)

1− znc
.

Exercise 5.71. Look again at Theorem 5.63 and verify that it does, indeed, hold
for the star function. Try it out!

Exploration 5.72. Notice that f is univalent when |c| < 1. Using that observa-
tion, do the following:

• Use the StarTool applet to explore graphically what relationship there is be-
tween n, p, and c.
• For a fixed n, find the range of p-values that make |c| < 1.
• For a fixed p, find the range of n-values that make |c| < 1.

Try it out!

Large Project 5.73. If you move just one vertex of the star, do the same results
hold for the relationship between n and p? (For example, take the vertex at r, and
move it to r + ε or r − ε. Is the star still univalent?)

Exercise 5.74. For a given n, consider the formula for c in Equation 90 to be a
function of p alone. Prove that any star configuration is possible; that is, prove that
for any value of r, a value of p can be found to make |c| < 1. What ranges of p makes
this happen? Conversely, prove that for all values of r < cos(π/n) or r > sec(π/n),
a p can be chosen to make the function NOT univalent. Why is this not true for
cos(π/n) ≤ r ≤ sec(π/n)? For more information, see Theorem 4 in [5]. Try it out!

Small Project 5.75. Refer to Chapter insert reference for min surf chapter. For
what values of c is the dilatation a perfect square? Can you find and classify the
associated minimal surfaces? For more information on this project, see [8].
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5.10. Open Questions

Large Project 5.76. Can we map to any polygon univalently? The star setup
takes full advantage of the symmetry. Once you lose that advantage, it is much harder
to discover whether the zeros of the dilatation have modulus less than 1. This question
is known as the Mapping Problem, proposed by T. Sheil-Small in [11].

Small Project 5.77. Look at a function f that is not univalent. Now look at
the set S ⊂ D of points on which the function f is univalent. First, how do you find
that set? What is the shape of S? Is it starlike? Is it convex? Is it connected? Is it
simply connected? Can D\S be connected?

Small Project 5.78. In this chapter, we discussed one way of proving that a
harmonic function is univalent by looking at zeros of the analytic dilatation ω(z). On
Chapter reference harmonic functions chapter, there is another set of criteria for uni-
valence, as demonstrated in Section the section with the linear combinations. Connect
these two avenues of investigation. For example, does one imply the other? How does
the work with stars in this chapter generalize to the approach in Chapter reference
harm functions chapter? Are there results in this chapter that could not be found
using the methods of Chapter reference harm functions chapter?
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CHAPTER 6

Circle Packing

Ken Stephenson (text and applets)

Complex analysis is, in a sense, the ultimate in “continuous” mathematics. It
presents you with a ’smooth’ world: continuous variables, infinitely differentiable func-
tions, handy formulae. In this chapter, the geometry of analytic functions moves
strongly to the fore as we see how one might “discretize” complex analysis.

An analogy to keep in mind is that of a mountain stream. In normal experience
we treat it as a continuous medium and use continuous variables and functions to
understand it — pressure, velocity, vorticity — modeled, perhaps, by Navier-Stokes
and other PDE’s. Yet we know that the stream is in fact a collection of individual
water molecules, if you will, a “discrete” medium. The macro behavior, the waves,
eddies, and currents, emerge from the myriad local interactions among the discrete
water molecules. So one might ask: what purely local rules of interaction among these
water molecules could lead with complete reliability to the observed global behavior?

In this chapter, circles will be our molecules, and “packing” conditions will provide
the local rules for their interaction. Circle packings, configurations of myriad individual
circles, each interacting only with its neighbors, will manifest macro behavior that we
will recognize as a version of analyticity. At the end of the chapter we will also see that
our dicrete objects converge under appropriate refinement to the familiar continuous
counterparts. In effect, then, circle packing provides a quantum complex analysis that
is classical in the limit.

This is a topic ideal for visualization and experimentation — indeed, we’re going to
rely heavily on trials (and inevitable errors) to convey its essential features. But keep
in mind that it takes some time to understand the mechanics and to see how analyticity
emerges. We’ll jump right in with experiments from the genesis of the topic.

6.1. First Impressions

Circle packings were introduced in analysis by Bill Thurston in a talk in 1985 in
the context of conformal mapping. The famous Riemann Mapping Theorem (???) tells
us that given a bounded simply connected open set Ω ⊂ C, there exists a one-to-one
analytic mapping F of the unit disc D onto Ω. Moreover, if w0, w1 are points of Ω,
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then one can arrange that F (0) = w0 and that the image of the positive x-axis goes
through w1. With this normalization, F is in fact unique.

Figure 6.1. A conformal map display, domain (left) and range (right)

Figure 6.1 illustrates the analogous discrete result, known formally as the Discrete
Riemann Mapping Theorem, with a screenshot from our experimental testbench, the
software package CirclePack. Typical of our practice, the domain circle packing will
be on the left in such side-by-side displays, and the range packing will be on the right.
The “function” here can be interpreted in various ways. Each circle on the left has
a corresponding circle on the right, so one can map circles to circles. Alternately, as
we will see later, one can map the triangles formed by the circles on the left to those
formed by the corresponding circles on the right. In any case, the two packings provide,
in essence, a map of the disc onto the region Ω. We will see the details shortly.

About CirclePack: A few words are in order about CirclePack before I describe
how you should experiment with the Discrete Riemann Mapping Theorem. Figure 6.2
is a screenshot of CirclePack, showing the context for these mapping images, with
various frames and panels for running the software. Unlike most of this book’s other
Java code, CirclePack is a Java “application” rather than a Java “applet”: it requires
access to the file system for file manipulations, it is a larger, more comprehensive (and
reconfigurable), and it avails itself of a shared C++ library, ’libHeavyClib’, for com-
putationally intense experiments. It also has an important scripting feature: “script”
files with prepared sequences of commands are provided to guide your experiments.
These files have extension “.xmd” and are indicated in the text by s Names. To run

351



the experiment, then, you start CirclePack, from within it you load Name.xmd, then
you click through the prepared commands.

Figure 6.2. CirclePack in Active window mode

To recreate Figure 6.1, run the script s DiscreteRMTs. This is a very structured
experiment, so move CirclePack through the commands by successively pressing the
“Next” button (or press “enter” when the mouse is in the canvas) until the experiment
is complete. Try it out! (If things become jumbled in CirclePack(and they some-
times will!), it may be that you outran the computations: just click the “up icon” to
start at the beginning of the script again, or if things have really gone bad, exit and
restart CirclePack.)

Even in the very passive experimental mode of s DiscreteRMTs you can interact
with the images — moving, focusing, clicking circles and faces, and so forth, as we
describe later. However, it is hoped that as your curiosity and experience grow, you
move through the following additional stages to gain more experimental independence:

(1) The “Script” button will open the CirclePack script window. Here the
commands are laid out linearly and typically are accompanied by text explanations.
If you didn’t understand what the experiment was purporting to show, try reading
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along as you execute the commands. Figure 6.3 illustrates the script window, with
words, icons that encapsulate the commands, included files, etc.

Figure 6.3. A typical “script” for CirclePack

(2) In the Script you can open a command icon (by clicking the small “+” sign)
to see the string of commands that it actually executes. (E.g., “infile path

gamma.g;cookie;disp -w -c -cf b” tells CirclePack to read the path “gamma.g”
from the script’s data section, cookie-cut the portion of the resident packing inside
the path, then clear the canvas and display the circles of the resulting packing, with
the boundary circles “filled”.) Modify these commands and you can change the
action in the experiment. In many of the scripts, hints are given about alterations
you might try. In this first experiment, for example, you can change the radii of
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the circles in the initial hexagonal packing of the range. Try an adjustment and
see what happens.

(3) If you want to dig deeper, click the “Advanced” button to bring up the
CirclePack central control frame; this gives you access to its full functionality.
CirclePack actually holds up to three packings, has panels with messages, his-
tory, and error feedback, a “Command:” line where you can issue explicit strings
of commands, and various “droppable” icons: you just drag one onto a packing
windows and a prepared string of commands will be applied to that packing.

(4) For the truly ambitious, the Java code for CirclePack is freely available under
the GNU opensource license. It includes a “PackExtender” class which allows
anyone (with enough work) to create specialized data structures and commands
having full access to the core functionality of CirclePack. Such PackExtenders
will be used in later experiments.

Figure 6.4 provides an annotated screen shot of CirclePack with various of its
screens and auxiliary panels. (Note that the screenshots are current as of publication,
but CirclePack may change over time.)

Figure 6.4. CirclePack in Mapping window mode
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We are going to move now to the basic definitions and notations we will use in
our discrete analytic function theory. Although static images are helpful, there is
nothing like running experiments, even in automatic mode, to bring the topic to life.
The conformal mapping experiment we did above may help, and I certainly hope it
motivates the theory we will be investigating later. However, we have next a sequence
of experiments tailored to displaying/explaining the basics of the theory.

6.2. Basics of Circle Packing

Definition 6.1. A circle packing is a configuration of circles with a prescribed
pattern of tangencies.

Figure 6.5 illustrates a few circle packings from the “Menagerie” ins Menageries;
run the script to see these and others. Try it out! Among the things you might
observe as you tour our Menagerie: • The circles form triples, mutually tangent triples,
and hence have triangular interstices. • The packings can live in the euclidean plane,
C, the hyperbolic plane, D (the unit disc in C) or the Riemann sphere, P, represented
as the unit sphere at the origin in R3. • The “pattern” of tangencies shows up in the
carrier of the packing, the geometric triangles formed by connecting the centers of
tangent circles. • This pattern can be simply connected or multiply connected. • There
are interior circles, those completely surrounded by their neighbors, and boundary
circles, those on the edge of the configuration. • There are numerous manipulations,
colors, and display options for displaying a circle packing and/or its carrier; these are
invaluable in highlighting the structures you need to study.

We will have to make formal definitions shortly, but I would suggest that you
first play around a little with the CirclePack Owl in s OwlPlays. You might just
run sequentially through the commands first, but then, by pressing the “Script”
button, you can open the Script Window and follow the descriptions associated with
the commands. There are suggestions along the way for free-form changes that you
can make to see how the packings react. Try it out!

Mathematics requires some formalities; annoying at times, they are essential if you
want to understand what’s going on and establish results that you and others can
depend on. Let me lay out the formal objects involved in circle packing. Follow along
in s Objectss, where these are illustrated explicitly in turn; read the descriptions in
the script as you proceed, so Try it out!

• Complex, K: The “prescribed pattern” of tangencies for a circle packing is
represented as an abstract triangulation K of a topological surface (technically, a
simplicial 2-complex). This is a combinatorial object: K has vertices v, edges
〈v, w〉, and faces 〈v, u, w〉 formed by triples of vertices, but does not live in any
geometric setting. It may be finite or infinite, may or may not have boundary, may
be simply or multiply connected. We will always assume K is oriented. Namely,
in every face 〈v, u, w〉, the vertices are listed in positive (counterclockwise) order,
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Figure 6.5. A small menagerie of circle packings.

and these orientations are globally consistent, meaning that if faces f, g share a
directed edge e = 〈v, w〉, then e is positively oriented in one face and negatively
oriented in the other.

Of course, I can’t “show” you an abstract complex, but s Objectss begins
with a “random” triangulation, one having no a priori connection with any circle
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packing — it represents something you might have sketched by hand and then
entered into some drawing program.

• Circle Packing, P : A circle packing for K is a configuration P = {cv}v∈K of
circles with these properties:

(1) There is a circle cv associate with every vertex v of K.

(2) If vertices v and u are neighbors (this is denoted v ∼ u and means that
〈v, u〉 is an edge of K), then the circles cv and cu are (externally) tangent to
one another.

(3) if 〈v, u, w〉 is an oriented face of K, then the circles cv, cu, cw form a triple
of mutually tangent circles which is positively (i.e., counterclockwise) ordered.

In CirclePack, vertices are indexed sequentially starting at 1; s Objectss
highlights, successively: the circle c5, a neighbor, c9, a triple 〈c5, c9, c27〉, and then
the flower of c5, namely, c5 and the closed chain of neighboring petal circles.

The script goes on to highlight several other terms: Interior circles are those hav-
ing closed flowers (their petals wrap completely around them), while the bound-
ary circles are those on the edge, with flowers that don’t close up. Likewise, the
boundary/interior edges and faces are illustrated.

• Carrier, carr(P ): The carrier of P refers to the union of geometry triangles
formed by connecting the centers of the triples of circles in P . In the script, the
carrier is displayed as the “complex”.

• Label, R: A label for K is a vector R = {rv}v∈K of putative radii, one for
each vertex of K. As you might imagine, it is the circle radii that are of central
importance in circle packing. These are maintained in CirclePack and can be
found using the “Pack Info” button. (Note that labels depend on which geometry
you’re working in.)

If you try to create a circle packing “by hand”, say manipulating circle objects
in some graphics program, you quickly learn how tightly choreographed their radii
must be. The computational heart of circle packing involves the computation of
compatible radii; the neutral term “label” is used in place of “radii”, because
the algorithms typically start with values which do NOT fit together and then
apply some iterative adjustments to approach a solution. (But see the §6.8 for the
spherical packing challenge.)

• Angle Sums, θR: Given a complex K and an associated label R, how might
you determine if circles with those radii would actually fit together in the pattern
prescribed by K? The key lies with angle sums. Consider an interior vertex v and
let {v1, v2, · · · , vk} be a list, in counterclockwise order, of its neighbors. Since the
list is closed, it’s convenient in computations to write vk+1 = v1.
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The faces containing v are 〈v, vj, vj+1〉, j = 1, 2, · · · , k. Suppose r, rj, rj+1 are the
associated labels taken from R. For each such face we could place circles cv, cj, cj+1

in the appropriate geometry to form a triple. The triangle formed by their centers
would have edge lengths which are the sums of radii, and we could appeal to the
Law of Cosines to compute the angle in this triangle at v. In euclidean geometry,
for instance, that angle would be

α(r; rj, rj+1) = arccos
(r + rj)

2 + (r + rj+1)2 − (rj + rj+1)2

2(r + rj)(r + rj+1)
.

The sum of these angles at v in all the faces containing v is known as the angle
sum:

θR(v) =
∑

〈v,vj ,vj+1〉

α(r; rj, rj+1z).

The neighbors of v will wrap precisely around it if and only if θR(v) is an integral
multiple of 2π. Note that one does not need to actually place any circles, com-
putations are done entirely with the labels and the combinatoric information from
K.

• Packing Label: A label R for K is known as a packing label if θR(v) is an
integral multiple of 2π for every interior vertex v. If P is a circle packing for K
(in one of our geometries), then the list R of its radii will necessarily be a packing
label. Conversely, one can show that if R is a packing label for K, then one can
lay out circles, using the labels as radii, to form a circle packing P for K. We
indicate this connection between a label R and circle packing P for K by writing
P ←→ K(R).

CirclePack is a platform for creating, manipulating, analyzing, and displaying cir-
cle packings. Its computational core lies in computing packing labels, and although the
“packing” algorithms themselves are interesting and revealing mathematics, they are
not our purpose here. We will instead treat CirclePack as a blackbox computational
engine so that we can concentrate on the underlying geometry. (Recall that there are
several levels of usage for scripts; the higher your skill level, the more you’ll learn from
experiments: (1) click through and watch; (2) open and follow the commands and
associated descriptions; (3) modify the commands; and (4) create new scripts from
scratch.)

6.3. Circle Packing Manipulations

We base our introduction to circle packing on a sequence of scripts revealing
both the objects of study and the principal manipulations of them available within
CirclePack.
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1. s Patternss concentrates on combinatorics. Starting with an empty canvas,
a “seed 7” command creates the simplest type of packing, namely a single flower —
an interior circle surrounded by, in this case, seven petal circles. As you click through
the script the first time, disregard the occasional repackings that are needed. The
emphasis here is on building and adjusting the combinatorics. You will see how to add
generations of new neighbors, how to add/delete individual boundary circles, how to
cut open or zip up a string of boundary circles, how to “double” a packing across a
boundary segment, how to adjoin two packings, how to cookie out one packing from a
larger one, and how the process of “hex” refinement works. Try it out!

2. s Geometriess concerns geometries. CirclePack operates in any of the three
standard ones: the euclidean plane, represented by the familiar complex plane C;
the hyperbolic plane, represented by the unit disc D ⊂ C with the Poincaré metric
(density |ds| = |dz|/(1 − |z|2)); and spherical geometry represented by the Riemann
sphere P, the unit sphere {(x, y, z) : x2 + y2 + z2 = 1} in R3. These are nicely nested,
D ⊂ C ⊂ P with this last inclusion via “stereographic” projection. Moreover, circles in
one geometry are circles in the others (though with different centers and radii). The
script illustrates changes in geometry, displays circles and faces in each, and shows the
effects of automorphisms. Hyperbolic geometry is perhaps least familiar, but also in
many ways the richest. The plane is the most comfortable for most of us. The sphere
is also quite familiar — after all, we live on a sphere — but in circle packing it is by far
the most challenging. See Addendum ?? below concerning these spherical questions.
Try it out!

3. s Layouts may help you understand the repacking/layout process; though
we treat both these as blackbox operations in general, one should see at least a little
about them. In the script, an abstract complex K is represented as a concrete graph
(without any reference to circles). Arbitrary radii are assigned to the vertices and the
corresponding circles are drawn. The “repack” command adjusts the radii iteratively
based on their current values and the neighbor relationships encoded in K. Several
intermediate stages of the repacking are shown: boundary radii are fixed, interior radii
change, all centers are fixed for now. When the radii are “right” (i.e., comprise a
“packing” label), then we can move the circles to the correct locations. Two tangent
circles are laid out first, after which the rest can be placed unambiguously in succession.
The original combinatorics remain, but now the locations of its vertices are determined
by the layout. We have a packing! Try it out!

4. s BdryControls illustrates manipulations critical to our later work: solutions
of boundary value problems for radii and boundary angle sums for a small euclidean
packing. The first section of the script emphasizes boundary angle sum manipula-
tions. With the cursor and key presses you can prescribe boundary angles sums of π,
π/2, or 3π/2 at various boundary vertices; other boundary vertices have unrestrained
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anglesums which necessarily adjust during repacking. A key observation is that while
manipulating circle packings, there are some things you control, but the packing pushes
back — there is a mixture of flexibility and rigidity. Here are some things to think
about:

It is interesting to compare boundary controls in the other geometries. The script
has you investigate quadrilaterals the hyperbolic plane; you have a similar ability to
control boundary angle sums, for instance, but the constraints of the geometry are
different. Try it out! (As for the sphere, see §6.8.)

5. s Type67s investigates connections between combinatorics and geometry using
constant-degree packings, those in which every circle has the same degree (the same
number of neighbors). The takehome message involves these associations: degree 6
circles, flat (zero curvature); degree 5 or less, positive curvature; degree 7 or more,
negative curvature.Try it out!

6. s MaxPacks investigates an especially important type of circle packing. A
maximal packing for a complex K is a univalent circle packing whose carrier “fills”
the underlying geometric space. Ins Type67s above we saw examples for two infinite
simply connected cases, the hexagonal packing, whose carrier is the euclidean plane,
and the septagonal packing, whose carrier is the hyperbolic plane.

The foundational theorem in circle packing is the Koebe-Andreev-Thurston theo-
rem below.

Theorem 6.2 (KAT). Let K be any triangulation of a topological sphere. Then
there is univalent circle packing PK for K in the Riemann sphere, P. Moreover, PK is
unique up to Möbius transformations of the sphere and inversions.

Our condition on orientability disallows inversions. We say a circle packing for K
is essentially unique if it is unique up to conformal automorphisms (like Möbius
transformations) of the underlying space. So in our terminology, the KAT Theorem
states: Every complex K triangulating a sphere has a maximal packing PK of the
sphere, and PK is essesntially unique.

The final simply connnected situation we need (which actually lies behind all the
others) involves complexes K which triangulate closed topological discs. Specifically,
the conditions on K are that it be finite, simply connected, and have one connected
component of boundary vertices. Here we appeal to the following theorem.

Theorem 6.3. If K triangulates a closed topological disc, then there is a univalent
packing PK for K in the hyperbolic plane having the property that all its boundary
circles are horocycles. Moreover, PK is unique up to Möbius transformations of D.

s MaxPacks illustrates various maximal packings. Some, of course, are just sug-
gestive, since we cannot display infinitely many circles. All are, nonetheless, theo-
retically sound. The script also explores the close connection between the previous
two theorems: the maximal packings in D of the last theorem are in fact, solutions of
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boundary value problems: just set boundary radii to infinity (in the hyperbolic plane
this makes them horcycles). These maximal packings, in turn, provide the practical
mechanism behind maximal packings of the sphere: see why in this script. Try it
out!

7. s Branchings illustrates one further source of control beyond the boundary
conditions we have studied so far: namely, branching. A circle cv is “branched” if
it is an interior circle whose neighbors wrap more than once around it. For “simple”
branching, the angle sum at v is 4π and the neighbors wrap twice around it. In general,
if the angle sum is 2πn, the neighbors wrap n times around and the circle is said to
have branch order n − 1. Investigate the local geometry at branch circles in the
script. Try it out!

8. s InputOutputs gives you a tour of CirclePack input/output operations.
After you work with CirclePack for a while, you may want to read/write packings,
save/load scripts, create PostScript images and *.jpg screendumps, etc. Try it out!

6.4. Discrete Function Theory

With experience from the previous scripts, the reader should be in position to begin
our investigation of discrete analytic function theory. To see how CirclePack displays
functions, run through s DiscreteRMTs, which creates the discrete conformal map-
ping of Figure 6.1.

The script begins with a curve defining a Jordan region Ω. A regular hexagonal
packing Hε (i.e., all circles the same radius ε) overlays Ω in the convas on the right.
Using Ω like a cookie cutter, a packing P of Ω is cut from Hε. The associated complex
K has a maximal packing Q = PK in D, which CirclePack computes and displays
in the canvas on the left. We now have, more or less, the situation as pictured in
Figure 6.1. This is the typical way we will represent our functions f : Q −→ P in
CirclePack: “domain” on the left, “range” on the right. Here’s the official definition.

Definition 6.4. A discrete analytic function is a map f : Q −→ P between
circle packings Q and P which preserves tangency and orientation.

As a practical matter, our discrete analytic functions will always have domain and
range packings that share a common complex K (though, of course, K may vary from
one example to another). If v is a vertex of K with circle Cv in Q, then cv = f(Cv) is
the circle for v in P .

Note that because of Theorem 6.3, we actually have already geneated the packings
for many discrete analytic functions. Every packing, P , is the range of a discrete
analytic function: just build its associated maximal packing PK , and viola, f : PK −→
P is a discrete analytic function. You might well ask “What is the big deal about
functions?” The function is not about the range (alone); it’s about how the domain
changes into the range — it’s about the mapping. Which circles grow, which shrink?
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How does the boundary behave? Do the circles come to overlap? How does the
geometry change under f? What properties are preserved? changed?

Subsequent scripts will teach you how CirclePack can aid in generating mappings
and investigating their properties. In the domain/range mode, as in Figure 6.1, you
can click the left mouse button on a circle in the domain or range and both it and
its counterpart in the other packing will be highlighted. Check a few pairs of tangent
circles in Q to see that their counterparts are indeed tangent in P . Also observe that
the circle centered at 0 in Q corresponds to the circle of P which is also at 0: this
is what we will mean when we say f(0) = 0. Clicking the middle mouse button will
highlight corresponding faces of Q and P . CirclePack provides various buttons for
refreshing, zooming, etc.; I’ll leave it to you to experiment with the interface. Your
goal is to be able to probe the packings to discover properties of the mapping f .

6.4.1. Conformal Maps. The “cookie” method ofs Cookies is a very practical
method for creating discrete conformal mappings, so called because they parallel the
conformal (i.e., one-to-one analytic) mappings of the classical theory.

There is a second approach to building conformal mappings which is modeled on the
Schwarz-Christoffel methods seen in Chapter ??. In the discrete setting, the machinery
is remarkably close to the (largely hidden) numerical machinery behind the classical
method. Given a target polygon Γ, one can read off the angles at its corners; in
s DiscreteSCs we impose these as boundary angle sum conditions. The difficulty is
in chosing the boundary vertices at which to place the restrictions.

Exercise 6.5. Before you jump into this script, work out necessary conditions
on boundary angle sums which can be realized by a euclidean packing. Consider the
packing of Figure 6.6 and the polygon Γ formed by the boundary edges of its carrier.
To start, what can you say about the interior angles of such a closed polygonal path?
This one has ???? angles and ??? sides. It is typical to consider the “turning angle” at
the corners as you travel in the positive direction (counterclockwise) about Γ. When
you come to a corner, the turning angle is positive if you turn left onto the next side
and negative if you turn right. This angle can be interpreted as π − θ, where θ is
the interior angle at the corner. There is a necessary condition on the sum of turning
angles. What is it? How can this be restated as a condition on the sum of interior
angles at corners?

Exercise 6.6. The Riemann Mapping Theorem says that every simply connected
proper subdomain Ω of the plane is conformally equivalent to a particular “model”
simply connected domain, namely, the open unit disc. This has been extended to cer-
tain multiply connected regions Ω. For instance, if Ω is a connected domain in the
plane bounded by some finite number n of Jordan curves, then is called n-connected.
In this caae, there is a conformal mapping of Ω onto a standard model multiply con-
nected domain. There are various possible “models”, but of particular recent interest
are are so-called “circle domains”. A circle domain C in the plane is one bounded
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Figure 6.6. Packing of a Polygon

by a finite number of circles. Despite the several numerical methods for computing
the maps for simply connected domains — such as Schwarz-Christoffel — the multiply
connected cases are much tougher. The discrete version is quite elementary, however.
See s CircleDomainss. Try it out!

6.4.2. Basic Function Theory. Let’s look at scripts in which we construct and
study additional types of functions. We start with maps of the unit disc into itself
which are important in classical function theory and especially convenient for us since
we can work in hyperbolic geometry. s Schwarzs starts with a somewhat random,
rather small range packing P in D. Incrementally increasing the boundary radii to
infinity (in practice, 5 is sufficiently large!) and P morphs into its maximal packing
PK . The resulting map f : PK −→ P is a discrete analytic function of D into itself.
It’s convenient to introduce some notation here.
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Definition 6.7. Let f : Q −→ P be a discrete analytic function, where Q and P
are packings with common complex K. The associated ratio function f# : K −→ R
is defined by

(93) f#(v) =
radius(f(Cv))

radius(Cv)
, v ∈ K,

where Cv is the circle for v in Q and f(Cv) is the corresponding circle in P .

f#(v) is the “stretch factor” at the v, the amount that the associated circle is
stretched in going from Q to P . With this for notation, we can illustrates our first
piece of discrete function theory, the Discrete Schwarz Lemma.

Theorem 6.8 (Discrete Schwarz Lemma). Let f : PK −→ P be a discrete analytic
self-map of the unit disc with f(0) = 0. Then f#(0) ≤ 1. Moreover, equality holds if
and only if f is a rotation; that is, P = λPK for some complex λ with |λ| = 1.

Exercise 6.9. Run through s Schwarzs again, but more carefully. Try it out!
Can you see the Discrete Schwarz Lemma in action? The ratio function plays the role
in the discrete theory that the absolute value of the derivative, |F ′|, plays the classical
theory, so the Discrete Schwarz Lemma precisely parallels its classical counterpart,
even up to the equality statement.

Exercise 6.10. There is a classical extension of the Schwarz Lemma known as the
Dieudonné-Schwarz Lemma. If F : D −→ D is analytic and F (0) = 0, then by the
Schwarz Lemma, |F ′(0)| ≤ 1. According to this extension, there is a certain universal
constant C, 0 < C < 1 (i.e., independent of F ) so that |F ′(z)| ≤ 1 whenever |z| <= C.
s Dieudonnes sets up experiments so you can try to estimate this constant: you
manipulate a range packing P in D, color coding those circles whose (euclidean) radii
are smaller in P than in PK . I’ll give you a bit of help: C is larger than 1/2 but quite
a bit less than 1. Try it out!

The Discrete Schwarz Lemma is an example of a “monotonicity” result — if you
decrease the boundary radii of Q to those of P , then the radius of the circle at the
origin also goes down. Details are given in [1], but the basic ideas can be seen in the
following Exercise:

Exercise 6.11. Consider a mutually tangent triple of circles in euclidean geometry
as illustrate in Figure 6.7. Using the euclidean Law of Cosines, show that if the radius
of circle Cv is increased, then the angle α at Cv will decrease while the angles β, γ at
the other two circles will increase. Try it out!

Exercise 6.12. Using the previous fact, prove the following:

Theorem 6.13 (Discrete Maximum Principle). Let f : Q −→ P be a discrete ana-
lytic function between euclidean packings Q and P , and suppose Q is locally univalent.
Then the ratio function f#(v) attains it maximum at some boundary vertex v.
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Figure 6.7. Monotonicity in euclidean triples

Analogous results hold in hyperbolic geometry and are central to the computation
of packing radii. The failure of this monotonicity in spherical geometry is tied in with
the problems you address in §6.8.

Exercise 6.14. Show with a computation in spherical geometry (using the Spheri-
cal Law of Cosines) that the monotonicity of 6.11 can fail in spherical geometry. What
appears to be the trigger for such failure? Try it out!

The analogy between f# and the classical |F ′| is not perfect. In particular, |F ′| is
zero at branch points of F , whereas f# will never be zero. The fact that discrete func-
tions correctly realize the geometry underlying branching can be seen in the following
Exploration.

Exploration 6.15. In the classical theory, there is an important class of analytic
self-maps of the disc known as finite Blaschke products. These are characterized
as the proper analytic maps f of D onto itself, which simply means that if {zj} is any
sequence of points in D with |zj| → 1, then |f(zj)| → 1. In particular, a finite Blaschke
product B : D −→ D extends to a continous map on the unit circle and will map it n
times around itself; a consequence of the argument principle tells us B will have n− 1
branch points inside the disc. This geometric description leads directly to the discrete
analogue, as investigated in s Blaschkes.

Analytic functions present this fascinating mixture of rigidity within flexibility
— I’m convinced that this explains why they have attracted such attention for two
centuries now. You get to manipulate some features, but then you have to live with
the consequences that conformal rigidity brings. This mixture is rather difficult to get
a handle on, but there are two particular notions mathematicians have invented that
give some insight: harmonic measure and extremal length.

365



6.4.3. Harmonic Measure. Let Ω be a Jordan region Ω in the plane. Fix a
subset A lying in the boundary of Ω. The harmonic measure function, ω(z, A,Ω),
is the unique real harmonic function on Ω with the property that ω(w) = 1 for w ∈ A
and ω(w) = 0 for w ∈ ∂Ω\A. The harmonic measure of A with respect to Ω at
z ∈ Ω is the value ω(z, A,Ω). This is called a “measure” because if you fix Ω and
z, then this is a probability measure on ∂Ω. That is, it is a function of A ⊂ ∂Ω:
ω(z, A,Ω) ∈ [0, 1], with ω(z, ∅,Ω) = 0, ω(z, ∂Ω,Ω) = 1, while if A1, A2 are disjoint in
∂Ω, then ω(z, A1 ∪ A2,Ω) = ω(z, A1Ω) + ω(z, A2,Ω). (I am, of necessity, suppressing
finer details about measurability and continuity here.)

There are two especially nice properties of harmonic measure in the classical setting:

(1) It is easy to compute in certain simple situations: In particular, if Ω is the
unit disc D and z is taken as the origin, then ω(0, A,D) = arclength(A)/(2π), the
proportion of the unit circle that A occupies as seen from the origin.

(2) It is a conformal invariant; that is, it is invariant under conformal maps.
Put more explicitly, suppose F : Ω1 −→ Ω2 is a conformal map (i.e., a conformal
homeomorphism) between two domains. Given A1 ⊂ ∂Ω1, define A2 to be its
image A2 = F (A1) in ∂Ω2, and suppose z1 ∈ Ω1 and z2 = F (z1) ∈ Ω2. Then
ω(z1, A1,Ω1) = ω(z2, A2,Ω2).

In conjunction with the Riemann Mapping Theorem, one can, in theory, find the
harmonic measure function for any simply connected region. How might this be useful?
Here’s but one of numerous applications. Suppose a homogeneous, thin metal plate
is cutout in the shape of Ω. Suppose a segment A of the boundary is held at 100
degrees centigrade, while the remainder of the boundary is held at 0 degrees. After
the plate has had time to reach thermal equilibrium (so temperatures are no longer
changing), what is the temperature at a point z in the interior of the plate? It is
evidently somewhere between 0 and 100, it would approach 100 as z comes closer to
A, and 0 as z gets closer to other parts of the boundary. But what is the temperature
precisely at z? 100ω(z, A,Ω).

In s HarmMeasures we investigate the discrete analogy. I can share the definition
now, since it is motivated directly by property (1). Suppose K triangulate a closed
topological disc, A is a chain of edges in ∂K, and v ∈ K is an interior vertex of K.
Let PK be the maximal packing for K in D which has the circle for v centered at the
origin. Each edge in e ∈ A corresponds to an arc αe ⊂ ∂D between the centers of the
two horocycles forming e. have to define horocycles, their centers and radii??

Definition 6.16 (Discrete Harmonic Measure). Given K,A, and v as described,
the discrete harmonic measure of A at v with respect to K is

ω(v, A,K) =
∑
e∈A

arclength(αe)/(2π).
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So, in fact, discrete harmonic measure is defined directly on K. The invariance in
the discrete version of property (2) is now merely definition. In the script, however,
you will see its geometric nature exhibited, much as you would see the temperature
distributed about a plate in the application noted above. A couple of experiments are
quite convincing that the same geometry is at work in both the discrete and the classical
settings: we “graph” the harmonic measure for a classical and discrete representations
of a region, and we illustrate the extension of domain princple.

6.4.4. Extremal Length. Extremal length is a slightly more nuanced measure
of conformal “shape”. Start with the Jordan region Ω again, but this time suppose we
are given disjoint closed subarc A and B of its boundary; Q = {Ω;A,B} is described
as a “conformal quadrilateral”.

A classical theorem states that there exists a conformal mapping F : Ω −→ R,
where R is a euclidean rectangle, so that F extends continuously to the boundary and
so that the images F (A), F (B) are opposite ends of R. F is unique up to euclidean
similarities. (You might sense a similarity to a Schwarz-Christoffel situation, as in-
vestigated earlier, but this is quite different. The four boundary points mapping to
corners are specified, but the shape of the image rectangle is not set in advance.)

Figure 6.8 illustrates the analogous discrete result as you will see shortly ins ExtLengths.
By a rigid motion, image rectangles can be positioned as shown here, with the images
of A and B on the left and right, respectively. The aspect ratio of R will be defined
as its width over its height, Asp(R) = W/H.

Figure 6.8. Packing for extremal length
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Continuing our discussion of the classical setting, Asp(R) is known as the extremal
distance from A to B, relative to Ω, or the extremal length of the quadrilateral Q,
denoted EL(Q). As with harmonic measure, there are two key properties:

(i). Extremal length is easy to compute in certain simple situations: For instance,
if Ω is a euclidean rectangle width W and height H, and A and B are its two ends,
then clearly EL({Ω, A,B}) = W/H.

(ii). Extremal length is a conformal invariant; that is, ifQ1 = {Ω1;A1, B1} and
Q2 = {Ω2;A2, B2} are conformal quadrilaterals and F : Q1 −→ Q2 is a conformal
mapping such that F (A1) = A2 and F (B1) = B2, then EL(Q1) =EL(Q2)

Also as with harmonic measure, there are physical interpretations. Suppose Ω is a
uniform conducting metal plate in the plane, the boundary segment A is attached to a 1
volt power supply, the boundary segment B is grounded, and the remaining segements
of the boundary are insulated. Then the current flow between A and B in amperes
will be proportional to EL({Ω, A,B}), the constant depending on the properties of the
metal.

Discrete analytic mappings to rectangles having designated boundary vertices as
corners are quite easy to compute by methods you have already seen in s RePacks:
you simply specify that all boundary vertices have angle sum π except for the four
which are to be the “corners”, and these you set to π/2. s ExtLengths illustrates the
construction of Figure 6.8 and explains how CirclePack returns the extremal length
when you have a rectangle. You are asked to modify the constructions to answer a
question about current flow. You might then test your intuition with an extremal
length analogue of the extension of domain principle we saw with harmonic functions.

One last script for this section to illustrate the range of miscellaneous behavior you
encounter with discrete analytic functions. Here you might see things concretely that
you can carry back to the classical setting.

6.5. Function Construction

We have “hands-on” control of our discrete functions, but this is not like the
formula-driven and algebraic control available in the classical setting. In the discrete
world, we can’t compose functions, nor can we add, multiply, and take powers. To build
functions we need something geometric to hook into. We have seen several examples
already: computing maximal packings by sending boundary radii to infinity, forming
euclidean polygons by controling their boundary angle sums, building Blaschke prod-
ucts by selecting branch circles. The next sequence of scripts give additional examples,
some involving techniques, others, tricks.

6.5.1. A Discrete Exponential. s Doyles challenges you to adjust parameters
in a family of fascinating circle packings known as Doyle spirals. With patience you
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can build a range packing which clearly mimics the classical exponential function. Try
it out!

6.5.2. Discrete Rational Functions. A classical rational function is one of
the form F (z) = P (z)/Q(z), where P (z), Q(z) are (complex) polynomial functions
(assumed to have no common factors). Applying stereographic projecting to both
domain and range planes, F may be considered as a map from the Riemann sphere
to itself, F : P −→ P, and that will be our view here. In particular, if P (z) = 0,
then F (z) = 0, while if Q(z) = 0, then F (z) =∞. The behavior at ∞ in the domain
depends on relative degrees: if deg(P ) >deg(Q), then F (∞) =∞, if deg(P ) <deg(Q),
then F (∞) = 0, and otherwise, F (∞) is a non-zero complex number.

The sphere is compact, and F : P −→ P is an open continuous map, so key proper-
ties of rational maps are purely topological. I won’t prove these here, but as we build
examples of discrete rational maps, I hope that you will see these properties directly.
For example, F has a constant valence, N > 0: that is, for every point p ∈ P, F−1(p)
has N points (counting multiplicities at branch points). In fact, N =max{deg(P ),
deg(Q)}. Moreover, there are precisely 2(N−1) branch points (counting multiplicity).
s Rational1s shows one technique for the construction of rational maps. As you

go you will note that this is not a very general method. Polynomials P are themselves
rational maps F (take Q ≡ 1), and then the valence N is just the degree of P . The
discrete construction in s Rational1s gives these polynomial-like rational maps. To
get a taste of what should be “more typical” rational maps s Rational2s gives
a particular example that was constructed using the special geometry of “Schwarz”
triangles on the sphere. This is a beautiful example: it is the discrete analogue of
F (z) = z2(3z5 − 1)/(z5 + 3), with valence 7 and 12 simple branch points. Lovely as
it is, it just highlights a major capability that is missing in our discrete theory: in the
Additional Exercises, §6.8, try your hand at developing packing methods on the sphere
to correct this deficiency.

6.5.3. Ratio Function Constructions. Recall that if f : Q −→ P is a discrete
analytic function, (?? euclidean??) then the associated local scaling, the analogue
of |F ′| for analytic functions, is given by its ratio function. (See Definition 6.7.) In
particular, if we would build a discrete analogue f for some classical function F , we
might begin at the derivative level — that is, figure out how to make f# mimick |F ′|.
We illustrate this approach in s Erfs with a function that plays a central role in
statistics, the error function erf(z) defined by

erf(z) =
2√
π

∫ z

0

e−ζ
2

dζ.

When z is restricted to the real axis, the derivative of erf(z) is the Gaussian distri-
bution, the famous “bell-shaped” curve.

The construction of the discrete erf illustrates several construction issues. Let me
highlight a few to prepare you.
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(1) First, F , as an entire function, is defined on the whole complex plane. Discrete
entire functions would likewise be defined on infinite complexes, as the discrete expo-
nential we defined earlier on the regular hexagonal packing. Computations, however,
are restricted to finite complexes. Our approach relies on “exhaustion”: we mimick F
using finite packings that take up successively larger, but finite, portions of C.

(2) F has infinite valence: for every w ∈ C, F−1{w} has infinitely many points. In
fact, it’s “mapping” behavior is quite fascinating to watch. Early in the construction,
it may appear that we are omitting two points, w1, w2, much as the exponential omits
the image value 0. That, however, would contradict the Little Picard Theorem. Watch
more stages in the construction and see how the growing function manages to cover
everything. In particular, show w1, w2 are asymptotic values by finding paths in the
domain along which the image goes to w1 and w2.

(3) Do the packings of this construction ultimately converge to an infinite circle
packing? If so, it would answer in the negative one of the earliest questions in circle
packing:

Question 1. Are the regular hexagonal packings and the Doyle spirals the only
locally univalent hexagonal circle packings in the plane?

But is there, in fact, an infinite packing behind this construction? Each stage of
construction is finite, so this is a convergence issue, and it remains unresolved. The
script suggests both positive and negative indicators.

6.5.4. Harmonic Mappings. Recall from Section ?? that harmonic mappings H
on the disc can be written in the form H(z) = F (z) +G(z) where F,G are analytic in
D. Well, let’s try this with discrete analytic functions. Fix a complex K and consider
two discrete analytic functions, f : PK −→ Pf and g : PK −→ Pg, where Pf and Pg
are euclidean image packings.

6.6. Convergence

We have introduced the basic local geometry of circle packings, moved on to defining
mappings between packings, and investigated the emergent global geometric properties.
The claim has been made — with convincing evidence, I hope — that these mappings
deserve the name “discrete” analytic functions. Can we, in fact, move beyond mere
parallels?

The answer is a resounding yes. Their granularity prevents discrete analytic func-
tions from actually being analytic functions. To better approximate analyticity, one
needs some way to make the granularity finer — in short, a refinement process. Let
me first return to the topic of conformal mapping, because that is where circle packing
got started with exactly this approximation issue.
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In s DiscreteRMTs I have you repeat the conformal mapping experiment of Sec-
tion /ref??? with your choice of refinement level. In particular, recall that you build a
range packing P by cookie cutting a region Ω from a regular hexagonal packing. The
(appropriately normalized) maximal packing Q having the same combinatorics is the
domain in D. The map f : Q −→ P is a discrete conformal map. How well does it
approximate the classical conformal mapping F : D −→ Ω guaranteed by the Riemann
Mapping Theorem?

We will discuss two ways to look at this; they are closely related, but one has the
advantage that it can be visualized. We will treat both Q and P as euclidean packings.
The map f : Q −→ P can then be defined as a traditional function f : carrQ −→ carrP
by mapping each triangle in the carrier of Q affinely onto the corresponding triangle
in the carrier of P (corresponding vertices being identified).

An (orientation preserving) affine map between euclidean triangles T1 and T2 has
the form f(x, y) = (ax + by + x0, cx + dy + y0), (x, y) ∈ T1, for some real values
a, b, c, d, x0, y0. It is always quasiconformal with dilatation K =??? ≥ 1. It is
conformal (analytic) iff K = 1, iff T1 and T2 are similar. In general, the size of K
reflects the how close it is to being analytic. Among other things, the experiments in
??? allow you to color code the faces in the carriers of the range packings. For each
face, the farther the dilatation of f on that face is from 1, the redder the color, up to
K = 1.2, after which the color is black (???). In particular, the closer the color gets to
zero, the less dilatation — i.e., the closer to being analtyic. An example was shown in
Figure 6.1.

In the script, I suggest you modify the path to get a new region Ω. Build a
sequence of discrete conformal mappings to Ω with increasingly fine combinatorics and
color code them by dilatation. You will see the color fade towards white on larger and
larger portions of Ω. This is the heart of the proof of Rodin/Sullivan’s Theorem:

Theorem 6.17 (Rodin and Sullivan, [3]). — statement —-

This type of convergence holds much more generally, as you will see in other scripts:

• The Rodin/Sullivan Theorem has been greatly extended. In s Conformals
you will see discrete conformal mappings based on randomized packings in place
of regular hexagonal combinatorics.

• In s ErfRefines you can pursue the “error” function we encountered earlier
(see [1, §14.4]). Using increasingly fine combinatorics, you should compare the
image of the unit circle (???) to that of the classical error function.

• In s BlaschkeRefines we extend our construction techniques to discrete
finite Blaschke products in the disc with specified branch points. As in the con-
formal mapping case, under refinement of the combinatorics, the discrete Blaschke
products converge uniformly on compact subsets of D to their classical counterpart.
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Here the dilatation color coding is shown in the domain, since the range is covered
by several sheets.

6.7. Wrapup

— Here we will summarize what we’ve covered, discuss directions for further work,
and remark on the potential for this new experimental approach to complex analysis.

6.8. Additional Exercises

Discrete analytic function theory is quite comprehensive in the euclidean and hyper-
bolic settings, but theoretical and computational issues remain in spherical geometry.
Perhaps you can help. Progress hinges on what may be the most important open
question in basic circle packing:

Open Question: What is a practical algorithm for computing circle packings of
the sphere directly in spherical geometry?

Nearly all our spherical packings are obtained by stereographic projection from D
or C, as you have seen in s MaxPacks and s Rational1s. This is fine for this im-
portant but limited purpose. But for efforts involving branching or spherical boundary
values (when the complex has a boundary), the projection approach is not enough.
Algorithm difficulties seem to have two main causes:

(1) the failure of certain elementary monotonicity results which hold in the other
geometries.

(2) the overabundance of Möbius transformations of P. In particular, in P, Möbius
transformations map circle packings to circle packings, as in all the settings, but the
radii change in complicated ways. There seems to be no simple normalization to
ensure that an algorithm has a unique target.

The exercises here offer examples of spherical circle packings along with non-trivial
challenges that you might try to address.

• s SphPack-Is starts with a typical (though quite small) maximal packing of
the sphere. Press “Next”, and an auxiliary “SpherePack Widget” opens; it displays
the radii and angle sums of this packing. Observe that the angle sums are all 2π,
confirming that these initial radii form a spherical packing label for K. Now the
fun begins: pressing “Next” jumbles the radii: The challenge is to manipulate the
individual radii to get back to a packing label (though not necessarily to the original).
Try it out!

There are some things to note with this widget: The spherical distance between
points p, q on the sphere is the visual angle between them as viewed from the origin;
thus, spherical radii lie between 0 and π. They are adjusted via mouse clicks on vertical
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bars in the widget, but note that the scale is logarithmic (base 2). A few key quantities
are reflected in windows: the goal is to drive the “Angle Error/π” to zero. Commands
have been set up in the script for specific operations, such as incrementing all radii
by 1%, which might be part of a packing strategy — you are welcome to implement
others. Press the widget’s “Help” button to get additional information.

I think you will find that this challenge is non-trivial. With persistence, however,
you should be able to succeed with this small packing. The true hope is that by de-
veloping your skills in such challenges, your mind (a pattern-recognition machine par
excellence) will extract enough “techniques” to formulate a true “algorithm”, a sys-
tematic method the computer can carry out on its own, at least for maximal packings.
• You may well protest that we DO have an algorithm, the projection method seen
in s MaxPacks. We even extended it to create branched packing of the sphere in
s Rational1s. However, our interest here is in the more general branched packings
where there seems no alternative to working directly in spherical geometry. We start
by looking into the packing we used in s Rational2s.

Exercise 6.18. The spherical Schwarz 〈2, 3, 5〉 triangle t (i.e., having angles π/2, π/3,
and π/5) is pictured in Figure ??(a). A second triangle, the 〈2, 3, 5/2〉 Schwarz triangle
T , is shown in (b) (in different scale). Dashed lines on T show how it is built from
7 copies of t. A Pattern of two circular arcs is imprinted on t in (a), the analogous
pattern is imprinted on T in (b).

A Schwarz triangle can be reflected across any of its three edges to form a copy of
itself with reverse orientation. Repeated reflections will tile the sphere; in the case of t
this tiling involves 120 copies. Carrying the imprinted arcs along during the reflection
process yields the univalent circle packing of Figure ??(c) with 42 circles. The identical
reflection process starting with T will give 120 copies which tile the sphere 7 layers
deep. Here also the imprinted arcs generate a circle packing with 42 circles, shown in
Figure ??(d). This has the same combinatorics as (c), but now the 12 circles of degree
5 are branched: choose one to check visually and see that the 5 (huge) neighboring
circles wrap twice around it. In other words, with the aid of the Schwarz triangles we
have build a branched circle packing with 12 simple branch points. Try it out!

This particular packing is discussed in Appendix H of [1], but Samantha Corveno,
one of my REU (Research Experience for Undergraduates) students in Summer, 2009,
used Schwarz triangles to create several other equally beautiful branched packings.
Here is one using the same two Schwarz triangles, only changing the pattern of the two
arcs. The result has the combinatorics of the soccerball, with 32 circles, 12 of degree
5.

Exercise 6.19. Ins SchwarzTris you can use the SpherePack widget to estimate
the radii of the packings (d) in Figures 6.9 and 6.10. In each case, the underlying
complex is loaded and has its first 12 vertices as the ones of degree 5. Symmetry
makes the radii adjustments here much easier than with general combinatorics. Try
it out!
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Figure 6.9. Branched packings from Schwarz triangles

Exercise 6.20. Use the angles of T (see the figure) and spherical trigonometry
to directly compute the radii. Compare the values to those you generated with the
widget. Try it out!

Large Project 6.21. s SphPack-IIs throws things into your court. You
have seen some special examples and some examples that exploit symmetry. Generic
branched packings fall somewhere between these extremes, but the issues are quite
open.

Open Question: Fix a triangulation K of the sphere. What are necessary and
sufficient combinatorial conditions on sets V of its vertices so that they are the branch
circles in a branched packing of K.

We’ve observed that V must be even. If half the branching occurs at one vertex v,
then we have seen how to construct the packing, one consequence is that no neighbor
of v can also be a branch point. Beyond this, nothing is known in general.
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Figure 6.10. The Soccer ball from Schwarz triangles

Construction of a branched packing is, of course, one way to show that it exists, so
s SphTri-IIIs gives you that opportunity. Can you manipulate the radii to get a
packing label with the prescribed branch vertices? If you succeed, try other examples.
Can you find an algorithm? Enough examples and we might come to some conjecture
as to necessary and sufficient conditions on the branch structures and to a method for
construction of the packings.
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APPENDIX A

Background

Notation Page
The following notation will be defined and employed throughout the text, and so

we collect it here for easy reference.
N = the natural numbers.
Q = the rational numbers.
R = the real numbers.
R = R ∪ {∞} the extended real numbers.
Euclidean plane R2 = {(x, y) : x, y ∈ R}.
C = {x+ iy : x, y ∈ R; i =

√
−1} the complex numbers.

C = C ∪ {∞} the extended Complex plane or Riemann Sphere.
C(a, r) = {z ∈ C : |z − a| = r} Euclidean circle.
4(a, r) = {z ∈ C : |z − a| < r} Euclidean disk.
D = 4(0, 1) open unit disk.
σ spherical metric on C.
4σ(a, r) = {z ∈ C : σ(z, a) < r} spherical disk.
Int(E) interior of a set E in C.
E = closure(E) closure of a set E in C.
∂E boundary of a set E in C.
domain(f) domain set of function f .
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This appendix is intended to be a summary of some of the major topics and the-
orems of a standard undergraduate complex analysis course. Since it is only a review
of the material, we do not prove all the results here, but rather direct readers looking
for more details to the main reference texts [1] and [3], and occasionally to the more
advanced text [2]. Additionally, a few advanced topics are also included here. These in-
clude the Riemann Mapping Theorem, the Open Mapping Theorem, and the Schwarz
Lemma. The extended notion of analyticity on the Riemann sphere C is addressed
separately in Appendix B.

A.1. Functions of a Complex Variable as Mappings

A complex valued function f defined on a set R ⊂ C is denoted f : R → C. We
often denote the domain set of f by domain(f). Also, the set f(R) = {f(z) : z ∈ R}
is called the range of f . Lastly, if A ⊂ C, we denote the inverse image (or preimage)
of A under f by f−1(A) = {z ∈ R : f(z) ∈ A}.

A.1.1. Linear Functions. We will study the linear mappings f(z) = az + b,
for constants a, b ∈ C by first understanding the simpler functions h(z) = az and
g(z) = z + b.

Writing the variable z = reiθ and the parameter a = |a|eiα in polar form, we
can express the image point as h(z) = az = r|a|ei(θ+α). Hence, under the action of
the function h, the point z gets mapped to the point h(z) which is a stretching or
contraction of the modulus by |a| and a rotation about the origin by the angle α.

Geometrically, we can understand the action of the function g(z) = z + b as shift-
ing/translating the point z by |b| units in the direction of the vector b to get the output
point z + b.

Putting this together we see that the function f(z) = az + b is the composition
g(h(z)) which moves a point z by stretching or contracting by |a|, rotating by the angle
α, and then translating by the point (vector) b. See Figure A.1 for an example.

Translate by b = i.

Stretch by factor of |a| = 2.

Rotate by Arg(a) = π/4.

z

f(z)

Figure A.1. An illustration of the map f(z) = az + b for a = 2eiπ/4

and b = i.

378



A.1.2. Power Functions. Consider the map f(z) = zn for fixed n ∈ N, where
N denotes the natural numbers. Expressing the variable z = reiθ in polar form, we
see that f(z) = (reiθ)n = rneinθ; that is, under the action of f the point z has its
modulus raised to the nth power and its argument multiplied by n. See Figure A.2 for
an illustrative example.

z 7→ z3

Figure A.2. An illustration of the map z 7→ z3.

A.1.2.1. Roots of unity. Fix a positive integer n. We call any solution to the equa-
tion zn = 1 an nth root of unity, and note that there are n of them which have the
form ωk = e2kπi/n for k = 0, . . . , n− 1. We also note that these nth roots of unity can
be expressed 1, ω1, ω

2
1, . . . , ω

n−1
1 and that these are equally spaced points on the unit

circle |z| = 1.

A.1.3. The Exponential Function. The definition of the exponential function
arises naturally out of Euler’s formula.

Definition A.1. If z = x+ iy, then

ez = ex(cos y + i sin y).

The preceding definition has two important consequences:

(1) The exponential function maps C to C\{0}.
(2) The exponential function is periodic of period 2πi.

A.1.4. The Logarithm Function. The essential definition of the logarithm func-
tion is that it is the inverse of the exponential function.

Definition A.2. The function log(z) is the multiple-valued function

log(reiθ) = ln(r) + iθ,

where ln(r) denotes the real-valued logarithm. Alternatively, we may define

log(z) = ln |z|+ i arg(z).
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Since log(z) is multiple-valued, it is not really a function in the traditional sense.
To make it a function, we can use the principal value of the argument, Arg(z).

Definition A.3. For a complex number z = reiθ, arg(z) = θ is the argument
of z. The principal value of the argument, denoted Arg(z), is the angle θ so that
−π < θ ≤ π.

Definition A.4. The principal value of the logarithm is the function defined by

Log(z) = ln |z|+ iArg(z).

It has domain set C\{0} and range −π < Im(z) ≤ π but is not continuous at any
point of the negative real axis.

Important Technology Note: While mathematically we use Log(z) and Arg(z)
to denote the principal values of the logarithm and argument functions, ComplexTool
uses log(z) and arg(z) for the principal values of the logarithm and argument functions.

Remark A.5. While the principal branch of the logarithm is the one most widely
used, it is possible to define other branches of the logarithm function which are con-
tinuous along the negative real axis. Note that any branch of the logarithm must
necessarily include 0 as a point of discontinuity. For more information, we refer the
reader to [1] and [3].

A.1.5. Trigonometric Functions. The trigonometric functions of a complex
number z are defined in terms of the exponential function.

Definition A.6. Given any complex number z, we define

sin z =
eiz − e−iz

2i
and cos z =

eiz + e−iz

2
.

One can show that the image of the infinite vertical strip −π/2 ≤ Re z ≤ π/2
under either of these maps is the entire plane. (Thus the trigonometric functions are
unbounded in C.)

A.2. Continuity and Analyticity in C

Definition A.7. Let R ⊂ C and consider a complex valued function f : R→ C.

(1) We say that f is continuous at z0 if limz→z0 f(z) = f(z0); i.e., for each ε > 0
there exists δ > 0 such that |f(z)− f(z0)| < ε whenever |z − z0| < δ. We say
f is continuous on a set U if it is continuous at each point of U .

(2) Furthermore, f is called differentiable at z0 when its derivative f ′(z0) =

limz→z0
f(z)−f(z0)

z−z0 exists.

(3) When such a function is differentiable at all points of an open set R, the
function f is said to be analytic on R. (Some authors refer to such a function
as holomorphic in R.)
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A.2.1. Cauchy-Riemann Equations. When we write f(z) = f(x, y), we call
u(x, y) = Re f(x, y) and v(x, y) = Im f(x, y). Then f(x, y) = u(x, y) + iv(x, y) and
thus we may define the following partial derivatives

(94)
∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
and

∂f

∂y
=
∂u

∂y
+ i

∂v

∂y
.

We recall that when f is differentiable at z0, we have f ′(z0) = ∂f
∂x

(z0) = −i∂f
∂y

(z0),

which by equating real and imaginary parts yields the Cauchy-Riemann equations

(95)
∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

Theorem A.8. A function f(z) = u(x, y) + iv(x, y) is analytic in an open set R if
and only if the first partial derivatives ux, uy, vx, vy exist, are continuous, and satisfy
the Cauchy-Riemann equations in R. (See, e.g., [1], p. 63-66.)

Furthermore, by using the Cauchy-Riemann equations (95), one can show that if
f(z) = u(x, y) + iv(x, y) is analytic in on open set R, then each of the component
functions u and v is harmonic in R, that is, uxx + uyy = 0 and vxx + vyy = 0.

A.2.2. Conformal Mappings. Recall that a function f : R→ C is called univa-
lent if it is one-to-one; i.e., for any two points z1 6= z2 in R, we then have f(z1) 6= f(z2).
An analytic function is locally univalent in a small neighborhood of a point z0 if and
only if its derivative is non-zero at z0. A function that is both analytic and univalent
on an open set is said to be conformal on that set. Geometrically, this means that
the function is locally angle-preserving, preserving both the magnitude and sense of
the angle. You can get a feel for this by graphing any univalent analytic function in
ComplexTool, using either a rectangular or circular grid, and zooming in on points in
the range to see the angle preservation.

A.3. Complex Integration

A complex integral is an expression of the form
∫
C
f(z) dz. This integral can be

evaluated for many kinds of functions (analytic or not) and any path (closed loop or
not). In many cases, the value of the integral does depend on the actual geometry
of the path, not just on the end points. It is important to note that the value of the
integral does not depend on the parameterization used to describe the path as long as
the different parameterizations trace out the path in the same direction. This will be
evident in the formula given below.

A.3.1. Computing a Complex Integral. To compute a complex integral by
brute force requires some parameterization of the path C. We describe the path directly
in terms of z whenever possible. Here are some important examples of curves and how
they could be parameterized:

(1) A circle of radius R centered at z = a: z(t) = a+Reit, where 0 ≤ t ≤ 2π.
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(2) The line segment from z1 to z2: z(t) = (1− t)z1 + tz2, where 0 ≤ t ≤ 1.

Once a parameterization is obtained, the formula for calculating the integral is

(96)

∫
C

f(z) dz =

∫ b

t=a

f(z(t))z′(t) dt.

A.3.2. Topology on the plane.

Definition A.9.

(1) A set is a domain if it is open and connected.
(2) A path C is a closed curve if its initial and terminal points coincide.
(3) A simple closed curve is a closed curve that does not cross itself.

A.3.3. Three Important Integral Theorems. The following results are central
to any study of complex analysis.

Theorem A.10 (Cauchy’s Theorem). Let f(z) be analytic everywhere on and
inside a simple closed curve γ. Then∫

γ

f(z) dz = 0.

Theorem A.11 (Cauchy’s Integral Formula). Let f(z) be analytic everywhere on
and inside a simple closed positively-oriented curve γ. Let a be a point inside γ. Then∫

γ

f(z)

z − a
dz = 2π i f(a).

Theorem A.12 (Cauchy’s Generalized Integral Formula). Let f(z) be analytic
everywhere on and inside a simple closed positively-oriented curve γ. Let a be a point
inside γ. Then ∫

γ

f(z)

(z − a)n+1
dz =

2π i f (n)(a)

n!
.

A.3.4. Path Integrals. If C is not a simple closed curve, then none of the above
integral theorems can be used to calculate it. Fortunately it may not be necessary
to use brute-force either. Suppose that C is a path that goes from a point z1 to the
point z2. The main question is when does the value of the integral only depend on the
endpoints and not on the particular path between them? The answer is exactly when
f(z) is analytic on an appropriate region. In this case the integral can be calculated
by finding an anti-derivative and evaluating it at the endpoints. This is simply an
application of the Fundamental Theorem of Calculus.

Here is a more precise statement: If C1 and C2 are paths between the same end-
points, then

∫
C1
f(z) dz =

∫
C2
f(z) dz if f(z) is analytic everywhere on and in between

both paths.
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A.4. Taylor Series and Laurent Series

Taylor series and Laurent series play crucial roles in our understanding of analytic
functions.

A.4.1. Taylor Series. The theory of Taylor series carries over directly from the
theory in real variables. However, it is even better as the following theorem shows:

Theorem A.13. Let f(z) be an analytic function in a domain D and let z0 ∈ D.
Then the following statements hold:

(1) f(z) can be represented by a convergent power series in a disk | z − z0| < R.
(2) Furthermore, R is the distance from z0 to the nearest singularity of f(z). If

f(z) is entire, then R =∞ and the series converges everywhere.
(3) The series representing f(z) is the Taylor series; hence

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n.

(4) The Taylor series is unique; any power series representing an analytic function
must in fact be the Taylor series of the function.

Note that power series can be added, subtracted, multiplied and divided. Caution:
multiplication and division are not performed term by term. Rather you must treat
each series like a polynomial. Series can also be differentiated and integrated term-by-
term to obtain new series.

A.4.2. Laurent Series. If a complex function has a singularity at z = a, then
it certainly does not have a Taylor expansion at that point. It may, however, have a
different sort of series expansion in a neighborhood of the singularity called a Laurent
series.

In general, a function f which is analytic throughout an annular domain R1 <
|z − z0| < R2 has a unique Laurent series representation

f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

bn
(z − z0)n

there. It is allowed that we may have R1 = 0 or R2 = +∞, or both.
We note that just as in the case of Taylor series, there are formulas that give the

coefficients of the desired Laurent series. However, these coefficient formulas involve
complicated complex integrals and are of more theoretical than practical value.

One of the main values of the Laurent expansion stems from its use in complex
integration via residues. The residue of f at z0 is Res(f, z0) = b1 when f can be
expressed by the Laurent series f(z) =

∑∞
n=0 an(z−z0)n+

∑∞
n=1

bn
(z−z0)n

on a punctured

disk with center z0.
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Theorem A.14 (Residue Theorem). Let γ be a simple closed positively-oriented
curve. If a function f is analytic inside and on γ except for a finite number of singular
points zk, for k = 1, . . . , n inside C, then

∫
γ
f(z) dz = 2πi

∑n
i=1 Res(f, zk).

A.4.3. Isolated Singularities. Given a function f which is analytic on a deleted
ε neighborhood of z0, we can express f by its Laurent series

f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

bn
(z − z0)n

on ∆(z, ε) \ {z0}. In this situation we have three possibilities

Definition A.15. (Isolated singularities)

(i) When bn = 0 for every n = 1, 2, . . . , then f(z) is said to have a removable
singularity at z0. In such a case f(z) =

∑∞
n=0 an(z−z0)n, and so defining f(z0) =

a0 will make f analytic in the full neighborhood ∆(z, ε) (and thus we have removed
the singularity).

(ii) When only finitely many bn 6= 0, then there exists N such that bN 6= 0 and
bn = 0 for all n > N . In this case, we say f has a pole of order N at z0. We
may then express f in a factored form f(z) = (z − z0)−Nh(z) where h(z) =
bN + bN−1(z − z0) + . . . is analytic on ∆(z, ε) and h(z0) = bN 6= 0.

(iii) When infinitely many bn 6= 0, we say f has an essential singularity at z0.

Definition A.16. A function f is meromorphic in a domain D if it is analytic at
every point of D except possibly at poles.

A.5. Key Theorems

This section records several key results that will be used in the other chapters of
this text.

A.5.1. Maximum Modulus Theorem. We recall two key results relating to the
maximum modulus of an analytic function. See [1], p. 176-178.

Theorem A.17 (Maximum Modulus Theorem). If a function f is analytic and not
constant in a given domain D ⊂ C, then |f(z)| has no maximum value in D. That is,
there is no point z0 ∈ D such that |f(z)| ≤ |f(z0)| for all z ∈ D.

Corollary A.18 (Corollary to Maximum Modulus Theorem). Suppose that a
function f is continuous on a closed and bounded region R ⊂ C and that it is analytic
and not constant in the interior of R. Then, the maximum value of |f(z)| in R, which
is always reached, occurs somewhere on the boundary of R and never in the interior.
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A.5.2. Argument Principle. The Argument Principle for analytic functions
gives a very nice way to describe the number of zeros and poles inside a contour.

Theorem A.19 (Argument Principle). Let γ be a simple closed curve lying entirely
within a domain D ⊂ C. Suppose f is analytic in D except at a finite number of poles
inside γ and that f(z) 6= 0 on γ. Then

1

2πi

∮
γ

f ′(z)

f(z)
dz = N0 −Np,

where N0 is the total number of zeros of f inside γ and Np is the total number of poles
of f inside γ. In determining N0 and Np, zeros and poles are counted according to
their order or multiplicities.

A.5.3. Schwarz Lemma.

Theorem A.20 (Schwarz Lemma). Suppose f : D → D is analytic and f(0) = 0.
Then |f ′(0)| ≤ 1 and |f(z)| ≤ |z| for all z ∈ D. Furthermore, unless f is of the form
f(z) = eiθz for some θ ∈ R (i.e., f is a rotation), we must have strict inequalities in
both statements above.

A.6. More Advanced Results

A.6.1. Local Properties of Analytic Maps. The existence of power series rep-
resentations of analytic maps is a powerful tool for understanding their local, and some-
times global, behavior. Consider an analytic function f defined in a domain D ⊂ C.
For any z0 ∈ D, Theorem A.13 tells us that we may express

(97) f(z) = a0 + a1(z − z0) + a2(z − z0)2 + . . .

on any neighborhood ∆(z0, r) which is contained in D.
Suppose for the moment that f ′(z0) = a1 6= 0. Then for z very close to z0 we see

that the linear contributions a0 + a1(z − z0) dominates the rest of the series in (97).
Omitting the details, we can say that f(z) ≈ A1(z) = a0 + a1(z − z0) for z ∈ ∆(z0, ε)
when ε > 0 is very small. Since A1(z) is a linear map, with very well understood
properties, we can reasonably expect that f(z) will have the same properties as A1(z)
when z ∈ ∆(z0, ε). In particular, for every w near a0, there is exactly one value z1 near
z0 which maps to w. This holds for A1, and it also holds for f . Thus we say that f is
locally one-to-one (also called locally univalent) at z0 when f ′(z0) 6= 0. See Figure A.3.

Similarly, we can use approximations to understand the local behavior of f(z) when
a1 = 0, i.e., f ′(z0) = 0. In such a case, we know that (unless f is constant) we may
express f as

(98) f(z) = a0 + ak(z − z0)k + . . .

where ak is the first non-zero coefficient (other than possibly a0) in (97). Then for
z very close to z0, we see that the terms a0 + ak(z − z0)k dominate the rest of the
series in (98). Omitting the details, we can say that f(z) ≈ Ak(z) = a0 + ak(z − z0)k
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∆(z0, ε)

z0 a0

∆(a0, |a1|ε)

A1

∗
∗
z1

w

Figure A.3. An illustration of the map A1(z) = a0+a1(z−z0) mapping
∆(z0, ε) onto ∆(a0, |a1|ε) in a one-to-one fashion.

for z ∈ ∆(z0, ε) when ε > 0 is very small. Since Ak(z) has very well understood
properties1, we can reasonably expect that f(z) will have the same properties as Ak(z)
when z ∈ ∆(z0, ε). In particular, for every w near a0, there are exactly k values
z1, . . . , zk symmetrically arranged near z0 which maps to w. This holds for Ak, and
it also holds for f . See Figure A.4. Thus we say that f is locally k-to-one at z0

when f ′(z0) = f ′′(z0) = · · · = f (k−1)(z0) = 0, but f (k)(z0) 6= 0. We also describe this
situation by saying that z0 maps to f(z0) with degree (aka, multiplicity or valency)
k.

When z0 maps to f(z0) with multiplicity k, we can rewrite (98) as f(z) = a0 +
(z − z0)k[ak + ak+1(z − z0) + . . . ]. Noting that ak + ak+1(z − z0) + . . . determines an
analytic map on D, we have the following.

Lemma A.21. Let f be a function analytic at z0 with multiplicity k. Then there is
a map h which is analytic at z0 such that h(z0) 6= 0 and f(z) = f(z0) + (z − z0)kh(z).
In particular, if f(z0) = 0, i.e., f has a zero of order k at z0, then f has the form
f(z) = (z − z0)kh(z).

w

∆(z0, ε)

z0 a0

Akz1

z2

zk
∗∗

∗

∗

∆(a0, |ak|εk)

Figure A.4. An illustration of the map Ak(z) = a0 + ak(z − z0)k for
k = 3 mapping ∆(z0, ε) onto ∆(a0, |ak|εk) in a k-to-one fashion.

1In particular, we note that Ak(z) is a composition h3 ◦ h2 ◦ h1 of the following simple maps h1(z) =
z − z0 (translation), h2(z) = zk (power function), and h3(z) = a0 + akz (linear function).
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A.6.1.1. Open Mapping Theorem. The fact that analytic maps are open maps,
which we define more carefully below, is a fact not usually introduced in a standard
complex variables course. However, some chapters in this text may wish to make refer-
ence to such results, and so we present them here. The interested reader to find formal
proofs in more advanced texts such as [2], p. 344-348.

We note that the discussion above showed that in either case f ′(z0) = 0 or not, the
image of a small neighborhood of z0 must cover a small neighborhood of f(z0) = a0

when f is analytic at z0 and non-constant. This is enough to assert the following.

Theorem A.22 (Open Mapping Theorem). If f is a function on a domain D ⊂ C
which is analytic and non-constant, then the range f(D) is an open set.

Since open maps are those for which the image of an open set is always an open
set, non-constant analytic maps are open maps.

One application of this and the above theory is the following (whose details can be
found in [2]).

Theorem A.23 (Inverse Function Theorem). Suppose that D ⊂ C is a domain
and f : D → C is a univalent analytic map. Then its inverse function f−1 : f(D)→ D
is also analytic.

A nice use for the Inverse Function Theorem is that it shows that locally one-to-
one functions have local analytic inverse functions. More precisely, consider an analytic
map f defined on a domain Ω, where f need not necessarily be one-to-one on all of
Ω. If f ′(z0) 6= 0 for some z0 ∈ Ω, then we know from above that there is a small disk
D = ∆(z0, ε) on which f is one-to-one. Hence by the Inverse Function Theorem, we
see that there is a map g : f(D)→ D (the local inverse of f) defined on the open set
f(D) which is analytic and satisfies g ◦ f(z) = z for all z ∈ D.
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APPENDIX B

The Riemann Sphere

The main purpose of this appendix is to refresh some of the key ideas about the
concept of ∞ in complex analysis. In particular, we discuss the Riemann sphere via
stereographic projection, the induced spherical metric and corresponding topology, as
well as discuss how these notions tie in with the concepts of continuity and analyticity.
We do not re-prove all the results here or give a complete exposition of these topics;
our goal is to provide just enough background to allow the reader to fully grasp the
material in those chapters of this book which require it. More details can be found in
the reference texts [1], [3], and the more advanced text [2].

Complex arithmetic actually extends slightly beyond the complex plane. As points
z in C move away from the origin we informally say that they go to “infinity”. We
can make that quite precise, while also giving you one answer to the division-by-zero
problem: we adjoin a point denoted ∞ to C to get the Riemann sphere (or extended
complex plane), denoted here as C = C ∪ {∞}. In this section we describe the model
of the Riemann sphere as well as discuss its corresponding spherical metric σ, and the
related convergence and continuity properties.

B.1. Stereographic Projection and Spherical Geometry

We model the Riemann sphere C by first identifying points in C with points in
the unit sphere S = {(x1, x2, x3) : x2

1 + x2
2 + x2

3 = 1} ⊂ R3 through what is called
stereographic projection. See Figure B.1. Label N = (0, 0, 1) the “north pole” on the
sphere S. Then for any given point z = x+ iy = (x, y, 0) in C, consider the line in R3,
between z and N .

Obviously, this line intersects S at precisely two points, namely N and a second
point we call Z = (x1, x2, x3). We then associate the points z and Z. Formally, we
define a map π : C → S given by π(z) = Z. Writing z = x + iy, the precise formula

for this map is π(z) = Z =
(

2x
|z|2+1

, 2y
|z|2+1

, |z|
2−1

|z|2+1

)
. We omit the details here, but the

interested reader can find them in [2], p. 351. However, we note that we rarely make
use of this formula. It is the idea and the picture that we are most interested in.

Note that the only point on S which is not associated with any complex number is
the north pole N and that this association between C and S \ {N} is bijective.1 We
would like to now decide what meaning there could be to associating a point to N .

1Recall that a map is bijective when it is both one-to-one and onto.
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Figure B.1. Stereographic projection.

Notice that if |z| is very large, i.e., z is very far from the origin, then the corre-
sponding point Z ∈ S is very close to N . It is then natural to say that any point that
is associated with N must be “infinitely” far from the origin. It is for this reason that
we adjoin ∞ to C and extend the definition of pi by defining π(∞) = N . We now
have an identification, i.e., a bijection, between all of C = C∪{∞} and all of S. Thus
when we speak of the Riemann sphere C we can think of it as the usual complex plane
together with the point ∞ being “infinitely” far from the origin, or we can think of it
as being the associated sphere S where ∞ is understood to be the north pole N . It
will be useful to think of C in both these ways; let us do so with some examples.

The origin in 0 ∈ C is identified with the “south pole” (0, 0,−1), unit disk D =
{z : |z| < 1} is identified with the “southern hemisphere”, the unit circle |z| = 1 is the
“equator”, and the real axis is wrapped around the sphere S to form a circle running
through the the south pole (0, 0,−1), the north pole N , and the points (1, 0, 0) and
(−1, 0, 0). Notice that as the real number x1 goes to −∞ and the real number x2 goes
to +∞, the corresponding points π(x1) and π(x2) on the sphere S come together at
the north pole N . So we see that in S there is only one ∞.

As an exercise you are asked to match up the curves in C with their projections
onto C given in Figure B.2.
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Figure B.2. Various curves drawn in the plane and projected onto the
sphere, where ∞ is the marked point on top of the sphere C.

B.2. The Spherical Metric σ

The standard way we measure the distance between two points z and w in C is by
|z −w|, the Euclidean metric on C. But can we come up with a natural way to define
the distance between points on C by using our understanding of the sphere model?
The answer is yes, we just need to use the natural spherical metric on S and transfer
that back to C. Here’s how.

The spherical distance between two points Z and W on S is defined to be arclength
of the shortest path on the sphere S which connects Z and W , which is, of course, the
shorter arc of the great circle that runs through Z and W . We denote this distance by
d(Z,W ). For example, the distance between (1, 0, 0) and N = (0, 0, 1) is the number
π/2 since this is just 1/4 of the circumference of a great circle with radius 1.

We can now transfer this metric from S to C using the map π : C→ S by defining
the distance between two points z, w ∈ C to be σ(z, w) = d(Z,W ) = d(π(z), π(w)).
This simply amounts to projecting z and w onto the sphere S and then taking the
distance there. There is a formula for this, but such a formula is not important here
and so we omit it. We will, however, note that this new metric (aka distance function)
on C does not treat ∞ as a special point. It simply plays the same role as any other
point on the Riemann Sphere. This idea can take some getting used to, so let’s look
at some examples.

We first would like to understand what a Spherical disk 4σ(a, r) = {z ∈ C :
σ(z, a) < r}, with center a ∈ C and radius r > 0 looks like. Let’s consider4σ(∞, π/2),
i.e., the set of all points z ∈ C such that σ(z,∞) < π/2. By picturing these points
on the sphere we see that the answer is the upper hemisphere, which we note can also
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be expressed as C \ D, i.e., the points in C outside of the closed unit disk together
with ∞. In fact, denoting the Euclidean disk of radius r > 0 and center a ∈ C by
4(a, r) = {z ∈ C : |z − a| < r}, we have the following more general result. For any
small ε > 0, there is some large number r > 0 such that

(99) ∆σ(∞, ε) = C \∆(0, r).

There is a specific formula one could write down for how ε and r are related, but we
shall not need to make use of such precise statements here.

B.3. Topology in C and C

With the spherical metric in hand, we can now define the corresponding topological
concepts on C. We begin by defining the interior, closure, and boundary of a set E ⊂ C
as follows: The interior of E, denoted Int(E), is the set which contains all points
z ∈ E for which there exists r > 0 such that ∆σ(z, r) ⊂ E. The closure of E,
denoted E or closure(E), is the set which contains all points z ∈ C such that for any
r > 0 we have 4σ(z, r) ∩ E 6= ∅. The boundary of E, denoted ∂E, is the set which
contains all points z ∈ C such that for any r > 0 we have both ∆σ(z, r) ∩ E 6= ∅ and

∆σ(z, r) ∩ (C− E) 6= ∅. Hence, ∂E = E ∩ C \ E and E = E ∪ ∂E.

Example B.1. Without needing for provide a formal proof, the readers should
convince themselves that Int(D) = D,D = {z ∈ C : |z| ≤ 1}, and ∂D is the unit circle
|z| = 1. In general, ∂4(a, r) = C(a, r), where we define C(a, r) = {z ∈ C : |z−a| = r},
i.e., the Euclidean circle of radius r > 0 and center a ∈ C.

Exercise B.2. Identify the interior, closure, and boundary of each of the following
subsets of C. No proof is required. Try it out!

(a) A = ∅,
(b) B = {z ∈ C : |z| ≤ 1},
(c) C = {z ∈ C : |z| = 1},
(d) D = C \ R,
(e) E = {x+ iy ∈ C : x, y ∈ Q}, where Q is the set of rational numbers in R,
(f) F = {1/n : n ∈ N},
(g) G = C.

Definition B.3. (Open sets)

(a) A set A ⊂ C is called open in C if Int(A) = A, i.e., if for each point z ∈ A, there
exist r > 0 such that 4σ(z, r) ⊂ A.

(b) A set A ⊂ C is called open in C if for each point z ∈ A, there exist r > 0 such
that 4(z, r) ⊂ A.

Definition B.4. (Closed sets)

(a) A set A ⊂ C is called closed in C if its complement C \ A is open in C.
(b) A set A ⊂ C is called closed in C if its complement C \ A is open in C.
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Remark B.5. Often, this text will refer to open/closed sets without explicitly
referencing whether it is understood that these sets are open/closed in C or in C.
However, context will make it clear which is meant and so no confusion should arise.
It is also important to keep in mind the following two points that show that often, but
not always, these two notions are equivalent anyway.

(1) A set A ⊂ C is open in C if and only if it is open in C.
(2) A bounded2 subset E of C is closed in C if and only if it is closed in C. Note

that the boundedness condition is crucial since, for example, the unbounded
set R is closed in C, but not closed in C.

The readers should take a moment to convince themselves that these two statements
are indeed true.

An open set A ⊂ C is called connected if given any two points z, w ∈ A there
exists a polygonal line3 in A which connects z to w. If U is an open set and z0 ∈ U ,
then the set U(z0) of all points z ∈ U such that there is a polygonal line in U which
connects z0 to z is called the component of U containing z0. Two facts regarding an
open set U are as follows

(1) An open set U equals the union of components, i.e., U = ∪z∈UU(z).
(2) Components U(z) and U(w) equal each other exactly when there is a polygonal

path in U which connects z to w.
The interested reader can read the details proving these facts in [2]; however, a less

formal understanding of these concepts will suffice for this text.
A domain is a non-empty open connected set in C. Note that the domain set of

a function need not be a domain in the sense just defined. A Jordan domain is any
simply connected domain in C, i.e., any domain D in C such that every simple
closed curve in D encloses only points in D. Informally, this means that D has no
“holes” in it. For example, the set D is a Jordan domain, but the set D \ {0} is not.

A neighborhood of a point z ∈ C is any open set which contains z. A deleted
neighborhood of a point z ∈ C is any set U \ {z} where U is a neighborhood of z.
When a neighborhood U is of the form ∆σ(z, ε) or ∆(z, ε) we often refer to this as an
ε-neighborhood of z.

B.3.1. Convergence in the Riemann Sphere. With the spherical metric σ on
C and the corresponding notion of ε-neighborhood, we can now define convergence of
sequences in C as follows.

Definition B.6. A sequence of points zn ∈ C is said to converge to z ∈ C when
σ(zn, z)→ 0, in which case we write zn → z.

2A set E is called bounded in C if there exists some R > 0 such that |z| ≤ R for all z ∈ E.
3A polygonal line is a union of a finite number of line segments joined end to end. In the context of
C, we allow a line segment to be any standard line segment in the plane C or any arc of a great circle
that passes through ∞ (as viewed as the north pole N on the sphere S).
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Note that the statement zn → z when z ∈ C (i.e., z 6=∞) as given above, conforms
to our standard notion of convergence in C. The following proposition records this fact
and several more which relate the standard metric in C to the metric σ on C. The
reader should become comfortable with these statements, though it is not crucial to
be able to prove these with the rigor of an ε− δ argument.

Proposition B.7. For points zn, z, and w in C, we have the following:

(1) σ(zn, z)→ 0 if and only if |zn − z| → 0,
(2) |z| > |w| if and only if σ(z,∞) < σ(w,∞),
(3) zn →∞ if and only if |zn| → +∞ if and only if σ(zn,∞)→ 0,
(4) zn → 0 if and only if |zn| → 0 if and only if 1/|zn| → +∞ if and only if

1/zn →∞.

We can use this proposition to solve the division by zero problem, but we must first
define continuity in the context of C.

B.4. Continuity in the Riemann Sphere

Let R ⊂ C and consider a extended complex valued function f : R→ C. We write
limz→z0 f(z) = L and we say the function f approaches L as z approaches z0, if for
each ε > 0 there exists δ > 0 such that σ(f(z), L) < ε whenever 0 < σ(z, z0) < δ. We
say that f is continuous at z0 if limz→z0 f(z) = f(z0), i.e., for each ε > 0 there exists
δ > 0 such that σ(f(z), f(z0)) < ε whenever σ(z, z0) < δ. We say f is continuous on
a set U if it is continuous at each point of U . Due to Proposition B.7, this notion of
continuity conforms with our usual notion of continuity in C (see Section A.2).

Example B.8 (The map 1/z and division by zero). Our definition of continuity
on C allows us to solve the division by zero problem by defining 1/0 = ∞. This
makes sense and is natural since it is this definition that makes the function z 7→ 1/z
continuous on C. We leave it to the reader to use Proposition B.7 to show this, and
in the process show that we also have 1/∞ = 0.

We also point out an important observation considering a rotation of the sphere
S = {(x1, x2, x3) : x2

1 + x2
2 + x2

3 = 1} ⊂ R3. Consider rotating the sphere S about the
x1 axis, which meets S at the points (1, 0, 0) and (−1, 0, 0), by 180◦ = π radians. This
is a map which takes each point of S to another point of S and so let us call this map f .
Identifying S with C as above, we see that f(∞) = 0, f(0) =∞, f(1) = 1, f(−1) = −1
and f(R) = R, where R denotes the extended real line R ∪ {∞}. The reader should
take some time to convince themself that f is exactly the map f(z) = 1/z. It is for
this reason that we often call f(z) = 1/z a rotation of the Riemann sphere C.

Some texts avoid the need to speak explicitly about the spherical metric while still
speaking about continuity of functions which are defined at ∞ or which take on the
value∞ at finite points z0 ∈ C. Since this approach is also valuable, we present it here.
The key is to use the simple rotation z 7→ 1/z of the Riemann sphere C in judicious
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ways to “move” ∞ to 0 so that we can then use our standard notions of continuity
(and, as we shall see, analyticity) in C without needing to make explicit reference to
the spherical metric. The following theorem pre and/or post composes f with the map
z 7→ 1/z to convert the statements on the left (which all involve ∞) to the statements
on the right (which all avoid a formal notion of ∞). By considering the topology of
the Riemann sphere C near ∞ and the continuity of the map z 7→ 1/z, the details can
easily be checked (and they can also be found on p. 51 of [1]).

Theorem B.9. Let z0, w0 ∈ C and let f(z) be a complex valued function defined
in a deleted neighborhood of z0. Then,

i) lim
z→z0

f(z) =∞ if and only if lim
z→z0

1

f(z)
= 0,

ii) lim
z→∞

f(z) = w0 if and only if lim
z→0

f

(
1

z

)
= w0,

iii) lim
z→∞

f(z) =∞ if and only if lim
z→0

1

f(1/z)
= 0.

The simplest and most useful class of maps which are continuous on all of C is the
class of rational maps.

Definition B.10. A quotient of two polynomials is called a rational function.

Let f(z) = P (z)
Q(z)

be a rational function in reduced form (i.e., polynomials P (z) and

Q(z) have no common factors). Although this formula for f is defined only for complex
values where Q is not zero, we can regard f (as a mapping into C) as being both defined
and continuous on all of C. In particular, if Q(a) = 0, then we set f(a) =∞, and we
also set f(∞) = limz→∞ f(z). We leave it to the reader to check that this gives f the
desired continuity properties; however, we do illustrate this in the following examples.

Example B.11. Let f(z) = z2 + 5i and g(z) = 3z2−5
z2+2z

. In line with the above
discussion, it is then understood that f(∞) = ∞, g(∞) = 3, g(−2) = ∞, and g(0) =
∞. By defining these maps in this way, we see that both f and g are continuous at
every point of C. Note that f(∞) = limz→∞ f(z) = ∞ since (using Theorem B.9)

limz→0
1

f(1/z)
= limz→0

1
(1/z)2+5i

= limz→0
z2

1+5iz2
= 0. We leave it to the reader to use

Theorem B.9 to check the continuity of g at the points −2, 0, and ∞.

Example B.12. The function f(z) = ez on C cannot be defined at ∞ to make
it continuous there. One way to see this is to note that limx→+∞ e

x = ∞, but
limx→−∞ e

x = 0, which implies that the limit limz→∞ e
z does not exist.

B.5. Analyticity in the Riemann Sphere

Just as the rotation z 7→ 1/z was used in Theorem B.9 to help us to understand
the notion of continuity in the Riemann sphere C, we can also use it to extend our
notion of analyticity on C.
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Definition B.13. (Extended notion of analyticity in C)
Let f : domain(f)→ C, where domain(f) ⊂ C.

i) If f(z0) =∞ where z0 ∈ C, then we say that f is analytic at z0 exactly when 1
f(z)

is analytic at z0.
ii) If f(∞) 6= ∞, then we say that f is analytic at ∞ exactly when f(1

z
) is analytic

at 0.
iii) If f(∞) = ∞, then we say that f is analytic at ∞ exactly when 1

f( 1
z

)
is analytic

at 0.

One way to summarize the above definition is to say that a map is analytic in
this extended sense if after “moving” each instance of ∞ to 0 (by pre and/or post
composing with the map z 7→ 1/z), we get a map which is analytic in the usual sense.

Remark B.14. We note that a map f which is analytic at a point z0 ∈ C must
also be continuous there (as a mapping into C). Hence we can easily see that the map
f(z) = ez cannot be analytic at ∞ since there is no way to define f at ∞ in such a
way as to make it continuous there.

Exercise B.15. Show that z 7→ sin 1
z

is analytic at ∞, but that z 7→ sin z is not.

Remark B.16. (Poles are points of analyticity in extended sense)
When z0 is a pole of f of order k, then by Definition A.15, we know that we can express
f(z) = (z− z0)−kh(z) where h is analytic at z0 (in the usual sense of Section A.2) and
h(z0) 6= 0. Thus, 1

f(z)
= (z − z0)k/h(z) is analytic at z0, which means we can then

declare f to be analytic at z0 by Definition B.13(i), in that extended sense. Since the
word analytic is commonly used in this text in both the usual sense of Section A.2
and this extended sense, the reader must always be careful to use context to decide
in which sense it is being used. Since the context is usually quite clear, no confusion
should arise.

We note that a map f with an isolated singularity at z0 (see Definition A.15) is
analytic in the usual sense in the case of a removable singularity and analytic in the
extended sense in the case of a pole. Thus, only when the singularity is essential can
the map not be regarded as analytic in either sense.

Example B.17. Let f(z) = 1
1+z2

. Since f(1
z
) = 1

1+( 1
z

)2
= z2

z2+1
is analytic at 0 (and

takes the value 0 at 0), we can say that f is analytic at ∞ (and f(∞) = 0). Similarly,
since 1/f(z) = 1 + z2 is analytic at ±i, the map f is is analytic at the poles ±i, a fact
we stated more generally in Remark B.16.

Example B.18. Let f(z) = 3z− 1
z

and note that f(∞) =∞. Since k(z) = 1
f( 1
z

)
=

1
3( 1
z

)−z = z
3−z2 is analytic at zero we pronounce f(z) to be analytic at ∞. Note that,

we have f ′(z) = 3 + 1
z2

and so f ′(∞) = 3. We also have k′(z) = 3+z2

(3−z2)2
yielding
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k′(0) = 1/3 = 1/f ′(∞). The relationship between k′(0) and f ′(∞) is an important
and general property which we state as follows.

Lemma B.19. If f is analytic at ∞ with f(∞) =∞, then for k(z) = 1
f( 1
z

)
we have

k′(0) = 1/f ′(∞).

Note, when f ′(∞) = ∞ we use the convention that 1/∞ = 0 (since the map 1/z
sends ∞ to 0).

Proof. Note that k is analytic at 0 (by the definition of f being analytic at ∞).
Also note that k(0) = 0 (since f(∞) =∞) and so we let N denote the multiplicity of
the zero of k at 0. There exists r > 0 such that k is analytic on ∆(0, r). Therefore,
the map f(z) = 1

k( 1
z

)
is analytic on {z ∈ C : |z| > 1/r}. Hence f may be represented

by a Laurent series f(z) =
∑∞

n=0 anz
n +

∑∞
n=1 bnz

−n on {z ∈ C : |z| > 1/r}. Since
1

k(z)
= f(1

z
) =

∑∞
n=0 anz

−n +
∑∞

n=1 bnz
n has a pole at 0 of order N , we must have

aN 6= 0 and an = 0 for all n > N . Hence we may now factor f(z) = zNh(z) where
h(z) = · · ·+ aN−1z

−1 + aN .
Calling g(z) = h(1/z) = aN + aN−1z + . . . , we can then express k(z) = 1

f( 1
z

)
=

1
z−Nh(1/z)

= zN

g(z)
. Thus k′(z) = NzN−1g(z)−g′(z)zN

[g(z)]2
and so

k′(0) =

{
1/aN when N = 1

0 when N > 1.

Note that h′(z) = · · · − aN−1z
−2 and so as z →∞ we have

f ′(z) = NzN−1h(z) + zNh′(z)→
{
aN when N = 1
∞ when N > 1.

Thus we have k′(0) = 1/f ′(∞) as promised. �
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