
CHAPTER 5

Mappings to Polygonal Domains

Jane McDougall and Lisbeth Schaubroeck (text), Jim Rolf (applets)

5.1. Introduction

A rich source of problems in analysis is determining when, and how, one can create
a one-to-one function of a particular type from one region onto another. In this chapter,
we consider the problem of mapping the unit disk D onto a polygonal domain by two
different classes of functions. First for analytic functions we give an overview and
examples of the well known Schwarz-Christoffel transformation. We then diverge from
analytic function theory and consider the Poisson integral formula to find harmonic
functions that will serve as mapping functions onto polygonal domains. Proving that
these harmonic functions are univalent requires us to explore some less known theory
of harmonic functions and some relatively new techniques.

Because of the Riemann Mapping Theorem, we can simplify our mapping problem
for either class of function to asking when we can map the unit disk D = {z : |z| < 1}
univalently onto a target region. This is because if we want to map one domain (other
than the entire set of complex numbers) onto another, we can first map it to D by an
analytic function, and subsequently apply an analytic or harmonic mapping from D to
the other domain (recall that the composition of a harmonic function with an analytic
function is harmonic).

We begin in Section 1.2 with the Schwarz-Christoffel formula to find univalent
analytic maps onto polygonal domains, and so set the stage for the corresponding
problem for harmonic functions with the Poisson integral formula in Section 1.3. Per-
haps because of their importance in applications, many first books on complex analysis
introduce Schwarz-Christoffel mappings through examples, without emphasis on sub-
tleties of the deeper theory. Our approach here will be the same, and the examples
we include are chosen to bring together ideas found elsewhere in this book, such as
the shearing technique from Chapter 4 and the construction of minimal surfaces from
Chapter 5.

We also include an example of a Schwarz-Christoffel map onto a regular star, a
polygonal domain that is highly symmetric but also non-convex. The problem of using
the Poisson integral formula to construct a univalent harmonic function onto a non-
convex domain is not at all well understood. In Section 1.3, after developing the theory
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for convex domains, we explore the example of finding harmonic maps onto regular star
domains in detail, and lead the student to further investigation.

Terminology and technology: We use the term “univalent” for one-to-one, and take
domain to mean open connected set in the complex plane. The applets used in this
chapter are:

(1) ComplexTool - used to plot the image of domains in C under complex-valued
functions.

(2) PolyTool - used to visualize the harmonic function that is the extension of
a particular kind of boundary correspondence. The user of this applet can
dynamically change the boundary correspondence and watch the harmonic
function change.

(3) StarTool - used to examine the functions that map the unit disk D onto an
n-pointed star. The user can modify the shape of the star (by changing n and
r) and the boundary correspondence (by changing p).

5.2. Schwarz-Christoffel Maps

In this section we consider conformal maps from the unit disk and the upper half-
plane onto various simply connected polygonal domains. By the Riemann Mapping
Theorem, we can map the unit disk conformally onto any simply connected domain
that is a proper subset of the complex numbers, with a mapping function that is
essentially unique.

While the Riemann Mapping Theorem tells us that we can find a univalent analytic
function to map D onto our domain, finding an actual Riemann mapping function is no
easy task. Even for a simple domain such as a square, the mapping function from the
disk cannot be expressed in terms of elementary functions. One situation however in
which this problem is relatively simple is in mapping a region bounded by a circle or line
in the complex plane to another such region, using fractional linear transformations.
For this problem, we only need to pick three points on the bounding line or circle in the
domain, and map them (in order) to three arbitrarily chosen points on the boundary
of the target region (see for example [10], [15], [19], or [20]). This selection of three
pairs of points determines the fractional linear transformation completely, and works
for example, in finding a conformal map from D onto any planar region bounded by a
line or circle.

Exercise 5.1. Show that the fractional linear transformation z′ = φ (z) = i1+z
1−z

maps the unit disk to the upper half-plane by finding the images of three boundary
points. Then show that its inverse function φ−1(z′) = z = z′−i

z′+i
maps the upper half-

plane to the unit disk. Try it out!

How can a mapping function be found in the case when the target region is more
complicated? This question is relevant to solving the heat equation or the study of
fluid flows, as discussed in Chapter 3.
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The Schwarz-Christoffel transformation frequently enables us to find a function
mapping onto a polygonal domain. In most texts the formula is presented as a mapping
from the upper half-plane H onto the target polygon. We now develop this formula -
for a more thorough treatment we refer the reader to [13], [3] and [16]. Suppose our
target polygon has interior angles αkπ and exterior angles βkπ, where αk +βk = 1 and
αk > 0. The exterior angle measures the angle through which a bug, traversing the
polygon in the counterclockwise direction, would turn at each vertex. This angle could
be positive or negative, following the usual convention in mathematics that a counter-
clockwise rotation is positive while a clockwise rotation is negative. For example, in
Figure 5.1 the angle marked by α2π is 3π

2
, so α2 = 3/2. We can see from α2 + β2 = 1

that β2 = −1/2, which coincides with the description of β2π as a clockwise turn on the
boundary. We can also obtain the exterior angle by extending one side of the polygon,
and then seeing through what angle you would rotate that side to get to the next
side of the polygon, as shown in the figure. For a simple closed polygon (that is, one
with no self-intersections), it is always possible to describe the interior and exterior
angles using coefficients αk and βk as described. As a final note about terminology, we
describe a vertex such as the one described with β1 in Figure 5.1 as a convex corner
and the one described with β2 as a non-convex corner.

1

β2π = −π
2

α2π = 3π
2

α1π

β1π

Figure 5.1. A sample polygon with both a convex and a non-convex corner

The Schwarz-Christoffel formula for the half-plane H to the polygon with exterior
angles described by coefficients βk as above is

(67) f(z) = A1

∫ z

0

1

(w − x1)β1(w − x2)β2 · · · (w − xn)βn
dw + A2, z ∈ H.

The real values xi are preimages of the n vertices of the polygon, which we will refer
to from now on as prevertices. Different choices of the constants A1 and A2 rotate,
scale and/or translate the target n-gon.

In Equation 67, we use w as the variable of integration, and the limits of integration
are chosen to make the definite integral into a function of z. The (abitrary) choice of
0 as a fixed point might have to be altered if it corresponds to a point of discontinuity
of the integrand.
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Exercise 5.2. You may be familiar with the sine and arcsine functions on the
complex plane. Verify that the Schwarz-Christoffel mapping of H onto the infinite half
strip described by |Re(z)| < π

2
and Im(z) > 0 is given by the arcsine function. Use

the prevertices x1 = −1, x2 = 1 in formula 67. Try it out!

We can observe that the angles at the vertices are represented in the formula, but
nowhere do we see an accomodation for the side-lengths of the target polygon. In fact
the side-lengths are influenced by the choice of prevertices xi, but in a nonlinear and
non-obvious way.

In the following example, we will apply the Schwarz-Christoffel formula to map
the upper half-plane onto a rectangle. We will make a somewhat arbitrary choice of
prevertices, and then evaluate the resulting integral to determine the target rectangle.
In computing the integral, we come across a first example of a special function, and
find that we need to learn some of the basics of elliptic integrals. We will find that just
as the prevertices were arbitrarily chosen, so are the sidelengths of our target rectangle.

Example 5.3. In this example, we map the upper half-plane H onto a rectangle.
We will choose the prevertices x1 = −3, x2 = −1, x3 = 1, and x4 = 3. Since our target
image is a rectangle, all of the exterior angles are π/2, so each βi = 1/2. Using equation
67, we find that

f(z) = A1

∫ z

0

1

(w − 1)1/2 (w − 3)1/2 (w + 1)1/2 (w + 3)1/2
dw + A2, z ∈ H.

The constant A1 allows us to scale and rotate the image of H, and A2 allows for a
translation. By chosing A1 = 1 and A2 = 0 we simplify to

(68) f(z) =

∫ z

0

1√
(w2 − 1) (w2 − 9)

dw.

This choice of constants does not affect the aspect ratio (ratio of adjacent sides)
of the resulting rectangle. However the integral cannot be evaluated using techniques
in standard calculus texts. Instead it is a special function known as an elliptic integral
(of the first kind, with parameter k = 1

3
).

Definition 5.4. An elliptic integral of the first kind is an integral of the form

F (φ, k) =

∫ sinφ

0

1√
(1− w2)(1− k2w2)

dw.

An alternate form is F (φ, k) =
∫ φ

0
1√

1−k2 sin2 θ
dθ.

The two integrals in Definition 5.4 are identical after the change of variables
w = sin θ, dw = cos θdθ =

√
1− w2dθ which connects them. (Technology note: The

computer algebra system Mathematica uses the alternate form, representing the inte-
gral by EllipticF[φ,m], where m = k2.)
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Exercise 5.5. Carry out the change of variables w = sin θ, dw = cos θdθ =√
1− w2dθ to show that

F (φ, k) =

∫ sinφ

0

1√
(1− w2)(1− k2w2)

dw =

∫ φ

0

1√
1− k2 sin2 θ

dθ.

Try it out!

Returning to our integral from Equation 68, we now work on rewriting it so that
we may recognize it as an elliptic integral of the first kind.

f(z) =

∫ z

0

1√
(w2 − 1) (w2 − 9)

dw

=

∫ z

0

1√
(w2 − 1)

(
w2 − 1

1/9

)dw
=

∫ z

0

1√
1

1/9

1√
(w2 − 1)

(
1
9
w2 − 1

)dw
=

1

3

∫ z

0

1√
(w2 − 1)

(
1
9
w2 − 1

)dw
=

1

3

∫ z

0

1√
(1− w2)

(
1− 1

9
w2
)dw

=
1

3
F (arcsin z,

1

3
).

As we will see, our initial choice for the prevertices (−3,−1, 1, 3) directly impacts
the aspect ratio of the rectangle.

Exercise 5.6. Follow these steps to determine the aspect ratio of the rectangle
that is the image of H under the function

f(z) =
1

3
F (arcsin z,

1

3
).

(1) Explain why the integral

K1 =

∫ 1

0

1√
(1− w2)

(
1− 1

9
w2
)dw

must be a real number (hint: use geometry of the integrand). Conclude that

f(1) =
1

3
F

(
arcsin 1,

1

3

)
=

1

3
F

(
π/2,

1

3

)
= K1/3.
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By symmetry, show that f(−1) = −K1/3. Thus the length of one side of the
rectangle is 2|K1|/3.

(2) Determine that since f(3) is the next vertex of the target rectangle (moving
counterclockwise), and f(3) = f(1) + iK2 where K2 is some real constant.
Combine this with the fact that

f(3) =
1

3
F

(
arcsin 3,

1

3

)
to show that iK2 = 1

3

(
F (arcsin 3, 1

3
)− F (π/2, 1

3
)
)
. The choice of sign for

K2 could be either positive or negative, depending on our choice of
√
−1.

For consistency with our choice of angles, K2 should be positive (note that
Mathematica uses the “wrong” branch of the square root for this function on
the real axis).

(3) Combine the findings above to determine that the aspect ratio of the rectangle
is

2F
(
π/2, 1

3

)
F
(
arcsin 3, 1

3

)
− F

(
π/2, 1

3

) ≈ 1.279...

Figure 5.2. Portion of upper half-plane (left) and portion of target
rectangle (right) to which it maps under the function of Exercise 5.3.

The mapping for Example 5.3 is illustrated in Figure 5.2. Only a portion of the
upper half-plane and its image are shown. This explains why the target rectangle is
incompletely filled in the upper central area. However we can see that the aspect ratio
is at least approximately the same as the one we calculated.

Small Project 5.7. Rework Example 5.3 for a more general situation. Use the
prevertices x1 = −λ, x2 = −1, x3 = 1, and x4 = λ, where λ > 1. You can find
an equation involving λ as a variable that, chosen correctly, would force the target
rectangle to be a square. To make the target rectangle a square, you find that λ
is part of an equation that cannot be explicitly solved, and must be approximated
numerically. This is a standard problem in some introductory complex analysis books
(see for instance example 22 of section 14, [19]).

One observation we can make based on this example is that while it is straight-
forward to write down a mapping function that has the correct angles, there is no

327



simple way to prescribe the side-lengths. Also, there are only a few rare cases when
our integral can be expressed in terms of elementary functions, and in general it is not
easy to evaluate. In order to find and evaluate specific Schwarz-Christoffel mappings,
it is usually helpful to use symmetry of the target polygon (and of the prevertices) to
simplify the computations.

A further simplification to the Schwarz-Christoffel formula that is frequently em-
ployed is to set one of the prevertices to be ∞, which effectively removes one factor
from the denominator of the Schwarz-Christoffel formula. An example where this
simplification is helpful is in mapping onto a triangle.

We note here that there is no guarantee that the Schwarz-Christoffel formula will
result in a univalent function (see [9]). The only thing we can say for sure is that a map
from the upper half plane to a simply connected polygonal domain that is conformal
MUST take the form of equation 67 for some choice of constants and prevertices (for
more detail, see [3]).

In Exercise 5.6, we made use of symmetry by choosing the prevertices to be ±1 and
±3. This symmetry simplified our calculations of the rectangle’s vertices. However we
unable to easily find a mapping onto a square. In mapping onto a square, or onto
any regular polygon, it makes sense to adapt the Schwarz-Christoffel formula to map
the unit disk to the polygon, using symmetrically placed points on the unit circle in
place of the xi in our existing formula. This can be accomplished by precomposing
our mapping function found with Equation 67 with a Möbius transformation from the
unit disk to the upper half-plane discussed in Exercise 5.1.

In addition to the problem of prescibing the lengths of the sides of the target poly-
gon, a further problem arises with this approach for target polygons more complicated
than a rectangle. Typically we will produce an integral that cannot be evaluated,
even with special functions. These two issues are nicely resolved if we instead obtain
a Schwarz-Christoffel formula that maps the unit disk directly to the target polygon
and with the preimages of the vertices falling on the unit circle. These points can
be chosen, for example, to be roots of unity to give some symmetry in the integral.
To obtain this formula we carry out a change of variables that maps the disk to the
upper half-plane, using the map defined in Exercise 5.1. Interestingly, the transformed
integral formula is of exactly the same form.

Exercise 5.8. Set w = φ (z) = i1+z
1−z which maps the disk in the z plane to the

upper half w-plane (see Exercise 5.1). Show that the Schwarz-Christoffel formula
retains the same form as equation 67. Try it out!

The Schwarz-Christoffel map that we will use on the unit disk is then

f(z) = C1

∫ z

0

1

(w − ζ1)β1(w − ζ2)β2 · · · (w − ζn)βn
dw + C2, z ∈ D,

where βiπ is the exterior angle of the ith vertex of the target polygon, and the pre-
images ζi of the vertices are on the unit circle. Here we use ζi instead of xi to emphasize
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that the prevertices are not on the real axis. As with Equation 67, the complex
constants C1 and C2 with C1 6= 0 rotate, resize and translate the polygon.

With our original Schwarz-Christoffel formula from the upper half plane, it is not
at all obvious how we could obtain a map onto a regular polygon. However, we can
exploit the symmetries of the roots of unity by choosing ζi to be the symmetrically
placed nth roots of unity corresponding to symmetrically placed vertices in the target
polygon. Consequently, all side lengths of the target polygon will be equal.

Example 5.9. We obtain the Schwarz-Christoffel map onto a regular n-gon. The
exterior angles of a regular n-gon are 2π/n, so βi = 2/n.∫ z

0

1

(w − ζ1)β1(w − ζ2)β2 · · · (w − ζn)βn
dw =

∫ z

0

1

[(w − ζ1)(w − ζ2) · · · (w − ζn)]2/n
dw

Suppose that the ζi are the nth roots of unity. Now we can use the fact that

n∏
i=1

(w − ζi) = wn − 1

to simplify to
∫ z

0
1

(wn−1)2/n
dw. By factoring out (−1)2/n we can adjust the multiplicative

constant and chose our mapping function

(69) f (z) = (−1)−2/n

∫ z

0

1

(wn − 1)2/n
dw =

∫ z

0

1

(1− wn)2/n
dw.

Here f has been defined from the Schwarz-Christoffel formula with choices of constant

C1 = (−1)−2/n (which rotates the figure by 4π/n radians) and C2 = 0. This last
formula cannot be evaluated using the usual methods from calculus, but can be readily
evaluated using hypergeometric functions.

5.2.1. Basic Facts about Hypergeometric Functions. The integral in the
last example cannot be expressed in terms of elementary functions, but can be easily
evaluated and plotted using a computer algebra system by using some basic facts
about some special power series known as hypergeometric functions. Hypergeometric
functions, besides their many other applications, can be used to evaluate the integrals
obtained above. A geometric series is a power series in which ratios of successive terms
are constant. Generalizing this, for a hypergeometric series ratios of successive terms
are rational functions of the index rather than just constants. Here we will make use of
the most widely utilized hypergeometric functions–the so-called “two F ones,” where
the rational function has numerator and denominator of the second order.

Definition 5.10. The hypergeometric function 2F1(a, b; c; z) is the power series

2F1 (a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,
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where a, b and c ∈ C and

(x)n = x(x+ 1) · · · (x+ n− 1)

is the shifted factorial, or Pochhammer symbol.

Exercise 5.11. Use simple algebra to check that (x)n+1 / (x)n = x + n. Try it
out!

If we compute the ratio of two successive terms in the geometric series
∑∞

n=0 r
nzn

we obtain simply the ratio r times z. In the next exercise we carry out the same
computation for a hypergeometric series.

Exercise 5.12. Show that the ratio of two successive terms in the series 2F1 (a, b; c; z)
is

(a+ n)(b+ n)z

(c+ n)(n+ 1)
.

Try it out!

The formula obtained in this last exercise motivates the use of the term “hyper-
geometric.” Whereas for a geometric series the ratio of successive terms is a single
constant times z, for a hypergeometric function this ratio is a rational function of n,
multiplied by z.

Exercise 5.13. Apply the ratio test to show that we get convergence of the hy-
pergeometric function 2F1 (a, b; c; z) on compact subsets of the unit disk. Try it out!

Any function which is useful or widely applicable typically earns the status of
“special function.” A number of well known special functions can be written as hyper-
geometric series. For example

log
1 + z

1− z = 2z 2F1

(
1/2, 1; 3/2; z2

)
,

(1− z)−a = 2F1 (a, b; b; z) , and

arcsin z = z 2F1

(
1/2, 1/2; 1; z2

)
.

The functions sin(z) and cos(z) themselves can each be obtained as limiting cases of a
“two F one” series.

Now we consider another example that involves a 2F1 hypergeometric series, z 2F1(1
2
, 1

4
; 5

4
; z4).

We will see shortly that this function is a Schwarz-Christoffel transformation that maps
the unit disk onto a square.

Exercise 5.14. Use Definition 5.10 to find the first several terms in the series
of z 2F1(1

2
, 1

4
; 5

4
; z4). The following table gives the first several values of the necessary

Pochhammer symbols. If you graph your result using ComplexTool, you should get a
picture similar to Figure 5.3.
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n (1/2)n (1/4)n (5/4)n Coefficient of z4n+1

0 1 1 1 1
1 1/2 1/4 5/4 1/10
2 3/4 5/16 45/16 1/24
3 15/8 45/64 585/64 5/208
4 105/16 585/256 9945/256 35/2176
5 945/32 9945/1024 208845/1024 3/256

Try it out!

Figure 5.3. ComplexTool image of an approximation of the conformal
map (using the first 5 terms)

The rate of convergences in this example is such that even with just a few non-zero
terms of the series, we obtain a map whose image is approximately a square. We now
see how to derive the formula for a Schwarz-Christoffel map onto the square.

Definition 5.15 (Euler representation). The hypergeometric function 2F1 (a, b; c; z)
can be written in integral form as

2F1 (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt,

which is known as the Euler representation of the 2F1 function.
The symbol Γ stands for the Gamma function, defined for z in the right half plane

by

Γ(z) =

∫ ∞
0

tz−1e−tdt.

The function can be extended analytically to the whole plane except for the negative
integers −1,−2,−3, . . .

Exercise 5.16. For integer values of n, the Gamma function is related to the
factorial by Γ(n) = (n − 1)!. Prove this by directly evaluating Γ(1) = 1 and then
showing that Γ(z + 1) = zΓ(z) (hint: use integration by parts). Try it out!
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Exercise 5.17. In this exercise, you will show that Definitions 5.10 and 5.15 are
equivalent.

(1) Expand the factor (1− tz)−a with the binomial theorem as a power series to
obtain

(1− tz)−a =
∞∑
n=0

(a)n
n!

tnzn.

(2) Use the formula (see [14] Theorem 7, p. 19 for a proof)

Γ (p) Γ (q) = Γ (p+ q) ·
∫ 1

0

tp−1 (1− t)q−1 dt

(where p and q have positive real parts) to show∫ 1

0

tn+b−1(1− t)c−b−1dt =
Γ (b+ n) Γ (c− b)

Γ (c+ n)
.

The integral on the right is also an important special function known as the
beta function in the variables p and q.

(3) Show

(b)n
(c)n

=
Γ (c)

Γ (b) Γ (c− b)
Γ (b+ n) Γ (c− b)

Γ (c+ n)
.

(4) Put the previous facts together to obtain the required formula. Substitute the
power series for the denominator term, and then interchange summation and
integral, to show that∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt =

Γ (b) Γ (c− b)
Γ (c)

2F1 (a, b; c; z) .

Try it out!

It takes a little work to establish the relationship of the beta function with the
Gamma function used in part (2). For an excellent exposition of this fact and an
introduction to special functions in general, see [14].

Example 5.18. For a square (a regular 4-gon), the Schwarz Christoffel map from
the unit disk is given by z 2F1(1

2
, 1

4
; 5

4
; z4). These numbers probably seem to have been

essentially “pulled from a hat,” but when we apply the Euler integral representation
we will see that these are the numbers we need (after a transformation) to evaluate
the given integral. To see this, with n = 4 in the integral representation of equation
69 we obtain ∫ z

0

1√
1− w4

dw.
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Let a = 1/4, b = 1/2, and c = 5/4. We use the Euler integral representation for

2F1 (a, b; c; z) to evaluate

2F1

(
1/2, 1/4; 5/4; z4

)
=

Γ(5/4)

Γ(1/4)Γ(1)

∫ 1

0

t−3/4(1− t)0

(1− tz4)1/2
dt

= 1/4

∫ 1

0

1

t3/4
1√

1− tz4
dt.

Now change variables by letting w4 = tz4 (so t = (w4/z4)) and 4w3dw = z4dt. Then

2F1

(
1/2, 1/4; 5/4; z4

)
= 1/4

∫ z

0

z3

w3

1√
1− w4

4w3dw

z4

=
1

z

∫ z

0

1√
1− w4

dw.

Thus

f (z) =

∫ z

0

1√
1− w4

dw = z 2F1

(
1/2, 1/4; 5/4; z4

)
.

Figure 5.4. Unit disk (left) and target square (right) to which it maps
under the function of Exercise 5.18.

Contrast the map in Figure 5.4, where the domain is the (bounded) unit disk, with
the earlier map onto a rectangle in Figure 5.2. One advantage with the disk map is
that we can see the entire mapping domain and the entire target square is filled. Note
also the rotational and reflectional symmetry obtained by using nth roots of unity on
the unit circle as prevertices.

Exercise 5.19. Show that the conformal map from the disk onto the regular n-gon
is (up to rotations, translations and scalings) given by z 2F1 (2/n, 1/n; (n+ 1) /n; zn) .
Try it out!

We describe another situation where this technique of integration can be useful, for
readers who have worked through Chapters 2 or 4. In Chapter 4, Section 4.5 discusses
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the shear construction, and in Chapter 2, Section 2.6 the shear construction and its
relationship to minimal surfaces is discussed.

Small Project 5.20. Define a non-convex 6-sided polygon P with β1 = β4 =
−1/3 and β2 = β3 = β5 = β6 = 2/3. (Draw this polygon!) Find a representation for
the Schwarz-Christoffel transformation that maps the unit disk D onto P , with the
prevertices ζi being the 6th roots of unity. It works well if ζ1 = 1 and ζ4 = −1, with
the other 6th roots of unity going in order counterclockwise around the circle. Verify
that the analytic function f(z) : P → D is given by

f(z) = z 2F1

(
2

3
,
1

6
;
7

6
; z6

)
− z3

3
2F1

(
2

3
,
1

2
;
3

2
; z6

)
.

Now, in the language of Chapter 4, let h(z)− g(z) be the function given above as

f(z) and let the dilatation ω(z) = z2. Find the harmonic function h(z) + g(z). Verify
that by using

h(z) = z 2F1

(
2

3
,
1

6
;
7

6
; z6

)
and

g(z) =
z3

3
2F1

(
2

3
,
1

2
;
3

2
; z6

)
,

it is indeed true that ω(z) = h′

g′
= z2. Use a computer algebra system to create a

picture of the image of D under the function h(z) + g(z).
Furthermore, if you have studied Chapter 2, you can find the minimal surface that

lifts from this harmonic function. You should find that it is defined by

x1 = Re

(
z 2F1

(
2

3
,
1

6
;
7

6
; z6

)
+
z3

3
2F1

(
2

3
,
1

2
;
3

2
; z6

))
x2 = Im

(
z 2F1

(
2

3
,
1

6
;
7

6
; z6

)
− z3

3
2F1

(
2

3
,
1

2
;
3

2
; z6

))
x3 = Im

(
z2

2F1

(
2

3
,
1

3
;
3

2
; z6

))
.

We now examine the conformal map onto a symmetric non-convex polygon in
the shape of a star. We intend in the next section to find harmonic maps onto the
same figure, and will find that while mappings onto polygons with convex corners are
relatively easy to construct, there is little or no supporting theory when non-convex
corners are involved.

Example 5.21. Suppose we want to map onto a (non-convex) m-pointed star, so
there are n = 2m vertices. The interior angles alternate between πα1 and πα2 where
α1 < 1 < α2 (so a “sharp point” of the star occurs at α1). Corresponding exterior
angles then alternate between a positive value β1 and a negative value β2 (assuming
we have a non-convex star).
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β  π2

α  π2

β  π1

α  π1

Figure 5.5. Interior and exterior angles of a symmetric star

Also, β1 + β2 must satisfy m (β1 + β2) = 2 so β1 + β2 = 2/m = 4/n. We use
βodd = β1 > 0 and βeven = −β2 > 0. Thus we have

∫ z

0

∏
i even

(w − ζ1)βi∏
i odd

(w − ζi)βi
dw.

Letting ζi be nth roots of unity,

n∏
i even

(z − ζi) = zm − 1 and
n∏

i odd

(z − ζi) = zm + 1,

so ∫ z

0

(wm − 1)−β2

(wm + 1)β1
dw,

where β1 + β2 = 4/n. Apart from constants chosen to expand or rotate the figure as
necessary, we obtain the mapping function

f (z) =

∫ z

0

(1− wm)−β2

(1 + wm)β1
dw

from the disk onto the star shape in Figure 5.5.
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Example 5.22. The following appears as an exercise in [13] (Chapter V). Prove
that the integral that maps the unit disk exactly onto a 5-pointed star with interior
angles alternating at π/5 and 7π/5 is given by

f(z) =

∫ z

0

(1− w5)2/5

(1 + w5)4/5
dw.

The corresponding exterior angles are 4π/5 and −2π/5, so β1 = 4/5 and β2 = −2/5.
Thus we have n = 10 and m = 5 and∫ z

0

(zm − 1)−β2

(zm + 1)β1
dz =

∫ z

0

(z5 − 1)
2/5

(z5 + 1)4/5
dz

To compute this integral we must use the Appell F1 function of two variables defined
below.

Definition 5.23. The Appell F1 function is defined by

F1 (a; b1, b2; c;x, y) =
∞∑
n=0

∞∑
m=0

(a)n+m (b1)m (b2)n
m!n! (c)n+m

xmyn,

In Mathematica one can use the command AppelF1(a,b1,b2,c,x,y). This special
function also has an integral form, just as the hypergeometric functions have the Euler
representation. We do not include a derivation here but refer the interested reader to
[2] (Chapter 9) for the integral formula

F1 (a; b1, b2; c;x, y) =
Γ (c)

Γ (a) Γ (c− a)

∫ 1

0

ua−1 (1− u)c−a−1 (1− ux)−b1 (1− uy)−b2 du.

Working in reverse we find that

F1

(
1/5; 4/5,−2/5; 6/5; z5,−z5

)
=

Γ(6/5)

Γ(1/5)Γ(1)

∫ 1

0

u−4/5 (1− u)0 (1− uz5
)−4/5 (

1 + uz5
)2/5

du

= 1/5

∫ 1

0

(1− uz5)
2/5

u4/5 (1 + uz5)4/5
du.

To obtain our Schwarz-Christoffel formula we must now change variables, letting w5 =
uz5 so 5w4dw = z5du. Then

F1

(
1/5; 4/5,−2/5; 6/5; z5,−z5

)
= 1/5

∫ z

0

z4

w4

(1− w5)
2/5

(1 + w5)4/5

5w4dw

z5

=
1

z

∫ z

0

(1− w5)
2/5

(1 + w5)4/5
dw
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Thus

f (z) =

∫ z

0

(1− w5)
2/5

(1 + w5)4/5
dw = z F1

(
1/5; 4/5,−2/5; 6/5; z5,−z5

)
and the mapping function is shown in Figure 5.6.

Figure 5.6. Image of the conformal map of the unit disk onto the 5-
pointed star

Exercise 5.24. Show that the conformal map from the disk onto the m pointed
star with exterior angle β1 > 0, and β2 = 2/m − β1 (up to rotations, translations
and scalings) is given by z F1 (1/n; β1, β2, (n+ 1) /n; zn,−zn) where F1 is the Appell
F1 function. Try it out!

5.3. The Poisson Integral Formula

While the Schwarz-Christoffel formula gives analytic and thus angle-preserving
(conformal) functions from D to any polygon, we can see that it often starts with
an integral that requires advanced mathematics to evaluate. If our goal is not nec-
essarily an analytic function, we could work with the Poisson integral formula. This
does not give us an analytic function, but instead, a harmonic function from the unit
disk to the target domain. We first recall the definition of a harmonic function.

Definition 5.25. A real-valued function u(x, y) is harmonic provided that

uxx + uyy = 0.
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A complex-valued function f(z) = f(x+ iy) = u(x, y) + iv(x, y) is harmonic if both u
and v are harmonic.

The definition of a complex-valued harmonic function does not require that the
functions u and v be harmonic conjugates, so while all analytic functions are harmonic,
a complex-valued harmonic function is not necessarily analytic. In fact, the functions
we work with for the rest of the chapter will not be analytic, and thus not conformal.

You may be familiar with the Poisson integral formula as a way of constructing a
real-valued harmonic function that satisfies certain boundary conditions. For example,
if the boundary conditions give the temperature of the boundary of a perfectly insulated
plate, then the harmonic function gives the steady-state temperature of the interior
of the plate. Another application is to find electrostatic potential given boundary
conditions. A brief summary of that procedure is given here. For more detailed
discussion, consult [15] or [20].

Theorem 5.26 (Poisson Integral Formula). Let the complex valued function f̂(eiθ)
be piecewise continuous and bounded for θ in [0, 2π] . Then the function f (z) defined
by

(70) f(z) =
1

2π

∫ 2π

0

1− |z|2
|eit − z|2 f̂(eit)dt

is the unique harmonic function in the unit disk that satisfies the boundary condition

lim
r→1

f(reiθ) = f̂(eiθ)

for all θ where f̂ is continuous.

Here, we present the proof in the special case where the boundary function f̂(eiθ)
is the real part of a function that is analytic on a disk with radius larger than 1. This
proof can be found in any standard complex analysis textbook, for example, [10] or
[15]. The interested reader may find the full result in Chapter 6 of [?] and Chapter 8
of [10].

Proof. (Special Case) First observe that Cauchy’s integral formula tells us that
if we have a function f(z) that is analytic inside and on the circle |z| = R, then, for
|z| < R,

(71) f(z) =
1

2πi

∫
|ζ|=R

f(ζ)

ζ − zdζ.

Here we are using the Greek letter zeta (ζ) as the variable of integration in the
integral. In the discussion that follows here, we will be thinking about evaluating the
function f(z) at some fixed value of z, so the variable under consideration is now ζ.
We also observe (for reasons that will become obvious in a few sentences) that for

fixed z, with |z| < 1, the function
f(ζ) z

1− ζ z is analytic in the variable ζ on and inside
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|ζ| < 1, since the denominator is non-zero. (Exercise for the reader: Think about why
the denominator is non-zero.) Thus, by the Cauchy Integral Theorem, we know that

(72)
1

2πi

∫
|ζ|=1

f(ζ) z

1− ζ z = 0.

Combining Equations 71 and 72, we see that

f(z) =
1

2πi

∫
|ζ|=1

f(ζ)

ζ − zdζ + 0

=
1

2πi

∫
|ζ|=1

(
f(ζ)

ζ − z +
f(ζ) z

1− ζ z

)
dζ

=
1

2πi

∫
|ζ|=1

1− ζ z + z(ζ − z)

(ζ − z)(1− ζ z)
f(ζ)dζ

=
1

2πi

∫
|ζ|=1

1− |z|2
(ζ − z)(1− ζ z)

f(ζ)dζ.

Now we parameterize the circle |ζ| = 1 by ζ(t) = eit, giving dζ = ieitdt and

f(z) =
1

2πi

∫ 2π

0

1− |z|2
(eit − z)(1− eit z)

f(eit)ieitdt

=
1− |z|2

2π

∫ 2π

0

1

(eit − z)eit(e−it − z)
f(eit)eitdt

=
1− |z|2

2π

∫ 2π

0

f(eit)

(eit − z)(e−it − z)
dt.

Taking the real part of both sides of the equation gives us a harmonic function (since
the real part of an analytic function is harmonic), and also yields Equation 70.

�

Exercise 5.27. Verify that the “Poisson kernel,”
1− |z|2
|eit − z|2 , can be rewritten as

Re

(
eit + z

eit − z

)
= Re

(
1 + ze−it

1− ze−it
)

. Try it out!

The integral in Equation 70 is, in general, very difficult to integrate. However, if
there is an arc on which the function f̂(eit) is constant, then the integration is easy to
do.

Exercise 5.28. Verify that
(73)
1

2π

∫ b

a

K Re

(
eit + z

eit − z

)
dt = K

b− a
2π

+
K

π
arg

(
1− ze−ib
1− ze−ia

)
=
K

π

[
arg

(
eib − z
eia − z

)
− b− a

2

]
.
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Helpful hints: Swap the order of integration and taking the real part of a function.
The algebraic identity 1+w

1−w = 1 + 2w
1−w will be helpful.

Try it out!

The beauty of the last formulation of equation (73) is that it can be visualized
geometrically. Consider the picture with eia and eib on the unit circle, and z somewhere
inside the unit circle. Then the vector from z to eia is eia − z, and the vector from z

to eib is eib− z, so that the angle between those two vectors is given by arg

(
eib − z
eia − z

)
,

as is shown if Figure 5.7.

eia
z

eib

θ

Figure 5.7. Geometric interpretation of θ = arg

(
eib − z
eia − z

)
.

Example 5.29. Assume that the unit disk is a thin insulated plate, with a tem-
perature along the boundary of 50 degrees for the top semicircle and 20 degrees along
the bottom semicircle. From physics, we know that the function which describes the
temperature within the unit disk must be a harmonic function. Use the results above
to find that harmonic function.

Solution: Apply the formula given above to the situation where a1 = 0, b1 =
π,K1 = 50 and then add it to the result where a2 = π, b2 = 2π,K2 = 20. The result is
the function f(z) = 1

2π
(70π + 60 arg

(
1+z
1−z

)
). (Notice that the 70 is 50 + 20, and that

60 = 2(50 − 20).) When z ranges across the unit disk, the function 1+z
1−z covers the

right half-plane (you can check this experimentally by graphing the function 1+z
1−z using

ComplexTool), so the argument of it is between −π/2 and π/2. This gives function
values for f(z) between 20 and 50, which makes good sense. Another way of thinking
of the solution is that it gives the average temperature ± half of the difference between
the maximum and minimum temperatures.
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Exercise 5.30. Referring to f(z) = 1
2π

(70π + 60 arg
(

1+z
1−z

)
) in the solution to

Example 5.29, find f(0), f(i/2) and f(−i/2). Do your answers make sense?

Using the result of Exercise 5.28, we can see that computing the Poisson integral
formula for a piecewise constant boundary is particularly simple. Many applications of
the Poisson integral formula come from having the boundary correspondence remain
constant on arcs of the unit circle.

Most introductory analysis books give the Poisson integral formula for real-valued
f̂(eiθ). It can also be applied to create a harmonic function for complex-valued f̂(eiθ),
but the univalence of the harmonic function is not at all apparent. Let’s first explore
what could happen if we try to use the Poisson integral formula with complex boundary
values.

Example 5.31. The simplest example of this is obtained by letting the first third
of the unit circle (that is, the arc from 0 to ei2π/3) map to 1, the next third to ei2π/3

and the last third to ei4π/3. Let’s work through the details of this integration, working
from equation (73). We compute

f(z) =
1

2π

(
(
2π

3
− 0) + 2 arg

(
1− ze−i2π/3

1− ze0

)
+ei2π/3(

4π

3
− 2π

3
) + 2ei2π/3 arg

(
1− ze−i4π/3
1− ze−i2π/3

)
+ei4π/3(2π − 4π

3
) + 2ei4π/3 arg

(
1− ze−2πi

1− ze−i4π/3
))

=
2π

3(2π)

(
1 + ei2π/3 + ei4π/3

)
+

1

π

(
arg

(
1− ze−i2π/3

1− ze0

)
+ ei2π/3 arg

(
1− ze−i4π/3
1− ze−i2π/3

)
+ ei4π/3 arg

(
1− ze−2πi

1− ze−i4π/3
))

= 0 +
1

π

(
arg

(
1− ze−i2π/3

1− z

)
+ ei2π/3 arg

(
1− ze−i4π/3
1− ze−i2π/3

)
+ ei4π/3 arg

(
1− z

1− ze−i4π/3
))

.

Figure 5.8 shows the image of the unit disk as graphed in ComplexTool. Notice that
it appears to be one-to-one on the interior of the unit disk. It certainly is not one-to-one
on the boundary! (Entering this formula into ComplexTool is a bit unwieldy, so this
function is one of the Pre-defined functions, the one called Harmonic Triangle.
We will soon use the PolyTool applet, as described on the next page, to graph other
similar functions.)

Exercise 5.32. Find a general formula that maps the unit disk harmonically to
the interior of a convex regular n-gon. Try it out!
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Figure 5.8. ComplexTool image of the harmonic function mapping to
the triangle

Small Project 5.33. Refer to Chapter 4 and its discussion of the shear construc-
tion. Find the pre-shears of the polygonal mappings in exercise 5.32. In other words,
what analytic function do you shear to get that polygonal function? A good first step
is to determine the dilatation of this function. See [4] for more details.

Exercise 5.34. For a non-convex example, consider the function that maps quar-
ters of the unit circle to the four vertices {1, i,−1, i

2
}. Verify that this function is

3i

8
+

1

π

(
arg

(
1 + iz

1− z

)
+ i arg

(
1 + z

1 + iz

)
− arg

(
1− iz
1 + z

)
+
i

2
arg

(
1− z
1− iz

))
.

When we graph this function in ComplexTool, we notice that it appears to NOT be
one-to-one. Furthermore, f(0) = 3i

8
, so that the image of D is not the interior of the

polygon. This function is another one of the Pre-defined functions in ComplexTool.
Try it out!

Figure 5.9. The PolyTool Applet

At this point, you should start using the PolyTool applet. In this applet, you
can specify which arcs of the unit circle will map to which points in the range, and
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the applet will compute and graph the harmonic function defined by extending that
boundary correspondence to a function on D. When you first open this applet, you
see a circle on the left and a blank screen on the right. You can create a harmonic
function that maps portions of the boundary of the circle to vertices of a polygon in
one of two ways. First, you can click on the unit circle in the left panel to denote an
arc endpoint, and continue choosing arc endpoints there, and then choose the target
vertices by clicking in the right graph. (Note that as you click, text boxes in between the
panels fill with information about where you clicked.) Once you have the boundary
correspondence you want, click the Graph button. Alternatively, you can click the
button that says Add to get text boxes for input. For example, to create the function
in Exercise 5.34, click Add, then fill in the first row of boxes for Arc 1: with 0 maps

to 1+0i. When you want another set of arcs, click Add again. Note that the Arc boxes
denote the starting point of the arc (i.e. for the arc from 0 to π/3, use 0 in the Arc

box). Continue filling, and when you are ready to compute the Poisson integral to get
the harmonic function, click the Graph button. Once you have a function graphed, you
can “drag” around either the arc endpoints (in the domain on the left) or the target
points (in the range on the right) and watch the function dynamically change.

Exploration 5.35. Are there ways of rearranging the boundary conditions to
make the function created in Exercise 5.34 univalent? For example, what if the bottom
half of the unit circle gets mapped to i/2, and the top half of the unit circle is divided
into thirds for the other three vertices? This isn’t univalent, but in some sense is closer
to univalent than the mapping defined in Exercise 5.34. Is there a modification to be
made so that it is univalent? Try it out!

Exercise 5.36. This is an extension of Exploration 5.35. Sheil-Small [17] proved
(by techniques other than those discussed so far) that the harmonic extension of the
boundary correspondence below maps the unit disk univalently onto the desired shape:

arc from to maps to
−i i i
i −3/5 + 4i/5 −1

−3/5 + 4i/5 −3/5− 4i/5 i/2
−3/5− 4i/5 −i 1

For this function, first convince yourself that it appears to be univalent, and then
find the function f(z). Try it out!

We will be working a lot with harmonic functions that are extensions of a piecewise
constant boundary correspondence, as in the example above. To have a framework for
future discussions, we make the following formal definition.

Definition 5.37. Let {eitk} be a partition of ∂D, where t0 < t1 < . . . < tn =

t0 + 2π. Let f̂(eit) = vk for tk−1 < t < tk. We call the harmonic extension of this step
function (as defined by the Poisson integral formula) f(z).
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Example 5.38. To better understand the definition, we demonstrate how the no-
tation in Definition 5.37 is used for the function in Exercise 5.36. Since the arc from
−i to i can be thought of as the arc along the unit circle from e−iπ/2 to e−iπ/2, we say
that t0 = −π/2 and t1 = π/2. These points map to the vertex at i, so v1 = i. The next
arc set is a little more difficult, because we need to find the angle t2 that goes with
the point in the plane z = −3

5
+ 4

5
i = eit2 . Unfortunately, we can only get a numeri-

cal estimate of the angle, found by π + arctan
(

4/5
−3/5

)
= π + arctan (−4/3) ≈ 2.2143.

(We add π because the output of arctangent is always in the first or fourth quadrant,
while the angle in question is in the second quadrant.) Thus we have t2 ≈ 2.2143
and v2 = −1. Continuing this process, we have t3 ≈ 4.0689 and v3 = i/2. Then we
finish with t4 = 3π/2 and v4 = 1. Notice that as in the definition, t4 = t0 + 2π. Then
the function f(z) from Definition 5.37 is the harmonic function that appears to be
univalent when graphed in PolyTool.

Exercise 5.39. Combine the result of Exercise 73 (on page 339) with Definition
5.37 to show that the function f(z) in Definition 5.37 can be written

f(z) = v1

(
t1 − t0

2π

)
+
v1

π
arg

(
1− ze−it1
1− ze−it0

)
+v2

(
t2 − t1

2π

)
+
v1

π
arg

(
1− ze−it2
1− ze−it1

)
+ . . .+ vn

(
tn − tn−1

2π

)
+
vn
π

arg

(
1− ze−itn

1− ze−itn−1

)
.

Try it out!
Since the Poisson integral formula gives rise to a harmonic function, we must learn

some of the basics of the theory of harmonic functions before proceeding too far.

5.4. Harmonic Function Theory

Chapter 4 gives a detailed explanation of harmonic functions, as does [5]. Much of
that material will be helpful for our future investigations, so we repeat it here.

5.4.1. The Basics. Any harmonic function f can be written as f = h+ g, where

h and g are analytic functions. The analytic dilatation ω(z) = g′(z)
h′(z)

is, in some sense, a

measure of how much the harmonic function does not preserve angles. A dilatation of
ω(z) ≡ 0 means that the function is analytic, so must be conformal. A dilatation with
modulus near 1 indicates that the function distorts angles greatly. (For more intuition
about the dilatation, read Section 4.6 of Chapter 4.) A result of Lewy states that a
harmonic function has nonzero Jacobian (denoted Jf (z) = |h′|2 − |g′|2) if it is locally
univalent. This result is in line with our understanding of the relationship between
local univalence and a nonvanishing derivative for analytic functions.
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Theorem 5.40 (Lewy’s Theorem). For a harmonic function f defined on a domain
Ω, if f locally univalent in Ω, then Jf (z) 6= 0 for all z ∈ Ω.

Note that this is equivalent to Lewy’s Theorem in Chapter 4.
A nice consequence of Lewy’s Theorem is that if a function is locally univalent in

Ω, then its analytic dilatation either satisfies |ω(z)| < 1 for all z ∈ Ω, or |ω(z)| > 1
for all z ∈ Ω. In our work, we will only study functions that are locally univalent
in some domain Ω and satisfy |ω(z)| < 1 for all z ∈ Ω. These functions are called
sense-preserving because they preserve the orientation of curves in Ω.

Exercise 5.41. Verify that the condition that Jf (z) 6= 0 is equivalent to |ω(z)| 6= 1,
as long as h′(z) 6= 0. Conclude that a function that is locally univalent and sense-
preserving must have Jf (z) > 0 and |ω(z)| < 1. Try it out!

Of particular interest in this setting is determining how to split up the argument
function (which is harmonic and sense-preserving) into h and g.

Exercise 5.42. Show that the function f(z) = K arg(z) has canonical decompo-

sition h(z) =
1

2i
K log(z) and g(z) =

1

2i
K log(z). Try it out!

Another consequence of the canonical decomposition of a harmonic function is that
we can write the analytic functions h and g defined in some domain Ω in terms of their
power series expansions, centered at some z0 ∈ Ω, as

(74) f(z) = a0 +
∞∑
k=n

ak(z − z0)k + b0 +
∞∑
k=m

bk(z − z0)k.

If f is sense-preserving, then we necessarily have that either m > n or m = n with
|bn| < |an|. In either case, when f is represented by Equation 74, we say that f has a
zero of order n at z0.

Exercise 5.43. In this exercise, we prove that the zeros of a sense-preserving
harmonic function are isolated.

(a) Assume that f(z) is a sense-preserving locally univalent function with series
expansion as given in Equation 74. Show that if f(z0) = 0, there exists a
positive δ and a function ψ such that, for 0 < |z − z0| < δ we can write

(75) f(z) = h(z) + g(z) = an(z − z0)n(1 + ψ(z))

where

ψ(z) =
an+1

an
(z − z0) +

an+2

an
(z − z0)2 + · · ·+ bm(z − z0)m

1

an(z − z0)n
+ · · · .

(b) Show that part (a) implies that |ψ(z)| < 1 for z sufficiently close to z0, since
m ≥ n and |bn/an| < 1 if m = n.

(c) Show that part (b) implies that the zeros of a sense-preserving harmonic func-
tion are isolated, since f(z) 6= 0 near z0 (except, of course, at z0).
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Try it out!

5.4.2. The Argument Principle.
5.4.2.1. Analytic Argument Principle. The Argument Principle for analytic func-

tions gives a very nice way to describe the number of zeros and poles inside a contour.
We take time to explore this topic, even though it is in many introductory complex
analysis courses, to emphasize the geometric nature of the result. We first provide a
formal definition of a common phrase, the winding number of the image of a contour
about the origin.

Definition 5.44. The winding number of the image under f(z) of a simple closed
contour Γ about the origin is the net change in argument of f(z) as z traverses
Γ in the positive (counterclockwise) direction, divided by 2π. It can be denoted by
1

2π
∆Γ arg f(z).

To explore the relationship between the winding number of the image of a contour
about the origin and the number of zeros and poles contained within that contour, do
the following exploration.

Exploration 5.45. Open ComplexTool. Change the Interior circles to 1 and
the Rays to 0. This will graph just the boundary of the circle of interest. As you
graph the following functions, examine the image of the circle “winds around,” or
encloses, the origin. Count how many times the image of the circle winds around the
origin, making sure that you count the counterclockwise direction as positive and the
clockwise direction as negative. If the image of the circle winds around the origin once,
you know that there must be a zero of f(z) inside that circle. (Think about this last
sentence and make sure you understand it.)

• Graph f(z) = z2, using a circle of radius 1. Use the “Sketch” button and trace
around the circle in the domain to get a good feeling for how many times its
image winds around the origin. You should already know the answer. (Any
other radius will work too. Why is that?)
• Graph f(z) = z(z−0.3). Use circles of radius 0.2, 0.3 and 0.5. (You may have

to zoom in on the image of the circle of radius 0.2 to really understand what
it is doing.) If you want, you may check the Vary radius checkbox and use
the slider to change the radius of the circle.
• Graph f(z) = z4 − 6z + 3. Use circles of radius 0.9, 1.5, 1.7, and 2.

• Graph f(z) = z4−6z+3
z−1

, using circles of radius 0.9 and 1.5.

• Graph f(z) = z4−6z+3
(z−1)2

, using circles of radius 0.9, 1.5 and 2.

• Go back through the previous 3 items, now changing the function while keeping
the radius fixed.
• For all of the previous functions, find the locations of all of the zeros and poles,

paying particular attention to how far they are from the origin.
• Make up your own function and do some more experiments.
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Based on the explorations above, what is your connection between the winding number
of the image of a circle about the origin and the number of zeros and poles inside the
circle?

Try it out!

Theorem 5.46 (Argument Principle for Analytic Functions). Let C be a simple
closed contour lying entirely within a domain D. Suppose f is analytic in D except at
a finite number of poles inside C and that f(z) 6= 0 on C. Then

1

2πi

∮
C

f ′(z)

f(z)
dz = N0 −Np,

where N0 is the total number of zeros of f inside C and Np is the total number of
poles of f inside C. In determining N0 and Np, zeros and poles are counted according
to their order or multiplicity.

z2
z1 0

Figure 5.10. A path around a branch cut

Before proving Theorem 5.46, we explore the connection between the winding num-

ber and the integral
1

2πi

∮
C

f ′(z)

f(z)
dz. To see this connection, we start with a related

integral,
∫ z2
z1

f ′(z)
f(z)

dz, where z1 and z2 are points very close to each other, but lying on

opposite sides of a branch cut of log f(z), and we take a “counterclockwise” path along
C from z1 to z2. (See Figure 5.10.) Now we do the following computation:∫ z2

z1

f ′(z)

f(z)
dz = log f(z)|z2z1

= ln |f(z2)| − ln |f(z1)|+ i(arg(f(z2))− arg(f(z1))).

When we take the limit as z1 → z2, we get that ln |f(z2)| − ln |f(z1)| → 0 and
i(arg(f(z2))− arg(f(z1)))→ 2πi · (winding number). (Think carefully about this last
statement and make sure you understand it.)
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Proof. The proof of the Argument Principle relies on the Cauchy integral formula
and deformation of contours. Take a moment to review these important concepts. We
begin by deforming the contour C to a series of smaller contours around the isolated

zeros and poles of f . If there are no zeros or poles, then f ′(z)
f(z)

is analytic, so the integral

is zero, as desired. We then analyze the zeros and poles individually, and add the
results together to get the desired conclusion. More formally, when f has zeros or
poles inside C, they must be isolated, and because f is analytic on C, there are only a
finite number of distinct zeros or poles inside C. Denote the zeros and poles by zj, for
j = 1, 2, . . . , n. Let γj be a circle of radius δ > 0 centered at zj, where δ is chosen small
enough that the circles γj all lie in D and do not meet each other. Join each circle γj
to C by a Jordan arc λj in D. Consider the closed path Γ formed by moving around C
in the positive (counterclockwise) direction while making a detour along each λj to γj,
running once around this circle in the clockwise (negative) direction, then returning
along λj to C. See Figure 5.11.

C

zjγ j

λ j

Figure 5.11. The contour Γ

This curve Γ contains no zeros or poles of f , so ∆Γ arg f(z) =
1

2πi

∮
Γ

f ′(z)

f(z)
dz = 0

by the argument above. When considering the total change in argument along Γ of
f(z), the contributions of the arcs λj along Γ cancel out, so that

∆C arg f(z) =
n∑
j=1

∆γj arg f(z),

where each of the circles γj is now traversed in the positive (counterclockwise) direction.
Thus now we may consider each individual γj and sum the results.

Suppose that f has a zero of order n at z = zj. Then f(z) = (z− zj)nfn(z), where
fn(z) is an analytic function satisfying fn(zj) 6= 0. (If you can’t remember why this is
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true, look in any standard introductory complex analysis book.) Then

f ′(z) = n(z − zj)n−1fn(z) + (z − zj)nf ′n(z)

and

f ′(z)

f(z)
=

n(z − zj)n−1fn(z) + (z − zj)nf ′n(z)

(z − zj)nfn(z)

=
n

z − zj
+
f ′n(z)

fn(z)
.

Now we note that when we integrate the above expression along γj, we get n(2πi) + 0,

because f ′n(z)
fn(z)

is analytic inside the contour.

Now suppose that f has a pole of order m at z = zk. This means that f can be
rewritten as f(z) = (z−zk)−mfm(z), where fm is analytic an nonzero at z = zk. Then,
as previously, we have

f ′(z)

f(z)
=
−m(z − zk)−m−1fm(z) + (z − zk)−mf ′m(z)

(z − zk)−mfm(z)

=
−m
z − zk

+
f ′m(z)

fm(z)
.

Once again, when we integrate the above expression along γk, we get −m(2πi) + 0.
Summing over j = 1, 2, . . . n gives us the integral over Γ and the desired result.

�

5.4.2.2. Argument Principle for Harmonic Functions. There are many versions of
the argument principle for harmonic functions. We only need the simple proof pre-
sented in this section, developed by Duren, Hengartner, and Laugesen ([6]).

Theorem 5.47 (Argument Principle for Harmonic Functions). Let D be a Jordan
domain with boundary C. Suppose f be a sense-preserving harmonic function on D,
continuous in D and f(z) 6= 0 on C. Then ∆C arg f(z) = 2πN , where N is the total
number of zeros of f(z) in D, counted according to multiplicity.

Proof. First, we suppose that f has no zeros in D. This means that N = 0 and
the origin is not an element of f(D ∪ C). A fact from topology says that in this case,
∆C arg f(z) = 0, and the theorem is proved. We will prove this fact. Let φ be a
homeomorphism of the closed unit square S onto D ∪ C with the restriction of φ to
the boundary, φ̂ : ∂S → C, also a homeomorphism. See Figure 5.12.

The composition F = f ◦ φ is a continuous mapping of S onto the plane with
no zeros, and we want to prove that ∆∂S argF (z) = 0. Begin by subdividing S into
finitely many small squares Sj so that on each Sj, the argument of F varies by at
most π/2. Then ∆∂Sj argF (z) = 0 (since F (Sj) cannot enclose the origin). Now when
we consider ∆∂S argF (z), it is the sum

∑
j ∆∂Sj argF (z) because the contributions to
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S

F

f
φ D     C

Figure 5.12. The composition of f and φ.

the sum from the boundaries of each Sj cancel out, except where the boundary of Sj
agrees with the boundary of S. Thus ∆∂S argF (z) = 0, as desired.

Now consider the case where f does have zeros in D. Because the zeros are isolated
(as proven in Exercise 5.43), and because f is not zero on C, there are only a finite
number of distinct zeros in D. We proceed in a manner similar to the proof of the
analytic argument principle, and, denote the zeros by zj, for j = 1, 2, . . . , n. Let γj be
a circle of radius δ > 0 centered at zj, where δ is chosen so small that the circles γj all
lie in D and do not meet each other. Join each circle γj to C by a Jordan arc λj in D.
Consider the closed path Γ formed by moving around C in the positive direction while
making a detour along each λj to γj, running once around this circle in the clockwise
(negative) direction, then returning along λj to C. (See Figure 5.11 on page 348.)
This curve Γ contains no zeros of f , so ∆Γ argF (z) = 0 by the first case in this proof.
When considering the total change in argument along Γ of f(z), the contributions of
the arcs λj along Γ cancel out, so that

∆C arg f(z) =
n∑
j=1

∆γj arg f(z),

where each of the circles γj is now traversed in the positive (counterclockwise) direction.
Thus now we may consider each individual γj and sum the results.

Now suppose that f has a zero of order n at a point z0. Then, as observed in
Exercise 5.43 on page 345, f can be locally written as

f(z) = an(z − z0)n(1 + ψ(z))

where an 6= 0 and |ψ(z)| < 1 on a sufficiently small circle γ defined by |z − z0| = δ.
This shows that

(76) ∆γ arg f(z) = n∆γ arg(z − z0) + ∆γ arg(1 + ψ(z)) = 2πn.
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Therefore, if f has zeros of order nj at the points zj, the conclusion is that

∆C arg f(z) =
n∑
j=1

∆γj arg f(z) = 2π
n∑
j=1

nj = 2πN,

and the theorem is proved.
�

Exercise 5.48. Justify why ∆γ arg(1 + ψ(z)) = 0 in Equation 76. Try it out!

For the next section, we shift our focus back to the polygonal maps defined in
Section 5.3. We will be using the Argument Principle for Harmonic Functions in the
proof of the Rado-Kneser-Choquet Theorem.

5.5. Rado-Kneser-Choquet Theorem

As you examine the image of the unit disk using the examples in Section 5.3,
you may notice that some of the functions seem to be one-to-one on the interior of
the domain, while others do not seem to be univalent. Look again at the examples,
and compare functions which map to convex domains versus functions that map to
non-convex domains.

Exploration 5.49. Make a conjecture about when functions are one-to-one, using
the exercises from Section 5.3 as a springboard. Do this before reading the Rado-
Kneser-Choquet Theorem! Try it out!

In general, we completely understand the behavior of harmonic extensions (as de-
fined in Definition 5.37) that map to convex regions:

Theorem 5.50 (Rado-Kneser-Choquet Theorem). Let Ω be a subset of C that

is a bounded convex domain whose boundary is a Jordan curve Γ. Let f̂ map ∂D
continuously onto Γ and suppose that f̂(eit) runs once around Γ monotonically as eit

runs around ∂D. Then the harmonic extension given in the Poisson integral formula
is univalent in D and defines a harmonic mapping of D onto Ω.

For the proof of this important theorem, we use the following lemma.

Lemma 5.51. Let ψ be a real-valued function harmonic in D and continuous in D.
Suppose ψ has the property that, after a rotation of coordinates, ψ(eit)− ψ(e−it) ≥ 0
on the interval [0, π], with strict inequality ψ(eit) − ψ(e−it) > 0 on some subinterval
[a, b] with 0 ≤ a < b ≤ π. Then ψ has no critical points in D.

The condition on ψ seems a bit mysterious at first, and so we should discuss it. One
kind of function for which this property holds is a ψ that is at most bivalent on ∂D.
What does “at most bivalent” mean? We know that univalent means that a function is
one-to-one. Bivalent means that a function is two-to-one, or that there may be z1 6= z2

such that f(z1) = f(z2), but that if f(z1) = f(z2) = f(z3), then at least 2 of z1, z2, z3
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must be equal. Alternatively, another kind of function ψ described in Lemma 5.51 is
one that is continuous on ∂D where ψ(eit) rises from a minimum at e−iα to a maximum
at eiα, then decreases again to its minimum at e−iα as eit runs around the unit circle,
without having any other local extrema, but allowing arcs of constancy. See Figure
5.13. 1

ψ(eit)

−π −α α π
t

Figure 5.13. Boundary condition of one possible ψ satisfying the hy-
potheses of Lemma 5.51.

Proof of Lemma 5.51. To show that ψ has no critical points in D, we must
show that ∂ψ

∂z
6= 0 in D. This is equivalent to saying that

1

2

(
∂ψ

∂x
− i∂ψ

∂y

)
6= 0.

At this point, we will simplify the proof by simply proving that ψz(0) 6= 0, and claim
that will be sufficient. Indeed, if z0 is some other point in D, consider the function
ϕ(z) = z0−z

1− z0z
that is a conformal self-map of D with ϕ(0) = z0, and consider the

composition F (ζ) = ψ(ϕ(ζ)). Observe that F is harmonic in D, continuous in D, and
satisfies the same condition about F (eit)−F (e−it) as ψ does. Applying the chain rule
to F (ζ) gives that Fζ(ζ) = ψz(ϕ(ζ))ϕ′(ζ), since ϕ is analytic and thus has ϕ ζ = 0.
(In general, the chain rule is more complicated for harmonic functions. Here, since ϕ
is analytic, the chain rule takes its familiar form.) Plugging in 0 for ζ gives Fζ(0) =
ψz(z0)ϕ′(0), implying that if Fζ(0) = 0 then also ψζ(z0) = 0. Thus when we have
proven that ψz(0) 6= 0, we will be able to generalize to ψz(z0) 6= 0 for all z0 in D.
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Now we use the Poisson integral formula to prove that ψz(0) 6= 0. Substituting in

ψ (or ψ̂(eit) = limr→1 ψ(reit) on ∂D) gives

ψ(z) =
1

2π

∫ 2π

0

1− |z|2
|eit − z|2 ψ̂(eit)dt =

1

2π

∫ 2π

0

1− z z
(eit − z)(e−it − z)

ψ̂(eit)dt.

When we differentiate both sides with respect to z, the integral depends only on t, so
we are just left differentiating the integrand. Doing this, we find

∂

∂z

(
ψ̂(eit)

1− z z
(eit − z)(e−it − z)

)
=

ψ̂(eit)

e−it − z

∂

∂z

(
1− z z
eit − z

)
=

(
ψ̂(eit)

e−it − z

)
·
(
eit(e−it − z)

(eit − z)2

)
= ψ̂(eit)

(
eit

(eit − z)2

)
,

leading to the conclusion that

ψz(0) =
1

2π

∫ 2π

0

ψ̂(eit)e−itdt.

From the hypotheses of the lemma, we know that there is some t ∈ (0, π) such that
ψ(eit)− ψ(e−it) > 0. Thus

Imψz(0) = Im

(
1

2π

∫ 2π

0

ψ̂(eit)e−itdt

)
= − 1

2π

∫ 2π

0

ψ̂(eit) sin(t)dt

= − 1

2π

(∫ π

0

ψ̂(eit) sin(t)dt+

∫ 0

−π
ψ̂(eit) sin(t)dt

)
since ψ̂ is periodic

= − 1

2π

(∫ π

0

ψ̂(eit) sin(t)dt−
∫ π

0

ψ̂(e−it) sin(t)dt

)
= − 1

2π

∫ π

0

(ψ̂(eit)− ψ̂(e−it)) sin(t)dt < 0.

The last inequality relies on the fact that sin(t) is non-negative on the interval [0, π].
We have now shown that Imψz(0) 6= 0, thus proving the lemma.

�

Proof of Theorem 5.50. Without loss of generality, assume that f̂(eit) runs
around Γ in the counterclockwise direction as t increases. (Otherwise, take conjugates.)
We will show that if the function f is not locally univalent in D, then Lemma 5.51 will
give a contradiction.
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Suppose that f = u+ iv is not locally univalent, or that the Jacobian of f vanishes

at some point z0 in D. This means that the matrix

(
ux vx
uy vy

)
has a determinant of 0

at z0. From linear algebra, we know that this means that the system of equations

aux + bvx = 0

auy + bvy = 0

has a nonzero solution (a, b). Thus the real-valued harmonic function ψ = au+ bv has
a critical point at z0 (since (a, b) 6= (0, 0)). However, the hypothesis of Theorem 5.50
implies that ψ satisfies the hypothesis of Lemma 5.51. Thus we have a contradiction,
so f must be locally univalent.

Now that we see that f is locally univalent, we apply the argument principle to
show that f is univalent in D. Since f is sense-preserving on ∂D and locally univalent,
f is sense-preserving throughout D. Now, if f is not univalent, there are two points
z1 and z2 in D such that f(z1) = f(z2). However, that would imply that the function
f(z) − f(z1) has two zeros in D, so that the winding number of f(z) − f(z1) about
the origin is 2, which contradicts the hypotheses about the boundary correspondence.
This completes the proof.

�

Exercise 5.52. Give a detailed proof of the statement, “However, the hypothesis
of Theorem 5.50 implies that ψ satisfies the hypothesis of Lemma 5.51.” Try it out!

Notice that the description of f̂ in Theorem 5.50 does not require that it be one-
to-one on ∂D, but permits arcs of constancy. Furthermore, the Rado-Kneser-Choquet
Theorem is actually true in the case where f̂ has jump discontinuities, as long as
the image of ∂D is not contained in a straight line. This requires some additional
justification, so we state it separately as a corollary.

Corollary 5.53. Let f(z) be defined as in Definition 5.37 on 343. Suppose the
vertices v1, v2, . . . vn, when traversed in order, define a convex polygon, with the interior
of the polygon denoted by Ω. Then the function f(z) is univalent in D and defines a
harmonic mapping from D onto Ω.

Here is some intuition behind the proof of Corollary 5.53. Consider a sequence of
functions f̂m(eit) that are continuous and converge to the boundary correspondence

f̂(eit) of Definition 5.37. (One possible such sequence of functions can be described by

having f̂m(eit) = vk for t-values in the interval (tk−1 + tk−tk−1

2m
, tk − tk−tk−1

2m
) while for t-

values in the interval (tk− tk−tk−1

2m
, tk+ tk+1−tk

2m
), f̂m(eit) maps the interval linearly to the

segment between vk and vk+1.) Each of these functions f̂m(eit) satisfies the conditions
of the Rado-Kneser-Choquet Theorem, so extends to a univalent harmonic function,
fm(z), in the unit disk. But the functions fm converge uniformly on compact subsets
of D, so the entire sequence converges uniformly to f in D. Therefore, f(z) inherits
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the univalence from the sequence. The fact that the limit function is still univalent is
not immediately apparent–full details may be found in [8].

Interestingly enough, this theorem does not guarantee anything about univalence
if the domain Ω is not convex. In fact, the expectation is that univalence will not be
achieved. For example, look at Exercise 5.34 on page 342.

Exploration 5.54. Extend the explorations begun in Exploration 5.35 on page
343. Now, instead of modifying the boundary correspondence, start with the corre-
spondence in Exercise 5.36. Then, move the vertex that is at i/2, moving it closer to
i. A very nice picture comes from having the vertex set be {1, i,−1, 9i

10
}. In this last

we see the lack of univalence very clearly. Try it out!

5.5.1. Boundary behavior. In this section, we explore what seems to be true
with some of the above examples: There appears to be some very interesting boundary
behavior of our harmonic extensions of step functions. Examine this behavior in the
following exploration.

Exploration 5.55. Using ComplexTool or PolyTool, graph the function from D
to a triangle in Example 5.31. Now investigate the behavior of the boundary using
the sketching tool of the applet. In particular, approach the break point between arcs
(such as z = 1) along different paths. First approach radially, then approach along a
line that is not a radius of the circle. Observe how these different paths that approach
1 cause the image of the path to approach different points along the line segment that
makes up a portion of the boundary of the range. (As you get very close to an arc
endpoint, the image of the sketch may jump to a vertex–here, examine where the image
is immediately before that jump.) Technology hint: in PolyTool and ComplexTool, you
can hit the Graph button to clear all previous sketching but keep the polygonal map.
Repeat this exercise with some of the other examples of polygonal functions. Try to
answer some of the following questions:

(1) Given a point ζ on the boundary of the polygon, is it possible to find a path
γ approaching ∂D such that γ(z) approaches ζ?

(2) As you approach an arc endpoint in ∂D radially, what point on the boundary
of the polygon do you approach?

Try it out!

As you performed the exploration above, you probably discovered some of the
known properties of the boundary behavior of harmonic extensions of step functions.
These results were originally proven by Hengartner and Schober [8], who proved a
more general form of the theorem below. We now restate their theorem as it applies
to the step functions of Definition 5.37. In the theorem below, the cluster set of f at a
point eitk is the set of all possible limits of sequences {zn}, where zn are inside Γ, and
limn→∞(zn) = eitk .
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Theorem 5.56. Let f be the harmonic extension of a step function f̂(eitk) in
Definition 5.37. Denote by Γ the polygon defined by the vertices vk. By definition,
the radial limits limr→1 f(reit) lie on Γ for all t except those in the set {tk}. Then the
unrestricted limit

f̂(eit) = lim
z→eit

f(z)

exists at every point eit ∈ ∂D\{eit1 , eit2 , ..., eitn} and lies on Γ. Furthermore,

(1) the one-sided limits as t→ tk are

lim
t→t−k

f̂(eit) = vk and lim
t→t+k

f̂(eit) = vk+1; and

(2) the cluster set of f at each point eitk ∈ {eit1 , eit2 , ..., eitn} is the linear segment
joining vk to vk+1.

Proof. Part (1) of the theorem follows directly from the definition of the function
f and from properties of the Poisson integral formula. That is, since the boundary
correspondence is defined in Definition 5.37, the limits follow. Now we need to show
part (2). Now let us consider eitk . If z approaches eitk along the circular arc

(77) arg

(
eitk + z

eitk − z

)
=
λπ

2
, −1 < λ < 1,

then f(z) converges to the value

1

2
(1− λ)vk +

1

2
(1 + λ)vk+1.

Therefore the cluster set of f at tk is the line segment joining vk and vk+1, and part
(2) is proven.

�

Exercise 5.57. Use basic ideas from analytic geometry to observe that equation
77 is a circular arc. (Hint: First consider the cases where z is either on the circle or is
the center of the circle for some intuition.) Try it out!

Exercise 5.58. It is important to note that Theorem 5.56 holds for even non-
univalent mappings. Go back to some of the previous examples and identify the line
segment that connnects the vertices. In particular, regraph the example from Exercise
5.34. Using the Sketch utility in either ComplexTool or Polytool, check that the limit
as you approach one of the tk does appear to be that line segment. Try it out!

5.6. Star Mappings

From the Rado-Kneser-Choquet Theorem, we see that harmonic functions map-
ping the unit disk D to convex polygons are well-understood. That is, if we define a
harmonic function mapping from the unit disk to a convex polygon as in Definition
5.37, the function is univalent in D. Theorem 5.56 describes the boundary behavior
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fully, showing that the limit of the function as we approach one of the break points
between vertex pre-images, tk, gives the line segment joining the vertices.

However, non-convex polygons are not nearly as well-understood. We first examine
non-convex polygons in their simplest mathematical form: the ones of regular stars.

Definition 5.59. By an n-pointed “star,” or “r-star”, we mean an equilateral
2n-gon with the vertex set,{

rα2k, α2k+1 : k = 1, 2, . . . , n and α = eiπ/n
}
,

where r is some real constant.

Notice that when r = 1, the n-pointed star is a regular 2n-gon, and when r <
cos(π/n) or r > sec(π/n), the star is a strictly non-convex 2n-gon. Our preimages
of the vertices of the 2n-gon will be arcs centered at the 2nth roots of unity (this is
different from our previous examples).

Figure 5.14. The 0.3-star for n = 3

Example 5.60. We will find a harmonic mapping of the unit disk into the 0.3-star.
More precisely, will find the harmonic extension of the following boundary correspon-
dence.
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for t from to f̂(eit)
−π/6 π/6 0.3
π/6 π/2 eiπ/3

π/2 5π/6 0.3ei2π/3

5π/6 7π/6 −1
7π/6 3π/2 0.3ei4π/3

3π/2 11π/6 ei5π/3

After going through details similarly to previous examples, we discover the har-
monic extension is

f(z) =
1

π

[
0.3 arg

(
1− ze−iπ/6
1− zeiπ/6

)
+eiπ/3 arg

(
1 + iz

1− ze−iπ/6
)

+ 0.3ei2π/3 arg

(
1− ze−i5π/6

1 + iz

)
− arg

(
1− ze−i7π/6
1− ze−i5π/6

)
+ 0.3ei4π/3 arg

(
1− iz

1− ze−7iπ/6

)
+ei5π/3 arg

(
1− ze−i11π/6

1− ze−i3π/2
)]

.

Graph this function using ComplexTool (it is one of the Pre-defined functions).
Notice that it appears to be univalent. We certainly have not yet proved its univalence.

Exercise 5.61. Prove that if f(z) is the harmonic extension to the r-star as defined
in Definition 5.59, then f(0) = 0. Interpret this result geometrically. Try it out!

Exercise 5.62. Modify the function in Exercise 5.60 to have r = 0.15 and see
whether it appears univalent. To graph this new function in ComplexTool, choose the
previous star as one of the Pre-defined functions and then modify the equation
that shows in the function box. Try it out!

To work with these stars, we may sometimes want to vary the boundary corre-
spondence. That is, we may want to not split up ∂D completely evenly among the 2n
vertices. It will become useful to us to have an unequal correspondence in the bound-
ary arcs, but maintain some symmetry. To do this, we will still consider arcs centered
at the 2n-th roots of unity, but alternating between larger and smaller arcs. If we ex-
amine the geometry of this matter, we realize that an even split would make each arc
have length 2π

2n
= π/n. Two consecutive arcs would together have length 2π/n. To still

maintain some symmetry, but let the arcs alternate in size, we want two consecutive
arcs to still add to 2π/n, but not split evenly. We introduce the parameter p, with
0 < p < 1, as a tool to explain how the arcs are split. We will want two consecutive
arcs split into p2π/n and (1−p)2π/n. Note that the sum is still 2π/n. This is formally
described in the definition below.
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Definition 5.63. Let n ≥ 2 be a fixed integer, r be a positive real number, and
α = eiπ/n. Define a boundary correspondence for all but a finite number of points on
∂D by mapping arcs with endpoints {αe−ipπ/n, αeipπ/n, 0 ≤ k ≤ n− 1} as follows:

(78) f̂(eit) =

{
rα2k , eit ∈ (α2ke−ipπ/n, α2keipπ/n)
α2k+1 , eit ∈ (α2k+1e−i(1−p)π/n, α2k+1ei(1−p)π/n)

.

Let f be the Poisson extension of f̂ .

eiπ/n

r2pπ/n

2(1 - p)π
n

Figure 5.15. The first two arcs and their images according to Defini-
tion 5.63. The dots on the left-hand-side indicate points of discontinuity
of the boundary correspondence.

Note that the arc (α2ke−ipπ/n, α2keipπ/n) centered at α2k is mapped to the vertex
rα2k and the arc (α2k+1e−i(1−p)π/n, α2k+1ei(1−p)π/n) centered at α2k+1 is mapped to the
vertex α2k+1.

Exercise 5.64. Show that the interval in the second half of Equation 78,

(α2k+1e−i(1−p)π/n, α2k+1ei(1−p)π/n),

can be written more compactly as (α2keipπ/n, α2k+2e−ipπ/n). Try it out!

At this point, you should start using with the StarTool applet. The default for this
applet is the 3-pointed star discussed in Example 5.60. Note that the arcs and their
target vertices are color-coded (with a light blue arc mapping to a light blue vertex,
for example). The default p-value is 0.5, which corresponds to evenly spaced arcs.
You can use the slider bars (the plus/minus buttons for n) or type in the text boxes
to change the values for n, p, and r. The maximum n-value allowed by the applet is
n = 18, which is sufficient for the explorations below. As with ComplexTool, there is
the option to Sketch on the graph to get a better feel for the mapping properties of
these stars. There is also an option to Show roots of ω(z). The roots of ω(z) will
be helpful in future discussion, but are not essential for the starting explorations. In
general, try to first get a good feel for what happens for “small” values of n, such as
4, 5, 6, or 7.
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Figure 5.16. A star with n = 5, r = 0.15, and p = 0.9

Exploration 5.65. Do some explorations with different values of n and r. See if
you can find a pattern for univalence of the star function. Here are some avenues for
exploration.

(1) What is the relationship between the r value you choose and the p-value
necessary for univalence? Is there a range of p that works?

(2) What happens as p goes to 0 or 1?
(3) For a given p-value, can you determine the “minimal” r? That is, how small

can you make r and maintain univalence?
(4) Is there a minimum r-value, one for which there is no p-value that will achieve

univalence?
(5) For a fixed r, as you change n, what happens to the p that you need to achieve

univalence?
(6) What is the full relationship between r, n, and p? (It is unlikely that you will

answer this question now, but make some conjectures about it.)

Try it out!

5.7. Dilatations of Polygonal Maps are Blaschke Products

We are now ready to use the tools of harmonic functions to study the polygonal
maps. To understand when the star maps are univalent, we must first examine their
dilatation. As we discover in this section, the dilatation of a polygonal map is always
in the form of a Blaschke product.

Exercise 5.66. Consider the function generated in Exercise 5.34 on page 342.
Complete all of the following:

(a) Find the formulas for h(z) and g(z). Use the result of Exercise 5.42 for this
computation.
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(b) Find the derivatives h′(z) and g′(z), verifying that the derivatives simplify to

h′(z) =
1

(2πi)(1− z4)

(
(
3

2
− 3

2
i)z2 − 3iz + (

5

2
+

5

2
i)

)
and g′(z) =

1

(2πi)(1− z4)

(
(
5

2
− 5

2
i)z2 + 3iz + (

3

2
+

3

2
i)

)
.

(c) Show that the zeros of g′(z) are z1 ≈ 0.9245 − 0.9245i and z2 ≈ −0.3245 +
0.3245i, and that the zeros of h′(z) are 1/ z1 and 1/ z2. Thus we are able to
write the dilatation as

ω(z) = C

(
z1 − z

1− z1z

)(
z2 − z

1− z2z

)
,

where C is some constant.
(d) What are |z1|, |z2|, and |C|? These will be helpful to recall as we look ahead

to Theorem 5.81 in Section 5.8.

Try it out!

Motivated by the results of Exercise 5.66, we now examine functions that are of a
particular form.

Exploration 5.67. We examine the properties of functions of the formBz0(z) =
z0 − z

1− z0z
.

• Using ComplexTool, graph the image of the unit disk under the functions

B0.5(z) = 0.5−z
1−0.5z

, B0.5 exp(iπ/4)(z) = 0.5eiπ/4−z
1−0.5e−iπ/4z

, and B0.5i(z) = 0.5i−z
1+0.5iz

. What is

B(0)? What is the image of the unit disk under B(z)? Does B(z) appear to
be univalent?
• Now graph the image of the unit disk under the function B2 exp(iπ/4)(z) =

2eiπ/4−z
1−2e−iπ/4z

. What is B(0)? What is the image of the unit disk under B(z)?

Does B(z) appear to be univalent?
• If we consider Bz0(z), can we determine Bz0(0) in general? What effect does

arg(z0) have on the location of Bz0(0)? What effect does |z0| have on the
image of the unit disk?
• Now let’s multiply the functions Bz0(z). First graph the image of the unit

disk under f1(z) = (B0.5(z))2 =
(

0.5−z
1−0.5z

)2
. What is f(0)? What is the image

of the unit disk under f(z)? Does f(z) appear to be univalent? How does this
compare to the function f(z) = z2?
• Now graph the image of the unit disk under f2(z) = B0.5(z)B0.5i(z), f3(z) =
B0.5(z)B0.2i(z), and f4(z) = B0.5 exp(iπ/4)(z)B0.2i(z). What are f2(0), f3(0),
and f4(0)? How do f2(0), f3(0), and f4(0) relate to the values of z0 in the
functions Bz0(z)?

Try it out!
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Definition 5.68. A Blaschke factor is Bz0(z) = z0−z
1− z0z

, and a finite Blaschke
product or order n is a product of n Blaschke factors, possibly multiplied by a constant
ζ such that |ζ| = 1:

ζ
n∏
k=1

zk − z
1− zkz

.

Note that the multiplication by ζ is simply a rotation.

Remark 5.69. It is important to note that the Blashke product definition given
above is a bit non-standard. The standard definition of Blaschke product, as given in
Chapters 4 and 6, assumes that |zk| < 1. Here we do not place that restriction on zk
for the purpose of simplifying our computations.

In this section, we use the result of Exercise 5.39 on page 344 to see that the
dilatation of the harmonic polygonal functions to an n-gon is a Blaschke product of
order at most n − 2. This result was proven by T. Sheil-Small in [17], and is also
discussed in [5].

We use the notation fk(z) to denote the contribution to the function f(z) that
arises from applying the Poisson integral formula to the boundary correspondence for
tk−1 < t < tk. We then have f(z) =

∑n
k=1 fk(z). On the interval tk−1 < t < tk, we

observe that

fk(z) =
vk
2π

(tk − tk−1) +
vk
π

arg

(
1− ze−itk

1− ze−itk−1

)
by Definition 5.37. We now consider the canonical decomposition of fk(z) = hk(z)+ gk(z).
By Exercise 5.42, we have

hk(z) =
vk
2π

(tk − tk−1) +
vk
2πi

log

(
1− ze−itk

1− ze−itk−1

)
=

vk
2π

(tk − tk−1) +
vk
2πi

(
log(1− ze−itk)− log(1− ze−itk−1)

)
and

gk(z) =
vk

2πi
log

(
1− ze−itk

1− ze−itk−1

)
=

vk
2πi

(
log(1− ze−itk)− log(1− ze−itk−1)

)
.

The computations that follow will give some rigor to our intuition: since h and g
are sums of logarithms, their derivatives are sums of terms that have 1− ze−itk in the
denominators. We will combine these factors, and hope that we can see each derivative
as a Blaschke product. Now, when we look at h(z) =

∑n
k=1 hk(z) and take derivatives,
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we see that:

h′(z) =
n∑
k=1

vk
2πi

( −e−itk
1− ze−itk −

−e−itk−1

1− ze−itk−1

)
(79)

=
n∑
k=1

vk
2πi

(
1

z − eitk −
1

z − eitk−1

)
.(80)

The function g′(z) is identical except for having vk instead of vk:

g′(z) =
n∑
k=1

vk
2πi

( −e−itk
1− ze−itk −

−e−itk−1

1− ze−itk−1

)
(81)

=
n∑
k=1

vk
2πi

(
1

z − eitk −
1

z − eitk−1

)
.(82)

Combining like factors gives us a more compact form, with

(83) h′(z) =
1

2πi

n∑
k=1

vk − vk+1

z − eitk and g′(z) =
1

2πi

n∑
k=1

vk − vk+1

z − eitk .

It will be useful for the upcoming discussion to note that
∑n

k=1(vk − vk+1) = 0,
since vn+1 = v1.

Exercise 5.70. Prove that
∑n

k=1(vk − vk+1) = 0, since vn+1 = v1. Interpret this
result geometrically.

Try it out!

We rely heavily upon the observation that

(84) h′(1/ z) = z2g′(z) or g′(1/ z) = z2h′(z).
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Equation 84 arises from the following computation:

h′(1/ z)− z2g′(z) =
−1

2πi

n∑
k=1

vk − vk+1

1/z − e−itk −
z2

2πi

n∑
k=1

vk − vk+1

z − eitk

=
−z
2πi

n∑
k=1

eitk( vk − vk+1)

eitk − z − z2

2πi

n∑
k=1

vk − vk+1

z − eitk

=
z

2πi

n∑
k=1

eitk( vk − vk+1)

z − eitk − z2

2πi

n∑
k=1

vk − vk+1

z − eitk

=
1

2πi

n∑
k=1

( vk − vk+1)(zeitk − z2)

z − eitk

=
1

2πi

n∑
k=1

( vk − vk+1)(z)(eitk − z)

z − eitk

=
−1

2πi

n∑
k=1

( vk − vk+1)(z)

= 0.

Exercise 5.71. We have just proven the first half of Equation 84. Using that
result, prove the second part of Equation 84 with minimal calculation. Try it out!

Exercise 5.72. Interpret this result geometrically. That is, note that if we have
a value z0 ∈ D such that g′(z0) = 0, then what do we know about the zeros of h′?
How are the locations of the zeros of h′ related to the locations of the zeros of g′?
Completion of this exercise will give some intuition about the proof that is to come.
Try it out!

Exercise 5.73. Show that h′(z) and g′(z) of Exercise 5.66 satisfy Equation 84.
Relate this to the previous two exercises–do the conclusions of those exercises also
hold true for this example? Try it out!

For simplicity of notation, let us consider the functions h′(z) and g′(z). We can
already tell that if we got a common denominator for h′(z) or g′(z), that the denomi-

nator would be
n∏
k=1

(z − eitk), and we would guess that the ratio of the two would give

us a product of rational functions. At this point, that is all we can tell–it is not obvious
that this product should be a Blaschke product, although we may expect it to be from
the explorations we did in Exercise 5.66. The remainder of this section will be devoted
to determining that this is, indeed, a Blaschke product, as well as finding the order of
that product.
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Exploration 5.74. Based on the results of Exercise 5.66, and upon other examples
in this chapter, make a conjecture about the number of Blaschke factors that should
be in the dilatation of a harmonic function from D to an n-gon. Try it out!

Obtaining a common denominator for both h′ and g′, we can look at them as

h′(z) =
P (z)

S(z)
and g′(z) =

Q(z)

S(z)
,

where S(z) =
n∏
k=1

(z − eitk) . Now we need to consider what P and Q look like. Consider

that by brute force, each term of the P (z) looks like (vk − vk+1)
n∏

j=1;j 6=k

(z − eitj), or,

put more simply, a polynomial of degree at most n− 1. Let us consider the zn−1 term

of P (z). It is simply vk − vk+1 for each piece of the sum, so it must be
n∑
k=1

(vk − vk+1),

which we already observed to be 0. Thus we have shown that P (z) has degree at most
n− 2. The same argument works for Q(z), since it has the same structure as P (z) but
with conjugates over the vk.

We now turn our attention to the denominator, which is S(z) =
n∏
k=1

(z − eitk).

Exercise 5.75. Show that the following equation holds:

S(1/ z) =

(
1

z

)n
(−1)n S(z)

n∏
k=1

eitk .

Try it out!

Put another way, we could write

(85) S(1/ z) =

(
1

z

)n
(−1)nS(z)

n∏
k=1

e−itk .

Exercise 5.76. Show that Equation 85 holds for the denominator of the derivatives
in Exercise 5.66, 2πi(1− z4). Try it out!

Now we can combine Equations 84 and 85 to get a relationship between P (z) and

Q(z). Directly substituting into h′(1/ z) = z2g′(z), we see that
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h′(1/ z) = z2g′(z)

P (1/ z)

S(1/ z)
= z2Q(z)

S(z)

P (1/ z)(
1
z

)n
(−1)nS(z)

∏n
k=1 e

−itk
= z2Q(z)

S(z)
.

This leads to the relationship

(86) zn−2 P (1/ z) = (−1)nQ(z)
n∏
k=1

e−itk .

Exercise 5.77. Using the result above, show that

(87) zn−2 Q(1/ z) = (−1)nP (z)
n∏
k=1

e−itk .

Try it out!

Since the function f is orientation-preserving, we know that h′(z) 6= 0 in D. This
implies that P (z) 6= 0 in D. In particular, P (0) 6= 0. Substituting 0 into equation 87,
we find that the left hand side must not be zero, which forces the degree of Q to be
at least n − 2. However, we had previously determined that the degree of Q must be
at most n− 2. Thus the degree of Q is n− 2. Similarly, the degree of P is also n− 2.
Since the degree of Q is n− 2, let us write

Q(z) = zm
n−m−2∏
k=1

(z − zk)

to show that Q may have m zeros at the origin and n −m − 2 zeros elsewhere (note
that the zk need not be distinct). Now using Equation 87, we can write

zn−2

(
1

z

)m n−m−2∏
k=1

(
1

z
− zk

)
= (−1)nP (z)

n∏
k=1

e−itk .

The left hand side of the above equation may be rewritten as

zn−m−2 1

zn−m−2

n−m−2∏
k=1

(1− z zk) .

At this point we can see that since the zeros of Q are zk, the zeros of P are the zeros of
n−m−2∏
k=1

(1− z zk), which are precisely 1/ zk. Now we are able to see what the Blaschke

product is.
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Exercise 5.78. Find the relationship between the number of zeros of Q and the
number of zeros of P . In particular, if Q has degree n− 2 with m zeros at the origin
and n−m− 2 zeros away from the origin, then how many of the zeros of P are at the
origin? How many of the zeros of P are away from the origin? Try it out!

We now summarize the results of our work in this section (as originally proved by
T. Sheil-Small, [17] Theorem 1; see also [5]).

Theorem 5.79. Let f be the harmonic extension of the step function f̂(eit) as
given in Definition 5.37. Then

g′(z) =
Q(z)

S(z)
and h′(z) =

P (z)

S(z)
,

where Q(z), P (z), and S(z) are defined as above, and P and Q are polynomials of
degree at most n− 2. Furthermore, their ratio ω(z) satisfies |ω(z)| = 1 when |z| = 1,
so takes the form of a Blaschke product of degree at most n− 2.

5.8. An Important Univalence Theorem

In this section, we examine a theorem of Sheil-Small that tells when the harmonic
function in Definition 5.37 is univalent. In particular, the location of the zeros of the

analytic dilatation ω(z) = g′(z)
h′(z)

are sufficient to tell when the harmonic function is

univalent.

Exploration 5.80. Open up the StarTool applet. Check the box in front of Show
roots of ω(z). You will see extra dots appear in the right-hand pane (the range of
the function), as well as a unit circle for reference. These dots denote the locations
of the zeros of the dilatation ω(z). Now experiment with the values of p and r to see
if there is a relationship between the roots of ω(z) and whether the resulting star is
univalent. Do this for various values of n to see if your result seems to hold. Does
your conjecture agree with the examination of a function that maps D to a different
non-convex polygon, as in Exercise 5.66? Try it out!

The theorem below was proven by Sheil-Small, and is Theorem 11.6.6 of [18].

Theorem 5.81. Let f be a harmonic function of the form in Definition 5.37. Here
the function f is the harmonic extension of a piecewise constant boundary function
with values on the m vertices of a polygonal region Ω, so that, by Theorem 5.79, the
dilatation of f is a Blaschke product with at most m− 2 factors. Then f is univalent
in D if and only if all zeros of ω lie in D. In this case, f is a harmonic mapping of D
onto Ω.

Proof. First, suppose that f is univalent in D. If a Blaschke factor is defined as
ϕz0(z) = z0−z

1− z0z
, with the constant z0 not having modulus 1, then we notice that since

the dilatation ω is a product of a finite number of Blaschke factors, ω(z) 6= 0 on the
unit circle. This is because the zero of the Blaschke factor is z0, and if |z0| = 1, we get
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that ϕz0(z) = z0 for all z. If ω has a zero at some point z0 outside of D, then it has a
pole at 1/ z0 ∈ D. If it also has zeros in D, then there are points in D where |ω(z)| < 1
and other points where |ω(z)| > 1. This implies that the Jacobian of f changes sign in
D, which would force the Jacobian to equal 0 at some point in D, contradicting Lewy’s
theorem, which says that the Jacobian is non-zero since f is locally univalent. Thus
there are only two possibilities for a univalent f : Either all of the zeros of ω(z) lie in
D, or all lie outside D. But if the zeros of ω lie outside of D, then |ω(z)| > 1 in D and
f has negative Jacobian, contradicting its construction as a sense-preserving boundary
function. Therefore, all of the zeros of ω must lie in D.

Conversely, assume all of the zeros of ω lie within D. By the mapping properties of
Blaschke products, |ω(z)| < 1 in D. We use the argument principle to show that f is
univalent in D and maps D onto Ω. Choose an arbitrary point w0 ∈ Ω. Let Cε be the
path in D consisting of arcs of the unit circle along with small circular arcs of radius ε
about the points bk (the points bk are the arc endpoints in the domain disk), as shown
in Figure 5.17.

bk

cε

ε

Figure 5.17. Tiny circles around the bk

If ε is sufficiently small, the image of Cε will not go through w0, and will have
winding number +1 around w0. Since |ω(z)| < 1 inside Cε, it follows from the argument
principle for harmonic functions that f(z)−w0 has one simple zero inside Cε (or, put
another way, f(z) = w0 has exactly one solution for z ∈ D). Thus Ω ⊂ f(D). Now do a
similar construction with w0 /∈ Ω to show that w0 /∈ f(D). Thus f maps D univalently
onto Ω. �

To apply this theorem to the star mappings of Section 5.6, we study the dilatation
of the star mappings in detail.
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5.9. The Dilatation for Star Mappings

In this section, we will use Definition 5.63 of Section 5.6 as the starting point. We
will build upon the basic formula for the functions h′(z) and g′(z), and then will simplify
the dilatation ω(z) as a Blaschke product. By doing so, we completely determine which
star functions are univalent.

Using Equations (79) and (81) of Section 5.7, along with Definition 5.63, we find
the following equations for h′(z) and g′(z) for the star functions:

h′(z) =
rα0

2πi

(
1

z − α0eipπ/n
− 1

z − α0e−ipπ/n

)
+
α

2πi

(
1

z − α2e−ipπ/n
− 1

z − α0eipπ/n

)
+
rα2

2πi

(
1

z − α2eipπ/n
− 1

z − α2e−ipπ/n

)
+ . . .

=
r

2πi

n−1∑
k=0

α2k

(
1

z − α2keipπ/n
− 1

z − α2ke−ipπ/n

)
(88)

+
1

2πi

n−1∑
k=0

α2k+1

(
1

z − α2k+2e−ipπ/n
− 1

z − α2keipπ/n

)
and

g′(z) =
r

2πi

n−1∑
k=0

α2k

(
1

z − α2keipπ/n
− 1

z − α2ke−ipπ/n

)
(89)

+
1

2πi

n−1∑
k=0

α2k+1

(
1

z − α2k+2e−ipπ/n
− 1

z − α2keipπ/n

)
.

Our goal is to express ω(z) = g′(z)/h′(z) as the ratio of Blaschke products guaranteed
by Sheil-Small’s work. To that end, we first establish a few general algebraic identities
involving sums of the quantities of the type found in the expansions of h′(z) and g′(z)
above.

It is a basic complex identity that if ζ is a primitive mth root of unity, then

(90)
m∏
k=1

(z − ζk) = zm − 1.

Exercise 5.82. Prove Equation (90). Interpret this result geometrically. Try it
out!
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Exercise 5.83. Again, let ζ be a primitive mth root of unity. Show that

(91)
m−1∏
k=0

(z − ζka) = zm − am.

Hint: Replace z with z/a in Equation (90). Try it out!

Now we work to answer the hard question: How do we add together all of the sums
in equations (88) and (89), given that their numerators are not simply the constant 1?
As an intermediate step toward achieving this, we establish the following identity.

Lemma 5.84. If ζ is a primitive mth root of unity, then

(92)
m−1∑
k=0

ζk

z − ζka =
mam−1

zm − am .

Exercise 5.85. Prove the lemma, using the following steps in the partial fraction
decomposition.

(1) Recall Equation (91) and note how it fits in with this formula.
(2) Note that since we have n distinct linear factors in the denominator, we can

expect to find that

mam−1

zm − am =
m−1∑
k=0

ak
z − ζka.

(3) We will find an arbitrary ak0 . By setting z = ζk0a, establish that

ak0 =
mam−1∏

k 6=k0(ζ
k0a− ζka)

=
m∏

k 6=k0(ζ
k0 − ζk) .

(4) Show that
∏
k 6=k0

(ζk0 − ζk) = mζ−k0 . It will be helpful to remember that ζk0 is

an mth root of unity, so ζk0m = 1.
(5) Conclude that ak0 = ζk0 .
(6) Equation (92) should follow.

Try it out!

We now recall the result of Exercise 5.64 on page 359 that

α2k+2e−ipπ/n = α2k+1ei(1−p)π/n and α2keipπ/n = α2k+1e−i(1−p)π/n.

Combining with the earlier work, we have

370



1

2πi

n−1∑
k=0

α2k+1

z − α2k+2e−ipπ/n
=
−1

2πi

(
nei(1−p)(n−1)π/n

zn + ei(1−p)π

)
and

− 1

2πi

n−1∑
k=0

α2k+1

z − α2keipπ/n
=

1

2πi

(
ne−i(1−p)(n−1)π/n

zn + e−i(1−p)π

)
.

Exercise 5.86. Prove that

− 1

2πi

n−1∑
k=0

α2k+1

z − α2keipπ/n
=

1

2πi

(
ne−i(1−p)(n−1)π/n

zn + e−i(1−p)π

)
.

Try it out!

Combining all of these together, we see that

h′(z) =
n

2πi

(
rei(

n−1
n

)pπ

zn − eipπ +
−re−i(n−1

n
)pπ

zn − e−ipπ

+
−ei(n−1

n
)(1−p)π

zn + ei(1−p)π
+
e−i(

n−1
n

)(1−p)π

zn + e−i(1−p)π

)
.(93)

We need to keep our goal in mind: We know from Theorem 5.79 that g′(z)
h′(z)

can be

written as a Blaschke product. To do this, we will have to find a common denominator
and combine the four terms of h′(z) to see the quotient. As an initial step, we find
that we can write the common denominator more simply than it first appears.

Exercise 5.87. Prove that (zn− eipπ)(zn− e−ipπ) = (zn + ei(1−p)π)(zn + e−i(1−p)π).
We will call this product Sn(z). Try it out!

Exercise 5.88. Using basic algebra (finding a common denominator, simplifying,
and using properties of z + z), prove that

h′(z) =
n

πSn(z)

(
zn
(
r sin

(
(n− 1)pπ

n

)
− sin

(
(n− 1)(1− p)π

n

))
(94)

+r sin
(pπ
n

)
+ sin

(
(1− p)π

n

))
.

Try it out!

Through methods similar to those of the simplification of h′(z), we can also prove
that

g′(z) =
nzn−2

πSn(z)

(
zn
(
r sin

(pπ
n

)
+ sin

(
(n− 1)(1− p)π

n

))
(95)

+r sin

(
(n− 1)pπ

n

)
− sin

(
(n− 1)(1− p)π

n

))
.
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With this simplified form of g′(z), we use

(96) c =
sin (n−1)(1−p)π

n
− r sin (n−1)pπ

n

r sin pπ
n

+ sin (1−p)π
n

to write

(97) g′(z) =
nzn−2

π

(
r sin

(pπ
n

)
+ sin

(
(1− p)π

n

))
zn − c
Sn(z)

.

Now we are ready to pull together the result of Theorem 5.81 and the dilatation
that we just simplified. When the zeros of this dilatation are within the unit disk, then
the harmonic function f = h+ g that defines the star is univalent. By a straightforward
computation, we find that the dilatation of f is

(98) ω(z) =
zn−2(zn − c)

1− znc .

Exercise 5.89. Look again at Theorem 5.81 and verify that it does, indeed, hold
for the star function. Try it out!

Exploration 5.90. Notice that f is univalent when |c| < 1. Using that observa-
tion, do the following:

• Use the StarTool applet to explore graphically what relationship there is be-
tween n, p, and c.
• For a fixed n, find the range of p-values that make |c| < 1.
• For a fixed p, find the range of n-values that make |c| < 1.

Try it out!

Large Project 5.91. If you move just one vertex of the star, do the same results
hold for the relationship between n and p? (For example, take the vertex at r, and
move it to r + ε or r − ε. Is the star still univalent?)

Exercise 5.92. For a given n, consider the formula for c in Equation 96 to be a
function of p alone. Prove that any star configuration is possible; that is, prove that
for any value of r, a value of p can be found to make |c| < 1. What ranges of p makes
this happen? Conversely, prove that for all values of r < cos(π/n) or r > sec(π/n),
a p can be chosen to make the function NOT univalent. Why is this not true for
cos(π/n) ≤ r ≤ sec(π/n)? For more information, see Theorem 4 in [7]. Try it out!

Small Project 5.93. Refer to Chapter 2. For what values of c is the dilatation a
perfect square? Find and describe the associated minimal surfaces. Can these surfaces
be described as examples of other well-known surfaces? For more information on this
project, see [12].
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5.10. Open Questions

Large Project 5.94. Can we map to any polygon univalently? The star setup
takes full advantage of the symmetry. Once you lose that advantage, it is much harder
to discover whether the zeros of the dilatation have modulus less than 1. This question
is known as the Mapping Problem, proposed by T. Sheil-Small in [17].

Small Project 5.95. Look at a function f that is not univalent. Now look at
the set S ⊂ D of points on which the function f is univalent. First, how do you find
that set? What is the shape of S? Is it starlike? Is it convex? Is it connected? Is it
simply connected? Can D\S be connected?

Small Project 5.96. In this chapter, we discussed one way of proving that a
harmonic function is univalent by looking at zeros of the analytic dilatation ω(z). In
Chapter 4, there is another set of criteria for univalence, as demonstrated in Section 4.6.
Connect these two avenues of investigation. For example, does one imply the other?
How does the work with stars in this chapter generalize to the approach in Chapter 4?
Are there results in this chapter that could not be found using the methods of Chapter
4?
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