CHAPTER 6

Circle Packing

Ken Stephenson (text and software)

Complex analysis is in many ways the ultimate in "continuous" mathematics. It presents you with a smooth world: continuous variables, infinitely differentiable functions, smooth surfaces, plus a complex arithmetic with its power series, line integrals, and all sorts of handy formulae. In this chapter, however, we will develop a quite different view of the topic. Here the geometry behind analytic functions moves strongly to the fore as we see how one might "discretize" complex analysis.

An analogy to keep in mind is that of a mountain stream. In normal experience we treat the stream as a continuous medium and use continuous variables and functions to understand it - pressure, velocity, vorticity - modeled, perhaps, by Navier-Stokes and other PDE's. Yet we know that the stream is in fact a collection of individual water molecules, a "discrete" medium, if you will. The macro behavior, the waves, eddies, and currents, emerge from the myriad local interactions among the discrete water molecules. So one might ask: what purely local rules of interaction among these molecules could lead to the observed global behavior?

In this chapter, we address this issue for continuous analytic functions. Circles will be our molecules, and "packing" conditions will provide the local rules for their interaction. Circle packings, configurations of myriad individual circles, each interacting only with its neighbors, will manifest macro behavior that we will recognize as a version of analyticity. Later in the chapter we will also see that our discrete objects converge under appropriate refinement to the familiar continuous counterparts. In effect, then, circle packing provides a quantum complex analysis, one that is classical in the limit.

This is a topic ideal for visualization and experimentation - in fact, it is accessible only through the computer. You will therefore find yourself tethered to the software more closely than in the earlier chapters, so don't bypass those Try it out! signs. Persevere and you may develop a new appreciation for complex analysis. We will jump right in with a quick experiment from the genesis of the topic in (S) DiscreteRMT (S). Try it out! .

6.1. First Impressions

Circle packings were introduced to analysis by Bill Thurston in a talk in 1985. The context was the conformal mapping of bounded, simply connected, plane regions Ω
onto the unit disc \mathbb{D}. The central result is the famous Riemann Mapping Theorem stated in the Appendix, page 417. (Alternate statements are given in Theorem 3.33, page 210, and Theorem 4.16, page 250). For us, the preferred statement is this: Given Ω and designate points w_{0}, w_{1} in Ω, there exists a unique one-to-one analytic mapping F from \mathbb{D} onto Ω so that $F(0)=w_{0}$ and so that w_{1} lies on the image of the positive real axis. Figure 6.1 therefore illustrates the Discrete Riemann Mapping Theorem.

Figure 6.1. A conformal map display, domain (left) and range (right)

Figure 6.1 shows the mapping window as displayed by our experimental testbench, the software package CirclePack. Typical of our practice, the domain circle packing will be on the left in such side-by-side displays, and the range packing will be on the right. In this instance, the domain is \mathbb{D} and the range is the given region Ω. The "function" itself can be interpreted in various ways. Each circle on the left has a corresponding circle on the right, so one can map circles to circles. Alternately, as we will see later, one can map the triangles formed by the circles on the left to those formed by the corresponding circles on the right. In any case, the two packings provide, in essence, a map from \mathbb{D} onto Ω, a "discrete conformal map". We will see the details shortly, but assuming you have run (S) DiscreteRMT (S) and have this example before you on the computer, try clicking the left mouse button on some circle in one packing: both it and the corresponding circle of the other packing should be highlighted (likewise, for faces, using the middle mouse button). Try it out!

About CirclePack: A few words are in order about CirclePack before we go on. Figure 6.2 is a screenshot showing the context for these mapping images, with various frames and panels for running the software. Unlike most of this book's software, CirclePack is a Java "application" rather than a Java "applet": it requires access to the file system for file manipulations, it is larger, more comprehensive (and reconfigurable), and it avails itself of shared $\mathrm{C} / \mathrm{C}++$ libraries for computationally intense experiments. It also has an important scripting feature: "script" files with prepared sequences of commands are provided with the book to guide your experiments. These files have file extension ". xmd" and are indicated in the text by (S) Name (S). To run an experiment, then, you start CirclePack, from within it you load Name.xmd, then you click through the prepared commands.

Figure 6.2. CirclePack in "domain/range" window mode
To recreate Figure 6.1, run the script (S) DiscreteRMT (S). This is a very structured experiment, so move CirclePack through the commands by successively pressing the "NEXT" button (or press "enter" when the mouse is in the canvas) until the experiment is complete. Try it out! (If things become jumbled in CirclePack- and they sometimes will! - it may be that you have outrun the computations: just click the "up"
icon to restart at the beginning of the script again, or if things have really gone bad, exit and restart CirclePack.)

Even in the very passive experimental mode of (S) DiscreteRMT (S) you can interact with the images - moving, focusing, clicking circles and faces, and so forth, as we describe later. However, it is hoped that as your experience and curiosity grow, you move through the following additional stages to gain more experimental independence:
(1) The "Open Script" button will open the CirclePack script window. Here the commands are laid out linearly and typically are accompanied by text explanations. If you didn't understand what the experiment was purporting to show, try reading along as you execute the commands. Figure 6.3 illustrates the script window, with words, icons that encapsulate the commands, included files, etc.

Figure 6.3. A typical "script" for CirclePack
(2) In the Script you can open a command icon (by clicking the small "+" sign) to see the string of commands that it actually executes. (E.g., "infile_path gamma.g; cookie;disp -w -c -cf b" tells CirclePack to read the path "gamma.g" from the script's data section, cookie-cut the portion of the resident packing inside the path, then clear the canvas and display the circles of the resulting packing, with the boundary circles "filled".) Modify these commands and you can change the action in the experiment. In many of the scripts, hints are given about alterations you might try. In this first experiment, for example, you can change the radii of the circles in the initial hexagonal packing of the range. Try an adjustment and see what happens.
(3) If you want to dig deeper, click the "Advanced" button to bring up the CirclePack central control frame; this gives you access to full functionality. The program actually holds up to three packings, has panels with messages, history, and rudimentary error feedback, a "Command:" line where you can issue explicit strings of commands, and various "droppable" icons: you just drag one onto a packing window and a prepared string of commands will be applied to that packing.
(4) For the truly ambitious, the Java code for CirclePack is freely available under the GNU open source license. It includes a "PackExtender" class which allows anyone (with enough work) to create specialized data structures and commands having full access to the core functionality of CirclePack. Such PackExtenders will be used in later experiments.

Figure 6.4 provides an annotated screen shot of CirclePack with various of its screens and auxiliary panels. (Note that the screenshots are current as of publication, but CirclePack may change over time.)

A final note on the scripts: bare-bones scripts are quite easy to write for yourself, but following, reading, and modifying those of others can be a real challenge. The prepared scripts are built for ease of use (believe it or not), so the commands are often long and involved. For example, a simple "disp -w -c" will clear a screen and draw the circles. However, "disp -w -cc20 i -ct5c180 b" will clear the screen then draw the interior circles thicker and in blue, and the boundary circles filled with red. Don't let the complications bother you - go ahead and start your own scripts with simple commands and small steps. When things go wrong, adjust the commands. As you learn the CirclePack ropes, your scripts may become more involved, more sophisticated, but also, more effective.

We are going to move now to the basic definitions and notations we will use in our discrete analytic function theory. Although static images are helpful, there is nothing like running experiments, even in automatic mode, to bring the topic to life. The conformal mapping experiment we did above may help, and I certainly hope it

Figure 6.4. CirclePack in Mapping window mode
motivates the theory we will be investigating later. However, we have next a sequence of experiments tailored to display/explain the basics of the theory.

6.2. Basics of Circle Packing

Definition 6.1. A circle packing is a configuration of circles with a prescribed pattern of tangencies.

Figure 6.5 illustrates a few circle packings from the "Menagerie" in (S) Menagerie (S); run the script to see these and others. Try it out! Among the things you might observe as you tour our Menagerie: - The circles form mutually tangent triples and hence have triangular interstices. - The packings can live in the euclidean plane, \mathbb{C}, the hyperbolic plane, \mathbb{D} (the unit disc in \mathbb{C}) or the Riemann sphere, \mathbb{P}, represented as the unit sphere at the origin in \mathbb{R}^{3}. - The "pattern" of tangencies shows up in the carrier of the packing, the geometric triangles formed by connecting the centers of tangent circles. - This pattern can be simply connected or multiply connected. - There are interior circles, those completely surrounded by their neighbors, and boundary circles, those on the edge of the configuration. - There are numerous manipulations, colors, and display options for displaying a circle packing and/or its carrier; these are invaluable in highlighting the structures you need to study.

Figure 6.5. A small menagerie of circle packings.

We will have to make formal definitions shortly, but I would suggest that you first play around a little with the CirclePack Owl in © OwlPlay © (Sou might just run sequentially through the commands first, but then, by pressing the "Script" button, you can open the Script Window and follow the descriptions associated with the commands. There are suggestions along the way for free-form changes that you can make to see how the packings react. Try it out!

Mathematics requires some formalities; annoying at times, they are essential if you want to understand what's going on and establish results that you and others can depend on. Let me lay out the formal objects involved in circle packing. Follow along in (S) Objects (S), where these are illustrated explicitly in turn; read the descriptions in the script as you proceed. In other words, Try it out!

- Complex, K : The "prescribed pattern" of tangencies for a circle packing is represented as an abstract triangulation K of a topological surface (technically, a simplicial 2-complex). This is a combinatorial object: K has vertices v, edges $\langle v, w\rangle$, and faces $\langle v, u, w\rangle$ formed by triples of vertices, but does not live in any geometric setting. It may be finite or infinite, may or may not have boundary, may be simply or multiply connected. We will always assume K is oriented. Namely,
in every face $\langle v, u, w\rangle$, the vertices are listed in positive (counterclockwise) order, and these orientations are globally consistent, meaning that if faces f, g share a directed edge $e=\langle v, w\rangle$, then e is positively oriented in one face and negatively oriented in the other.
Of course, I can't "show" you an abstract complex, but © Objects (S) begins with a random triangulation, one having no a priori connection with any circle packing - it is a simple graph you might have sketched by hand and then entered into some drawing program.
- Circle Packing, P : A circle packing for K is a configuration $P=\left\{c_{v}\right\}_{v \in K}$ of circles with these properties:
(1) There is a circle c_{v} associate with every vertex v of K.
(2) If vertices v and u are neighbors (this is denoted $v \sim u$ and means that $\langle v, u\rangle$ is an edge of K), then the circles c_{v} and c_{u} are (externally) tangent to one another.
(3) if $\langle v, u, w\rangle$ is an oriented face of K, then the circles c_{v}, c_{u}, c_{w} form a triple of mutually tangent circles which is positively (i.e., counterclockwise) ordered.

In CirclePack, vertices are indexed sequentially starting at 1; (S) Objects (S) highlights, successively: the circle c_{5}, a neighbor, c_{9}, a triple $\left\langle c_{5}, c_{9}, c_{27}\right\rangle$, and then the flower of c_{5}, namely, c_{5} and the closed chain of neighboring petal circles.

The script goes on to highlight several other terms: Interior circles are those having closed flowers (their petals wrap completely around them), while the boundary circles are those on the edge, with flowers that don't close up. Likewise, the boundary/interior edges and faces are illustrated. P is said to be univalent if its circles have mutually disjoint interior.

- Carrier, $\operatorname{carr}(P)$: The carrier of P refers to the union of geometry triangles formed by connecting the centers of the triples of circles in P. In the script, the carrier is displayed as the "complex". P is locally univalent if for every interior vertex v, the faces in $\operatorname{carr}(P)$ corresponding to the flower of v have mutually disjoint interiors.
- Label, R : A label for K is a vector $R=\left\{r_{v}\right\}_{v \in K}$ of putative radii, one for each vertex of K. As you might imagine, it is the circle radii that are of central importance in circle packing. These are maintained in CirclePack and can be found using the "Info" button. (Note that labels depend on which of the three geometries you are working in.)

If you try to create a circle packing "by hand", say manipulating circle objects in some graphics program, you quickly learn how tightly choreographed their radii must be. The computational heart of circle packing involves the computation of
compatible radii; the neutral term "label" is used in place of "radii", because the algorithms typically start with values which do NOT fit together and then apply some iterative adjustments to approach a solution. (But see the $\S ? ?$ for the spherical packing challenge.)

- Angle Sums, θ_{R} : Given a complex K and an associated label R, how might you determine if circles with those radii would actually fit together in the pattern prescribed by K ? The key lies with angle sums. Consider an interior vertex v and let $\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ be a list, in counterclockwise order, of its neighbors. Since the list is closed, it's convenient in computations to write $v_{k+1}=v_{1}$.

The faces containing v are $\left\langle v, v_{j}, v_{j+1}\right\rangle, j=1,2, \cdots, k$. Suppose r, r_{j}, r_{j+1} are the associated labels taken from R. For each such face we could place circles c_{v}, c_{j}, c_{j+1} in the appropriate geometry to form a triple. The triangle formed by their centers would have edge lengths which are the sums of radii, and we could appeal to the Law of Cosines to compute the angle in this triangle at v. In euclidean geometry, for instance, that angle would be

$$
\alpha\left(r ; r_{j}, r_{j+1}\right)=\arccos \left[\frac{\left(r+r_{j}\right)^{2}+\left(r+r_{j+1}\right)^{2}-\left(r_{j}+r_{j+1}\right)^{2}}{2\left(r+r_{j}\right)\left(r+r_{j+1}\right)}\right]
$$

The sum of these angles at v in all the faces containing v is known as the angle sum:

$$
\theta_{R}(v)=\sum_{\left\langle v, v_{j}, v_{j+1}\right\rangle} \alpha\left(r ; r_{j}, r_{j+1} z\right)
$$

The neighbors of v will wrap precisely around v if and only if $\theta_{R}(v)$ is an integral multiple of 2π. This is illustrated concretely in (S) Objects (5), but note that one does not need to actually place any circles, as computations are done entirely with the labels and the combinatoric information from K.

- Packing Label: A label R for K is known as a packing label if $\theta_{R}(v)$ is an integral multiple of 2π for every interior vertex v. If P is a circle packing for K (in one of our geometries), then the list R of its radii will necessarily be a packing label. Conversely, one can show that if R is a packing label for K, then one can lay out circles, using the labels as radii, to form a circle packing P for K.

CirclePack is a platform for creating, manipulating, analyzing, and displaying circle packings. Its computational core lies in computing packing labels, and although the "packing" algorithms themselves are interesting and revealing mathematics, they are not our target here. We will instead treat CirclePack as a blackbox computational engine so that we can concentrate on the underlying geometry. (Recall that there are several levels of usage for scripts; the more skill you develop, the more you'll learn from experiments: (1) click "NEXT" and watch the action; (2) press "Open Script"
and follow the commands and associated descriptions in the script window; (3) modify current script commands; and (4) create new scripts from scratch.)

6.3. Circle Packing Manipulations

We base our introduction to circle packing on a sequence of scripts revealing both the objects of study and the principal manipulations of them available within CirclePack.

1. (S) Patterns (S) concentrates on combinatorics. Starting with an empty canvas, a "seed 7" command creates the simplest type of packing, namely a single flower an interior circle surrounded by, in this case, seven petal circles. As you click through the script the first time, disregard the occasional repackings that are needed. The emphasis here is on building and adjusting the combinatorics. You will see how to add generations of new neighbors, how to add/delete individual boundary circles, how to cut open or zip up a string of boundary circles, how to "double" a packing across a boundary segment, how to adjoin two packings, how to cookie out one packing from a larger one, and how the process of "hex" refinement works. Try it out!
2. (S) Geometries (S) concerns geometries. CirclePack operates in any of the three standard ones: the euclidean plane, represented by the familiar complex plane \mathbb{C}; the hyperbolic plane, represented by the unit disc $\mathbb{D} \subset \mathbb{C}$ with the Poincaré metric (density $|d s|=|d z| /\left(1-|z|^{2}\right)$); and spherical geometry represented by the Riemann sphere \mathbb{P}, the unit sphere $\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1\right\}$ in \mathbb{R}^{3}. These are nicely nested, $\mathbb{D} \subset \mathbb{C} \subset \mathbb{P}$ with this last inclusion via "stereographic" projection. Moreover, circles in one geometry are circles in the others (though with different centers and radii). The script illustrates changes in geometry, displays circles and faces in each, and shows the effects of automorphisms. Hyperbolic geometry is perhaps least familiar, but also in many ways the richest. The plane is the most comfortable for most of us. The sphere is also quite familiar - after all, we live on a sphere - but in circle packing it is by far the most challenging. Try it out!
3. (S) Layout (S) may help you understand the repacking/layout process; though we treat both these as blackbox operations in general, one should see at least a little about them. In the script, an abstract complex K is represented as a concrete graph (without any reference to circles). Arbitrary radii are assigned to the vertices and the corresponding circles are drawn. The "repack" command adjusts the radii iteratively based on their current values and the neighbor relationships encoded in K. Several intermediate stages of the repacking are shown: boundary radii are fixed, interior radii change, all centers are fixed for now. When the radii are "right" (i.e., comprise a "packing" label), then we can move the circles to the correct locations. Two tangent circles are laid out first, after which the rest can be placed unambiguously in succession.

The original combinatorics remain, but now the locations of its vertices are determined by the layout. We have a packing! Try it out!
4. (S) BdryControl (S) illustrates manipulations critical to our later work: solutions of boundary value problems for radii and boundary angle sums for a small euclidean packing. The first section of the script emphasizes boundary angle sum manipulations. With the cursor and key presses you can prescribe boundary angles sums of π, $\pi / 2$, or $3 \pi / 2$ at various boundary vertices; other boundary vertices have unrestrained anglesums which necessarily adjust during repacking. A key observation is that while manipulating circle packings, there are some things you control, but the packing pushes back - there is a mixture of flexibility and rigidity. Here are some things to think about: Can you prescribe boundary angle sums arbitrarily? Can you generate some problem situations? Suppose you prescribe all but one of the boundary angle sums; can you compute the remaining one? Can you prescribe angles to get the region to overlap itself? Some of these issues will come up in Exercise 6.5.

It is interesting to compare boundary controls in the other geometries. The script has you investigate quadrilaterals in the hyperbolic plane; you have a similar ability to control boundary angle sums, for instance, but the constraints of the geometry are different. Try it out!
5. (S) Type67 (S) investigates connections between combinatorics and geometry using constant-degree packings, those in which every circle has the same degree (the same number of neighbors). The takehome message involves these associations: degree 6 circles, flat (zero curvature); degree 5 or less, positive curvature; degree 7 or more, negative curvature. Try it out!
6. (S) MaxPack (S) investigates an especially important type of circle packing. A maximal packing for a complex K is a univalent circle packing whose carrier "fills" the underlying geometric space. In (S) Type67 (S) above we saw examples for two infinite simply connected cases, the hexagonal packing, whose carrier is the euclidean plane, and the septagonal packing, whose carrier is the hyperbolic plane.

The foundational theorem in circle packing is the Koebe-Andreev-Thurston theorem below.

Theorem 6.2 (KAT). Let K be any triangulation of a topological sphere. Then there is univalent circle packing P_{K} for K living on the Riemann sphere, \mathbb{P}. Moreover, P_{K} is unique up to Möbius transformations of the sphere (and inversions).

Note that we assume our complexes K and associated packings P have the same orientation, so we won't allow inversions. Also, we say a circle packing for K is essentially unique if it is unique up to conformal automorphisms of the underlying space. In our terminology, then, the KAT Theorem states: Every complex K triangulating a sphere has a maximal packing P_{K} of the sphere, and P_{K} is essesntially unique.

The final simply connnected situation we need (which actually lies behind all the others) involves complexes K which triangulate closed topological discs. Specifically, the conditions on K are that it be finite, simply connected, and have one connected component of boundary vertices. In this situation we appeal to the following theorem.

Theorem 6.3. If K triangulates a closed topological disc, then there is a univalent packing P_{K} for K in the hyperbolic plane having the property that all its boundary circles are horocycles. Moreover, P_{K} is unique up to Möbius transformations of \mathbb{D}.
(S) MaxPack (S) illustrates various maximal packings. Some, of course, are just suggestive, since we cannot display infinitely many circles. All are, nonetheless, theoretically sound. The script also explores the close connection between the previous two theorems: the maximal packings in \mathbb{D} of the last theorem are in fact, solutions of boundary value problems: just set boundary radii to infinity (in the hyperbolic plane this makes them horcycles). These maximal packings, in turn, provide the practical mechanism behind maximal packings of the sphere: see why in this script. Try it out!
7. (S) Branching (S) illustrates one further source of control beyond the boundary conditions we have studied so far: namely, branching. A circle c_{v} is branched if it is an interior circle whose neighbors wrap more than once around it. For "simple" branching, the angle sum at v is 4π and the neighbors wrap twice around it. In general, if the angle sum is $2 \pi n$, the neighbors wrap n times around and the circle is said to have branch order $n-1$. Investigate the local geometry at branch circles in this script. Try it out!
8. (S) InputOutput (S) gives you a tour of CirclePack input/output operations. After you work with CirclePack for a while, you may want to read/write packings, save/load scripts, create PostScript images and *.jpg screendumps, etc. Try it out!

6.4. Discrete Function Theory

With experience from the previous scripts, the reader should be ready for the investigation of discrete analytic function theory. To see how CirclePack displays functions, run through (S) DiscreteRMT (S), which creates the discrete conformal mapping of Figure 6.1.

The script begins with a curve defining a Jordan region Ω. A regular hexagonal packing H_{ϵ} (i.e., all circles the same radius ϵ) overlays Ω in the convas on the right. Using Ω like a cookie cutter, a packing P of Ω is cut from H_{ϵ}. The associated complex K has a maximal packing $Q=P_{K}$ in \mathbb{D}, which CirclePack computes and displays in the canvas on the left. We now have, more or less, the situation as pictured in Figure 6.1. This is the typical way we will represent our functions $f: Q \longrightarrow P$ in CirclePack: "domain" on the left, "range" on the right. Here's the official definition.

Definition 6.4. A discrete analytic function is a map $f: Q \longrightarrow P$ between circle packings Q and P which preserves tangency and orientation.

As a practical matter, our discrete analytic functions will always have domain and range packings that share a common complex K (though, of course, K may vary from one example to another). If v is a vertex of K with circle C_{v} in Q, then $c_{v}=f\left(C_{v}\right)$ is the circle for v in P.

Note that because of Theorem 6.3, we actually have already generated the packings for many discrete analytic functions. Every packing, P, is the range of a discrete analytic function: just build its associated maximal packing P_{K}, and viola, $f: P_{K} \longrightarrow$ P is a discrete analytic function. You might well ask "What is the big deal about functions?" The function is not about the range (alone); it's about how the domain changes into the range - it's about the mapping. Which circles grow, which shrink? How does the boundary behave? Do the circles remain disjoint, or do some come to overlap? How does the geometry change under f ? Which properties are preserved? which ones change?

Subsequent scripts will teach you how CirclePack can aid in generating mappings and investigating their properties. In the domain/range mode, as in Figure 6.1, you can click the left mouse button on a circle in one packing and both it and its counterpart in the other packing will be highlighted. Check a few pairs of tangent circles in Q to see that their counterparts are indeed tangent in P. Also observe that the circle centered at 0 in Q corresponds to the circle of P which is also at 0 : this is what we will mean when we say $f(0)=0$. Clicking the middle mouse button will highlight corresponding faces of Q and P. CirclePack provides various buttons for refreshing, zooming, etc.; I'll leave it to you to experiment with the interface. Your goal is to be able to probe the packings to discover properties of the mapping f.
6.4.1. Conformal Maps. The "cookie" method of (S) Cookie (S) is a very practical method for creating discrete conformal mappings, so called because they parallel the conformal (i.e., one-to-one analytic) mappings of the classical theory.

There is a second approach which is modeled on the Schwarz-Christoffel methods seen in Section 5.2. In the discrete setting, the machinery is remarkably close to the (largely hidden) numerical machinery behind the classical method. Given a target polygon Γ, one can read off the angles at its corners; in (S) DiscreteSC (S) we impose these as boundary angle sum conditions. The difficulty is in choosing which boundary vertices to place the restrictions on. These are the so-called "prevertices" of the classical Schwarz-Christoffel formula (the " x_{j} " in formula (67)).

EXERCISE 6.5. Before you jump into (S) DiscreteSC (S), work out necessary conditions on boundary angle sums which can be realized by a euclidean packing. Consider the packing of Figure 6.6 and the polygon Γ formed by the boundary edges of its carrier. To start, what can you say about the interior angles of such a closed polygonal path? It is typical to consider the "turning angle" at the corners as you travel in the
positive direction (counterclockwise) about Γ. When you come to a corner, the turning angle is positive if you turn left onto the next side and negative if you turn right. This angle can be interpreted as $\pi-\theta$, where θ is the interior angle (on the left) at the corner. There is a necessary condition on the sum of turning angles. What is it? How can this be restated as a condition on the sum of interior angles at corners?

Figure 6.6. Packing of a Polygon
Exercise 6.6. The Riemann Mapping Theorem says that every simply connected proper subdomain Ω of the plane is conformally equivalent to a particular "model" simply connected domain, namely, the open unit disc. This has been extended to certain multiply connected regions Ω. For instance, if Ω is a connected domain in the plane bounded by some finite number n of disjoint Jordan curves, then it is called n-connected. (A "Jordan" curve is a closed curve without self-intersections.) In this caae, there is a conformal mapping of Ω onto a standard model multiply connected domain. There are various possible "models", but of particular recent interest are
are so-called "circle domains". A circle domain C in the plane is one bounded by a finite number of circles. Despite the several numerical methods for computing the maps for simply connected domains - such as Schwarz-Christoffel - the multiply connected cases are much tougher. The discrete version is quite elementary, however. See (S) CircleDomains (S). Try it out!
6.4.2. Basic Function Theory. Let's look at scripts in which we construct and study additional types of functions. We start with maps of the unit disc into itself which are important in classical function theory and especially convenient for us since we can work in hyperbolic geometry. (S)Schwarz (S) starts with a somewhat random, rather small range packing P in \mathbb{D}. Incrementally increasing the boundary radii to infinity (in practice, 5 is sufficiently large!) and P morphs into its maximal packing P_{K}. The resulting map $f: P_{K} \longrightarrow P$ is a discrete analytic function of \mathbb{D} into itself. It's convenient to introduce some notation here.

Definition 6.7. Let $f: Q \longrightarrow P$ be a discrete analytic function, where Q and P are packings with common complex K. The associated ratio function $f^{\#}: K \longrightarrow \mathbb{R}$ is defined by

$$
\begin{equation*}
f^{\#}(v)=\frac{\operatorname{radius}\left(f\left(C_{v}\right)\right)}{\operatorname{radius}\left(C_{v}\right)}, v \in K \tag{99}
\end{equation*}
$$

where C_{v} is the circle for v in Q and $f\left(C_{v}\right)$ is the corresponding circle in P.
$f^{\#}(v)$ is the "stretch factor" at the v, the amount that the associated circle is stretched in going from Q to P. With this for notation, we can illustrates our first piece of discrete function theory, the Discrete Schwarz Lemma.

Theorem 6.8 (Discrete Schwarz Lemma). Let $f: P_{K} \longrightarrow P$ be a discrete analytic self-map of the unit disc with $f(0)=0$. Then $f^{\#}(0) \leq 1$. Moreover, equality holds if and only if f is a rotation; that is, $P=\lambda P_{K}$ for some complex λ with $|\lambda|=1$.

ExERCISE 6.9. Run through (S) Schwarz (S) again, but more carefully. Try it out! Can you see the Discrete Schwarz Lemma in action? The ratio function plays the role in the discrete theory that the absolute value of the derivative, $\left|F^{\prime}\right|$, plays in the classical theory, so the Discrete Schwarz Lemma precisely parallels its classical counterpart, even up to the equality statement.

Exercise 6.10. There is a classical extension of the Schwarz Lemma known as the Dieudonné-Schwarz Lemma. If $F: \mathbb{D} \longrightarrow \mathbb{D}$ is analytic and $F(0)=0$, then by the Schwarz Lemma, $\left|F^{\prime}(0)\right| \leq 1$. According to this extension, there is a certain universal constant $C, 0<C<1$ (i.e., independent of F) so that $\left|F^{\prime}(z)\right| \leq 1$ whenever $|z|<=C$. (S) Dieudonne (S) sets up experiments so you can try to estimate this constant: you manipulate a range packing P in \mathbb{D}, color coding those circles whose (euclidean) radii are smaller in P than in P_{K}. I'll give you a bit of help: C is larger than $1 / 2$ but quite a bit less than 1. Try it out! (The correct value can be found in the text at the end of the script.)

The Discrete Schwarz Lemma is an example of a "monotonicity" result - if you decrease the boundary radii of Q to those of P, then the radius of the circle at the origin also goes down. Details are given in [6], but the basic ideas can be seen in the following Exercise:

ExERCISE 6.11. Consider a mutually tangent triple of circles in euclidean geometry as illustrated in Figure 6.7. Using the euclidean Law of Cosines, show that if the radius of circle C_{v} is increased, then the angle α at C_{v} will decrease while the angles β, γ at the other two circles will increase.

Figure 6.7. Monotonicity in euclidean triples

ExErcise 6.12. Using the previous fact, prove the following:
Theorem 6.13 (Discrete Maximum Principle). Let $f: Q \longrightarrow P$ be a discrete analytic function between euclidean packings Q and P, and suppose Q is locally univalent. Then the ratio function $f^{\#}(v)$ attains it maximum at some boundary vertex v.

Analogous results hold in hyperbolic geometry and are central to the computation of packing radii. The failure of this monotonicity in spherical geometry is tied in with the problems you address in §??.

Exercise 6.14. Show with a computation in spherical geometry (using the Spherical Law of Cosines) that the monotonicity of 6.11 can fail in spherical geometry. What appears to be the trigger for such failure? Try it out!

The analogy between $f^{\#}$ and the classical $\left|F^{\prime}\right|$ is not perfect. In particular, $\left|F^{\prime}\right|$ is zero at branch points of F, whereas $f^{\#}$ will never be zero. The fact that discrete functions correctly realize the geometry underlying branching can be seen in the following Exploration.

Exploration 6.15. An important class of classical analytic self-maps of the disc, the finite Blaschke products, was introduced in Chapter ??. They are displayed there as products, each factor vanishing at one point of the disc, and thus their properties are subject to direct computation. For instance, every finite Blaschke product $B: \mathbb{D} \longrightarrow \mathbb{D}$ extends to a continous map on the unit circle, $\partial \mathbb{D}$, mapping $\partial \mathbb{D} n$ times around itself, where n is the number of factors in B.

However, there is a more geometric characterized of finite Blaschke products: they are precisely the proper analytic maps f of \mathbb{D} onto itself. "Proper" means that whenever $\left\{z_{j}\right\}$ is a sequence of points in \mathbb{D} converging to the unit circle, $\left|z_{j}\right| \rightarrow 1$, then the images, $\left\{f\left(z_{j}\right)\right\}$, also converge to the unit circle, $\left|f\left(z_{j}\right)\right| \rightarrow 1$. By orientation, B wraps the boundary around itself some number n times, and from this the argument principle implies that B will have $n-1$ branch points inside the disc. It is these geometric properties which lead you to discrete finite Blaschke products, as you will see in (S) Blaschke (S). Try it out! You also get a closeup look at branch points - a chance to demystify the local geometric behavior.

Analytic functions present this fascinating mixture of rigidity within flexibility - I'm convinced that this explains why they have attracted such attention for two centuries now. You get to manipulate some features, but then you have to live with the consequences that conformal rigidity brings. This mixture is rather difficult to get a handle on, but there are two particular notions mathematicians have invented that give some insight: harmonic measure and extremal length.
6.4.3. Harmonic Measure. Let Ω be a Jordan region Ω in the plane (that is, one bounded by a simple closed curve). Fix a subset A lying in the boundary of Ω. The harmonic measure function, $\omega(z)=\omega_{A, \Omega}(z)$, is the unique real harmonic function on Ω with the property that $\omega(w)=1$ for $w \in A$ and $\omega(w)=0$ for $w \in \partial \Omega \backslash A$. The harmonic measure of A with respect to Ω at $z \in \Omega$ is the value $\omega_{A, \Omega}(z)$. This is called a "measure" because if you fix Ω and z, then this is a probability measure on $\partial \Omega$. That is, it is a function of $A \subset \partial \Omega: \omega_{A, \Omega}(z) \in[0,1]$, with $\omega_{\emptyset, \Omega}(z)=0, \omega_{\partial \Omega, \Omega}(z)=1$, while if A_{1}, A_{2} are disjoint in $\partial \Omega$, then $\omega_{A_{1} \cup A_{2}, \Omega}(z)=\omega_{A_{1}, \Omega}(z)+\omega_{A_{2}, \Omega}(z)$. (We necessarily suppress finer details about measurability and continuity here.)

There are two especially nice properties of harmonic measure in the classical setting:
(1) It is easy to compute in certain simple situations: In particular, if Ω is the unit disc \mathbb{D} and z is taken as the origin, then $\omega_{A, \mathbb{D}}(0)=\operatorname{arclength}(A) /(2 \pi)$, the proportion of the unit circle that A occupies as seen from the origin.
(2) It is a conformal invariant; that is, it is invariant under conformal maps. Put more explicitly, suppose $F: \Omega_{1} \longrightarrow \Omega_{2}$ is a conformal map (i.e., a conformal homeomorphism) between two domains. Under quite weak conditions, it is known that F can be extended to map the boundary onto the boundary, $F: \partial \Omega_{1} \rightarrow \partial \Omega_{2}$.

Given $A_{1} \subset \partial \Omega_{1}$, define A_{2} to be its image $A_{2}=F\left(A_{1}\right)$ in $\partial \Omega_{2}$, and suppose $z_{1} \in \Omega_{1}$ and $z_{2}=F\left(z_{1}\right) \in \Omega_{2}$. Then $\omega_{A_{1}, \Omega_{1}}\left(z_{1}\right)=\omega_{A_{2}, \Omega_{2}}\left(z_{2}\right)$.

If you put these two properties together with the Riemann Mapping Theorem, one can, in theory, find the harmonic measure function for any simply connected region. How might this be useful? Here's but one of numerous applications. Suppose a homogeneous, thin metal plate is cutout in the shape of Ω. Suppose a segment A of the boundary is held at 100 degrees (centigrade), while the remainder of the boundary is held at 0 degrees. After the plate has had time to reach thermal equilibrium (so temperatures are no longer changing), what is the temperature at a point z in the interior of the plate? It is evidently somewhere between 0 and 100, it would approach 100 as z comes closer to A, and 0 as z gets closer to other parts of the boundary. But what is the temperature precisely at z ? The answer is precisely $100 \omega_{A, \Omega}(z)$.

In (S) HarmMeasure (S) we investigate the discrete analogy. I can share the definition now, since it is motivated directly by property (1). Suppose K triangulates a closed topological disc, A is a chain of edges in ∂K, and $v \in K$ is an interior vertex of K. Let P_{K} be the maximal packing for K in \mathbb{D} which has the circle for v centered at the origin. Each edge in $e \in A$ corresponds to an arc $\alpha_{e} \subset \partial \mathbb{D}$ between the centers of the two horocycles forming e. (You have seen horocycles in CirclePack. A "horocycle" is a circle in \mathbb{D} which is internally tangent to the unit circle and may be treated as hyperbolic circle with infinite hyperbolic radius and center at the point of tangency with $\partial \mathbb{D}$.)

Definition 6.16 (Discrete Harmonic Measure). Given K, A, and v as described, the discrete harmonic measure of A at v with respect to K is

$$
\omega_{A, K}(v)=\sum_{e \in A} \operatorname{arclength}\left(\alpha_{e}\right) /(2 \pi) .
$$

So, in fact, discrete harmonic measure is defined directly on K. The invariance in the discrete version of property (2) is now merely definition. In the script, however, you will see its geometric nature exhibited, much as you would see the temperature distributed about a plate in the application noted above. A couple of experiments are quite convincing that the same geometry is at work in both the discrete and the classical settings: we "graph" the harmonic measure for a classical and discrete representations of a region, and we illustrate the extension of domain princple.
6.4.4. Extremal Length. Extremal length is a slightly more nuanced measure of conformal "shape". Start with the Jordan region Ω again, but this time suppose we are given disjoint closed subarcs A and B of its boundary; the triple $\mathcal{Q}=\{\Omega ; A, B\}$ is described as a "conformal quadrilateral".

A classical theorem states that there exists a conformal mapping $F: \Omega \longrightarrow R$, where R is a euclidean rectangle, so that F extends continuously to the boundary and so that the images $F(A), F(B)$ are opposite ends of R. F is unique up to euclidean
similarities. (You might sense a similarity to a Schwarz-Christoffel situation, as investigated earlier, but this is quite different. The four boundary points mapping to corners are specified, but the shape of the image rectangle is not set in advance.)

Figure 6.8 illustrates the analogous discrete result you will see in (S) ExtLength (S). By a rigid motion, image rectangles can be positioned as shown here, with the images of A and B on the left and right, respectively. The aspect ratio of R will be defined as its width over its height, $\operatorname{Aspect}(R)=W / H$.

Figure 6.8. Packing for extremal length
Continuing our discussion of the classical setting, $\operatorname{Aspect}(R)$ is known as the extremal distance from A to B, relative to Ω, or the extremal length of the quadrilateral \mathcal{Q}, denoted $\operatorname{EL}(\mathcal{Q})$. As with harmonic measure, there are two key properties:
(i). Extremal length is easy to compute in certain simple situations: For instance, if Ω is a euclidean rectangle width W and height H, and A and B are its two ends, then clearly $\operatorname{EL}(\{\Omega, A, B\})=W / H$.
(ii). Extremal length is a conformal invariant; that is, if $\mathcal{Q}_{1}=\left\{\Omega_{1} ; A_{1}, B_{1}\right\}$ and $\mathcal{Q}_{2}=\left\{\Omega_{2} ; A_{2}, B_{2}\right\}$ are conformal quadrilaterals and $F: \mathcal{Q}_{1} \longrightarrow \mathcal{Q}_{2}$ is a conformal mapping such that $F\left(A_{1}\right)=A_{2}$ and $F\left(B_{1}\right)=B_{2}$, then $\operatorname{EL}\left(\mathcal{Q}_{1}\right)=\operatorname{EL}\left(\mathcal{Q}_{2}\right)$

Also as with harmonic measure, there are physical interpretations. Suppose Ω is a uniform conducting metal plate in the plane, the boundary segment A is attached to a 1 volt power supply, the boundary segment B is grounded, and the remaining segements of the boundary are insulated. Then the current flow between A and B in amperes will be proportional to $\operatorname{EL}(\{\Omega, A, B\})$, the constant depending on the properties of the metal.

Discrete analytic mappings to rectangles having designated boundary vertices as corners are quite easy to compute by methods you have already seen in (S) RePack (S): you simply specify that all boundary vertices have angle sum π except for the four which are to be the "corners", and these you set to $\pi / 2$. (S) ExtLength (S) illustrates the construction of Figure 6.8 and explains how CirclePack reports the extremal length when you have a rectangle. You are asked to modify the constructions to answer a question about current flow. You might then test your intuition with an extremal length analogue of the extension of domain principle we saw with harmonic functions.

One last script for this section, (S) MiscFtnTheory ${ }^{(S)}$, illustrates the range of miscellaneous behaviors you might encounter with discrete analytic functions. These can provide concrete insights you might carry back to the classical setting.

6.5. Function Construction

We have "hands-on" control of our discrete functions, but this is not like the formula-driven and algebraic control available in the classical setting. In the discrete world, we have limited ability to add or multiply functions, and essentially no way to consider compositions of the type studied in Chapter ??. To build functions we require something geometric to hook into. We have seen several examples already: to get maximal packings in \mathbb{D}, we send boundary radii to infinity; to build euclidean polygons, we control their boundary angle sums; to create Blaschke products, we designate branch circles. The next sequence of scripts give additional examples, some involving techniques, others relying on special circumstances or outright tricks. There's plenty of room for creative thinking in this.
6.5.1. Discrete Exponentials. (S) Doyle © (5) challenges you to adjust parameters in a family of fascinating circle packings known as Doyle spirals. With patience you can build a range packing which clearly mimics the classical exponential function. Try it out! Read the script for guidance, but then experiment on your own. The answer is revealed at the end.
6.5.2. Discrete Rational Functions. A classical rational function is one of the form $F(z)=P(z) / Q(z)$, where $P(z), Q(z)$ are complex polynomials (assumed to have no common factors). Projecting stereographically to the sphere in both domain and range, F may be considered as a map from the Riemann sphere to itself, $F: \mathbb{P} \longrightarrow \mathbb{P}$, and that will be our view here. In particular, if $P(z)=0$, then $F(z)=0$, while if $Q(z)=0$, then $F(z)=\infty$. The behavior at ∞ in the domain depends on relative degrees: if $\operatorname{deg}(P)>\operatorname{deg}(Q)$, then $F(\infty)=\infty$, if $\operatorname{deg}(P)<\operatorname{deg}(Q)$, then $F(\infty)=0$, and if $\operatorname{deg}(P)=\operatorname{deg}(Q), F(\infty)$ is a non-zero complex number.

The sphere is compact, and $F: \mathbb{P} \longrightarrow \mathbb{P}$ is an open continuous map, so key properties of rational maps are purely topological: F has a constant valence, $N>0$; that is, for every point $p \in \mathbb{P}, F^{-1}(p)$ has N points (counting multiplicities at branch points). The valence N satisfies $N=\max \{\operatorname{deg}(P), \operatorname{deg}(Q)\}$. Moreover, there are
precisely $2(N-1)$ branch points. (This counts multiplicities at branch points, which may include branching at infinity.) As you build examples you should watch for these properties directly.
(S) Rational1 (S) (???? Poly) shows one technique for the construction of rational maps, since polynomials P are themselves rational maps (take $Q \equiv 1$): the valence N is just the degree of P. The discrete construction in (S) Rational1 (S) illustrates these "polynomial-like" rational maps. To get a taste for what should be "more typical" rational maps (S) Rational2 (S) gives a particular example that was constructed using the special geometry of "Schwarz" triangles on the sphere. This is a beautiful example: it is the discrete analogue of $F(z)=z^{2}\left(3 z^{5}-1\right) /\left(z^{5}+3\right)$, with valence 7 and 12 simple branch points. Lovely as it is, it just highlights a major capability that is missing in our discrete theory: we have no algorithm for computing packing labels directly in spherical geometry.
6.5.3. Ratio Function Constructions. Recall that if $f: Q \longrightarrow P$ is a discrete analytic function, then the associated local scaling, the analogue of $\left|F^{\prime}\right|$ for analytic functions, is given by its ratio function $f^{\#}$. (See Definition 6.7.) In particular, if we wish to build a discrete analogue f for some classical function F, we might begin from this differential level, mimicking $\left|F^{\prime}\right|$.
(S) (S) builds a discrete analogue for the classical function $F(z)=(1+z)^{2}$, which was illustrated with the applet ComplexTool in Figure 4.2.

Ratio function constructions also give an approach to entire functions. We illustrate in $(S) \operatorname{Erf}(S)$ for a function central to statistics, the error function $\operatorname{erf}(z)$ defined by

$$
\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-\zeta^{2}} d \zeta
$$

When z is restricted to the real axis, $z=x$, then the derivative $\operatorname{of} \operatorname{erf}(x)$ is the Gaussian distribution, the famous "bell-shaped" curve.

The construction of the discrete error function illustrates several construction issues. Let me highlight a few to prepare you.
(1) First, F, as an entire function, is defined on the whole complex plane. Discrete entire functions would likewise be defined on infinite complexes, as the discrete exponential we defined earlier on the regular hexagonal packing. Experiments and computations, however, are restricted to finite complexes. Our approach relies on "exhaustion": we mimick F using finite packings that take up successively larger, but finite, portions of \mathbb{C}.
(2) F has infinite valence: for every $w \in \mathbb{C}, F^{-1}\{w\}$ has infinitely many points. In fact, it's "mapping" behavior is quite fascinating to watch. Early in the construction, it may appear that we are omitting two points, w_{1}, w_{2}, much as the exponential omits the image value 0 . That, however, would contradict the Little Picard Theorem, which tells us that a nonconstant entire function can omit at most one value in the complex plane.

Watch more stages in the construction and see how our growing function manages, in fact, to cover everything. It turns out that though not omitted, w_{1} and w_{2} are what is known as asymptotic values, that is, there are paths in the domain whose image paths converge to w_{1} or w_{2}. Can you find such paths in the CirclePack experiments?
(3) Does the sequence of packings of this construction ultimately converge to an infinite circle packing? If so, it would answer in the negative one of the earliest questions in circle packing:

Question 1. Are the regular hexagonal packings and the Doyle spirals the only locally univalent hexagonal circle packings in the plane?

But is there, in fact, an infinite packing behind this construction? Each stage of construction is finite, so this is a convergence issue, and it remains unresolved. The script suggests both positive and negative indicators.
6.5.4. Harmonic Mappings. Recall from Section ?? that harmonic mappings H on the disc can be written in the form $F(z)=H(z)+\bar{G}(z)$ where H, G are analytic in \mathbb{D}. While the "addition" here is not a geometric feature that can be carried directly by our circles, there is a discrete fact that captures the local behavior which we'll discuss in a moment. The upshot is that if one just jumps in with discrete functions, the fundamental global phenomena appear to persist. In this section we start with the mechanics, see some examples parallel to ones in Chapter ??, then set up some lines of open experimentation for you.

Take a quick run through (S) HGBasics (S). Try it out! The way CirclePack operates, h and g will be discrete analytic functions on the disc, so, within each example they will share a complex K and have its maximal packing P_{K} as their common domain. In fact, there will be no need to view P_{K}, but in (S) HGintro (S) h is taken as the identity function, so P_{K} itself appears in p 0 as the range of h. The image of g appears in p 1 . On execution of 'h_gbar', the sum $h+\bar{g}$ is displayed in p2. CirclePack requires that the range packings for h and g both be euclidean, and a key feature in (S) HGintro (S) is that their boundary radii are identical. The script starts with g also the identity, so the initial f is pretty boring. However, if you press 'b' on an interior circle of h, you will that to become a branch circle for g. The image of f is immediately more interesting. You can add additional branch points and see some of the behavior described in Chapter 4. In particular, since the boundary radii are identical for h and g, the complex dilatation function $w(z)$ is a discrete finite Blaschke product.

Also in (S) HGintro (S) we see, for purposes of comparison, the addition $h+g$ (note there is no conjugate on g now). The result $f=h+g$, again in p 2 , will approximate the classical sum. When you display the circles in p2, however, you see that they are not doing the work for us: these radii are simply the sums of radii from h and g, they do not form a packing label.

The next script, (S) HGexamples (S), illustrates a few additional examples related to Chapter 4.

A last script, (S) HGtrials (S), sets up various adjustments you can implement with mouse and keys for more open ended experiments. And, of course, you can also add actions of your own devising. Certain keys will increase boundary radii of g, and this introduces you to another feature: faces of f (in p 2) are colored blue if f reverses their orientation. We know from the classical theory, that this can happen only if $\left|G^{\prime}\right| /\left|H^{\prime}\right|>1$ on some part of $\partial \mathbb{D}$. In the discrete setting, absolute values of derivatives are replaced by sharp functions; if you return to the definition of the sharp function and recall that h, g share the same domain packing, you see that the discrete condition becomes $g^{\#} / h^{\#}>1$ on some vertices of ∂K. Therefore, by manipulating the relative sizes of the boundary circles in p 0 and p 1 , we affect the orientation of $f=h+\bar{g}$.

Exercise 6.17. Verify this bit of local geometry, which may account for the properties of these discrete harmonic functions. Consider euclidean triangles T and \widetilde{T} with vertices $\left\{z_{1}, z_{2}, z_{3}\right\}$ and $\left\{\tilde{z}_{1}, \tilde{z}_{2}, \tilde{z}_{3}\right\}$, respectively. Assume that each of these triples is positively oriented. Now form a new triangle Δ with vertices $\left\{w_{1}, w_{2}, w_{3}\right\}$, where $w_{j}=z_{j}+\overline{\tilde{z}}_{j}, j=1,2,3$. The issue is whether Δ is necessarily positively oriented.

In general, the answer is "no", but here is a pretty fact that you should try to prove: If T and \widetilde{T} happen to be formed by mutually tangent triples of circles $\left\{C_{1}, C_{2}, C_{3}\right\}$ and $\left\{\widetilde{C}_{1}, \widetilde{C}_{2}, \widetilde{C}_{3}\right\}$, and if radius $\left(\widetilde{C}_{j} / \operatorname{radius}\left(C_{j}\right)<=1, j=1,2,3\right.$, then Δ is positively oriented. In other words, the classical boundary condition for preserving orientability of $H+\bar{G}$, namely $\left|G^{\prime}\right| /\left|H^{\prime}\right|<1$, carries over to the discrete case at the local face level.

Use your favorite computer math package to build examples. Show first that Δ can indeed have reverse orientation in general. But even more is true: show that even if you arrange that the side lengths of \widetilde{T} are individually less than the corresponding side lengths of T, Δ may still end up with reverse orientation. Mysteriously, however, when those side lengths are sums of radii, and the radii for \widetilde{T} are individually less than those for T, then Δ remains positively oriented!

6.6. Convergence

We have introduced the basic local geometry of circle packings, moved on to defining mappings between packings, and investigated the emergent global geometric properties. The claim has been made - with convincing evidence, I hope - that these mappings deserve the name "discrete" analytic functions. Can we, in fact, move beyond mere parallels?

The answer is a resounding yes. Though granularity prevents discrete analytic functions from actually being analytic functions, they can be made to approximate analytic functions by finding a suitable refinement process to improve resolution. Circle packing got started with exactly this approximation issue with the foundational Rodin and Sullivan Theorem explained below. Let's see it in action first.
(S) DiscreteRMT (S) allows you to repeat the conformal mapping experiment of Section ??, but now with a choice among several refinement levels. In particular, recall that you build a range packing P by cookie cutting a region Ω from a regular hexagonal packing. The maximal packing Q having the same combinatorics is the domain in \mathbb{D}. A standard CirclePack normalization puts the circle for the α vertex at the origin in both Q and P, and a γ vertex on the imaginary axis in each. The map $f: Q \longrightarrow P$ is then a discrete conformal map.

How well do these discrete mappings approximate the classical conformal mapping $F: \mathbb{D} \longrightarrow \Omega$ guaranteed by the Riemann Mapping Theorem? That is the content of the foundational theorem of the topic by Rodin and Sullivan, paraphrased here.

Theorem 6.18 (Rodin and Sullivan, [5]). Let Ω be a bounded simply connected domain in the plane and for each $\epsilon>0$ let f_{ϵ} be the discrete conformal mapping created as in the script, based on a regular hexagonal packing with circles of radius ϵ. Let $F: \mathbb{D} \rightarrow \Omega$ be the classical conformal mapping with the same normalization. Then the functions f_{ϵ} converge to F uniformly on compact subsets of \mathbb{D} as $\epsilon \rightarrow 0$. Moreover, the ratio functions $f^{\#}$ converge uniformly on compact to the modulus classical derivative, $\left|F^{\prime}\right|$.

The script illustrates the quality of the discrete mapping in two ways. One is rather self explanatory, imposing a spoke-and-wheel grid on the domain disc and having the discrete analytic function carry that forward to Ω. The result is compared in Figure ?? with the analogous result computed using Toby Driscoll's Schwarz-Christophel software (citeDSCT).

A second test of quality is illustrated in the script via color-coding. Let me briefly describe this. First, treat both Q and P as euclidean and concentrate on their carriers. We can reimagine $f: Q \longrightarrow P$ as a more familiar type of function; namely, as a function $f: \operatorname{carr}(Q) \longrightarrow \operatorname{carr}(P)$ mapping each face of $\operatorname{carr}(Q)$ onto the corresponding face of $\operatorname{carr}(P)$, with the vertices (circle centers) mapped to corresponding vertices. This can be accomplished nicely by defining f to be piecewise affine, that is affine on each face of $\operatorname{carr}(Q)$. I will let the reader look into the defintion. For our purposes it is enough to note that if T_{1} is a face of $\operatorname{carr}(Q)$, then f maps T_{1} to the corresponding face t_{1} of $\operatorname{carr}(P)$ and has the form

$$
f(x, y)=\left(a x+b y+x_{0}, c x+d y+y_{0}\right),(x, y) \in T_{1}
$$

for some real values a, b, c, d, x_{0}, y_{0}. Such a mapping is quasiconformal with dilatation given by $K=w+\sqrt{w^{2}-1}$, where $w=\left(a^{2}+b^{2}+c^{2}+d^{2}\right) /(2(a d-b c))$. In particular, $K \geq 1$ and f is conformal (analytic) on T_{1} iff $K=1$, that is, iff T_{1} and t_{1} are similar triangles. In general, the size of K reflects the how close the mapping f is to being analytic. To do this, the experiments in (S) DiscreteRMT (S) color code the faces of the range packings. For each face, the further the dilatation of f on that face is from 1, the more red the color, up to some cutoff, (e.g. $K=1.2$), after which the color is set to blue (???). In particular, the closer the color gets to white, the
closer the dilatation to 1 - i.e., the closer to being analtyic. An example was shown in Figure 6.1.

The convergence of discrete objects to their classical counterparts that we have seen in the Rodin/Sullivan theorem actually holds much more generally, indeed, in essentially all the settings we have discussed in this chapter. Here are some scripts that refine earlier constructions. A couple words of caution about increasing the complexity: - Complexity brings a computational penalty, so repacking and display times can increase dramatically. - Complexity can lead to roundoff errors that interfere with layout, display, and other operations. Though CirclePack can handle tens of thousands of circles, a few ill advised mouse clicks can push you into a computational neverland. (Of course, you can always kill CirclePack and start over!) - Complex packings are harder to manipulate - you can't as easily discern indices, boundary circles become harder to pick out with the mouse, etc.

Several ??? scripts investigate generalizations and refinements for the convergence involved in the Rodin/Sullivan Theorem.

EXERCISE 6.19. (S) ConformalRefine (S) follows up on the discrete conformal mapping in (S) Conformal (S) by permitting hex refinements. Figure ?? compares the images of a spoke/circle grid in \mathbb{D} under two different approximations to the conformal map $F: \mathbb{D} \rightarrow \Omega$: the left applies a discrete conformal mapping as generated in by CirclePack in the script, while the right applies a classical numerical approximation generated by Tobin Driscoll's "SC Toolbox", a Schwarz-Christoffel mapping package for matlab (see Section ??). In the script one should change the region Ω and then apply the commands to see the effects of hex refinement on the apparent accuracy.

EXERCISE 6.20. (S) RandomRefine (S) illustrates the use of random packings in place of hexagonal packing as the refinement method. Again, you should create you own simply connected region Ω, then apply the commands developed in the script to create and investigate the discrete conformal mappings at various refinement levels.

EXERCISE 6.21. (S) MultiRefine (S) illustrates maps between multiply connected regions, as in (S) ???? (S). The best way to modify the script for other regions is to make a copy, then swap out the current "PATH" data files (at the end of the script) for ones the user creates, either in CirclePack or another package.

EXERCISE 6.22. Run (S) ErfRefine (S) to pursue hex refined packings for the "error" function we encountered in (S) ? (S) (see [6, §14.4]). One method for judging how closely the results mimic the classical $\operatorname{erf}(z)$ is to compare the images of the unit circle under the discrete map and the classical map. Methods are given in the script to display the former. However, you should use your favorite math package to generate the latter; the script explains how to read and display a path given as a list of x, y coordinates.

Figure 6.9. Two conformal approximations: (a) circle packing, (b) Schwarz-Christoffel

Exercise 6.23. This exercise sets a simple task: estimate the complex number $B(3 i / 4)$ (??? Maple to find this value) for a classical finite Blaschke product B. However, all you know about B is this: $B(0)=0, B(1)=1, B$ has three zeros (counting multiplicies), and B has branching (i.e., B^{\prime} vanishes) at $z_{1}=(1+i) / 2$ and $z_{2}=-1 / 2$. It is known that appropriate discrete finite Blaschke products b_{n} will converge uniformly on compact subset of \mathbb{D} to B (an extension of the Rodin/Sullivan theorem to branched packings). (S) BlaschkeRefine (S) allows you to create discrete functions b_{n} (at various refinement levels) based solely on this type of data. You will have to tailor the construction and normalizations to match this particular B. Then you are asked to apply two methods for estimating $B(3 i / 4)$: (1) Use the values $b_{n}(3 i / 4)$ for the b_{n} you constructed. (2) Locate the zeros of the b_{n}, use those to build a classical finite Blaschke product \widehat{B} close to B, then compute $\widehat{B}(3 i / 4)$. ??? The point is that classical Blaschke products are best constructed from their zeros (see ???), while their discrete analogues are best constructed from their branch points.

Nearly every script from section ?? involves packings which are subject to the types of refinements we've just discussed, and invariably the discrete objects will converge under this refinement to their classical counterparts. The reader should pick a topic and create a script which implements appropriate refinement: discrete exponentials, discrete rational maps, discrete ratio function constructions, discrete harmonic functions - each project will have its distinct character.

6.7. Wrapup

I hope the reader has enjoyed this chapter. Perhaps it has given you a new way to look at and think about analytic functions. As discrete theories go, circle packing is arguably unique in the breadth, depth, and fidelity with which it captures its subject. The essential phenomena appear with even the simplest of packings, where you seem to glimpse the heart of analyticity. As complexity increases, that fidelity only grows, to the point that you can reliably investigate - perhaps even discover new phenomena - in the classical theory. So it is a full-featured "quantum" theory, classical in the limit, with experimental and visualization capabilities to boot.

This chapter may also have introduced you to a topic of interest in its own right. There is a lot of room for growth in circle packing, from packings on surfaces to randomized packings to applications. And wherever circle packings go, there, too, will be complex analysis.

6.8. Additional Exercises

Here are three additional exercises to stretch your understanding of circle packing. The first challenge in each is simply understanding the mechanisms being illustrated in the scripts. After that, however, you may see new directions for experiments, and you are encouraged to set your own path in studying them.

Exercise 6.24. Seeing the connection between triangulations and circle packings may have piqued your curiousity about more general triangulations. Whereas our complexes K have been simply connected up to this point, the situation in (S) Torus (S) is quite different: here K triangulates a torus. A torus is topologically equivalent to the surface of an inner tube, so you would rightly guess that one cannot realize a circle packing for K in the plane. Yet the script presents you with the "packing" P shown on the left in Figure ??.

Interpretation of P rests on the color coded "side-pairings": The 32 shaded circles form the packing, but additional tangencies exist on the torus. Since we cannot realize these in the plane, we create ghost circles (like the unshaded ones on the left in the figure): the circles centered along one colored edge are identified with corresponding circles along the other edge sharing that color. You may be able to see the matchings in the image either from the combinatorics or the radii, but the script should help you explore. The image in the right of Figure ?? presents this in another fashion, copies of the packing tiling the plane.

Ultimately, however, it's up to you to come to terms with this represention for circle packings of tori. It may help to create your own triangulated torus and insert it into the script data section in place of the current packing. Encoding of complexes is described in the "Formats" tab of the Help Frame of CirclePack. Let me offer a specific challenge: create a combinatorial torus K having just 7 vertices - the smallest number possible for a proper triangulation (that is, one in which any two faces are disjoint, share a single vertex, or share an edge and its end vertices).

Figure 6.10. Circle Packing of a torus with color-coded side pairings
ExErcise 6.25. An experimental capability of CirclePack that we touched on briefly in ???? involves the "adjoin" operation for triangulations. The key observation is that when two simply connected triangulations K_{1} and K_{2} have the same number of boundary vertices, they can be pasted to one another along their boundary edges. The result is a new triangulation K of the sphere. A packing P for K in \mathbb{P} provides simultaneous packings for K_{1} and K_{2} while also giving an embedding for their common boundary curve, the so-called welding curve.

The basics are demonstrated with Owl in (S) OwlWelding (S). Among other things, interest lies in how the shape of the welding curve is determined by our choices in attaching K_{1} and K_{2}. There is a connection with conformality, but I can only say that it is related to a classical topic called conformal welding (see [9]). Learn about the "double" and "adjoin" operations, and let the experiments begin.

Exercise 6.26. The CirclePack algorithms for computing circle packings work in euclidean and hyperbolic geometry. Unfortunately, there is as yet no general algorithm known for computing circle packings directly in spherical geometry, and the spherical packings in previous scripts have been stereographic projections from the plane or disc. All is not lost, however. At least a smattering of examples can be created by hand using basic spherical geometry and symmetry. Figure ?? illustrates an example with the combinatorics of the soccer ball: (a) shows the maximal packing, while (b) is a branched packing having the same combinatorics. Investigate this further in (S) SoccerPack (S). Try it out! .

Both packings in Figure ?? are constructed using the geometry of Schwarz triangles. The univalent packing Q shows the symmetry of the regular dodecahedron: twelve (12) uniformly spaced circles each with five neighbors, the remaining 20 circles each with 6

Figure 6.11. Circle packings with soccer ball combinatorics
neighbors. (This packing can, in fact, be created by standard methods in CirclePack; see (S) (S). The packing P shares the same combinatorics, but the degree five circles are all branch circles, so P defines a 7 -fold covering of the sphere. The map $f: Q \rightarrow P$ is a discrete rational function with valence 7 and 12 simple branch points.

Both Q and P can be created using the spherical triangles of Figure ??, two of several triangles known as "Schwarz" triangles. The Schwarz $\langle 2,3,5\rangle$ triangle t (i.e., having angles $\pi / 2, \pi / 3$, and $\pi / 5)$ is pictured in Figure ??(a). A second triangle, the $\langle 2,3,5 / 2\rangle$ Schwarz triangle T, is shown in (b) (at a different scale). Dashed lines on T show how it is built from 7 copies of t. A Pattern of two circular arcs is imprinted on t in (a), the analogous pattern is imprinted on T in (b).

A Schwarz triangle can be reflected across any of its three edges to form a copy of itself with reverse orientation. Repeated reflections will tile the sphere; in the case of t this tiling involves 120 copies. Carrying the imprinted arcs along during the reflection process yields a univalent circle packing with 42 circles, our maximal packing Q. The identical reflection process, but now starting with T, gives 120 copies which tile the sphere 7 layers deep and whose imprinted arcs give our packing P. In any copy of T, it takes 10 reflections around the vertex with angle $2 \pi / 5$ to close up, and this accounts for the 12 branch points of P. The script (S) Soccer (S) lets you check one of these visually to see the 5 (huge) neighboring circles wrap twice around it.

Schwarz triangles where first used to generate branched circle packings of the sphere in [1] (see Appendix H of [6]). However, the example of Figure ?? and other equally beautiful examples were created by Samantha Corveno, one of my REU (Research Experience for Undergraduates) students.

There are a handful of additional Schwarz triangles, and other options for circular markings, so the challenge to you is to create yet more examples. For each, you

Figure 6.12. Schwarz triangles t and T

Figure 6.13. A branched packing due to Samantha Corvino
will need to encode the combinatorics K for CirclePack, which can then generate the associated maximal packing. CirclePack won't find the branched packing radii, but if you can compute those with spherical trigonometry, CirclePack will display your results. To get you started, I've put another of Samantha's examples with more details in (S) Tri432 (S). Try it out!

Bibliography

1. Philip L. Bowers and Kenneth Stephenson, A branched Andreev-Thurston Theorem for circle packings of the sphere, Proc. London Math. Soc., 73 (1996), 185-215.
2. Charles R. Collins and Kenneth Stephenson, A circle packing algorithm, Computational Geometry: Theory and Applications 25 (2003), 233-256.
3. Tobin A. Driscoll and Lloyd N. Trefethen, Schwarz-Christoffel Mapping, Camb. Univ. Press, New York, 2002.
4. Tobin Driscoll, Schwarz-Christoffel Toolbox, for Matlab, http://www.math.udel.edu/~driscoll/software/SC/
5. Burt Rodin and Dennis Sullivan, The convergence of circle packings to the Riemann mapping, J. Differential Geometry 26 (1987), 349-360.
6. Kenneth Stephenson, Introduction to circle packing: the theory of discrete analytic functions, Camb. Univ. Press, New York, 2005.
7. Kenneth Stephenson, Circle packing: A mathematical tale, Notices Amer. Math. Soc. 50 (2003), no. 11, 1376-1388.
8. William Thurston, The finite Riemann mapping theorem, 1985, Invited talk, An International Symposium at Purdue University in celebrations of de Branges' proof of the Bieberbach conjecture, March 1985 (unpublished).
9. G. Brock Williams, Discrete conformal welding, Indiana Univ. Math. J., 53 (2004), 765-804.
