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Introduction

This book is written for undergraduate students who have studied some complex
analysis and want to explore some research topics in the field. We envision this book
could be used as:

• a supplement for a standard undergraduate complex analysis course allowing
students as a group or as individuals to explore a research topic;
• a guide for undergraduate research projects for an advanced student or a small

group of students; or
• a resource for senior capstone courses.

The nature of this book is quite different from other mathematics texts. This book
focuses on discovery, self-driven investigation, and creative problem posing. Some of
the ideas are part of the standard fare learned in a course which focuses solely on
the topic, while others may be new to the field. We want to inspire the reader to
investigate, explore, form conjectures, and pursue mathematical ideas. Students are
taken on a guided tour of the topics and are given many opportunities to stray from
the text to pursue their own investigations.

Interlaced in the reading for each chapter are exercises, explorations using computer
applets, and projects. These activities are an essential part of the students’ learning
of the topic. For this reason, most of these activities end with the phrase Try it out!
to remind the student that the activity needs to be done before going on with the
reading. The types of activities are as follows:

• Examples - The reader should be sure that she/he can follow the arguments
and provide small details when needed.
• Exercises - These have a well-defined goal and should be done by the reader

before going on to the next paragraph in the text. Skipping these would result
in the reader missing an important skill or idea that will be fundamental to
her/his understanding.
• Explorations - These also should be done before going on in the text. Gen-

erally, these do not have a well-defined problem that you are trying to “solve”.
Some may include undirected investigating or “playing” with applets. There
is no specific outcome expected, but much will be gained by this activity. Such
activities are at the heart of what this book is about since it is getting the
student to explore on her/his own and see what she/he can come up with.
• Small Projects - These are more involved activities than those listed above

and are optional. It may take up to a few weeks to complete a Small Project.
• Large Projects - These are similar to a Small Project, but on a larger scale.

A Large Project could be a semester long project, a capstone project, or an
honors thesis.
• Additional Exercises - Additional exercises may include any of the previous

activities. However, these appear at the end of the chapter and are optional.
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While working on these activities, it is a good habit to consider such questions as “Why
was this problem posed?” “Why is it interesting?” “What if I changed the problem
slightly, does it make it easier? harder? impossible?” “What does such a problem
say about the general theory?” Thinking about such questions is what it means to
do mathematics research and investige the unknown. Pausing to constantly ask new
questions, investigate these questions, and mathematically describe these questions can
make for very slow reading. The reader should measure progress, not by the number
of pages read, but by the amount of independent thought given to the material. If the
student reads just a few pages of a chapter and then becomes motivated to work on
a problem or set of problems she/he devised on their own, the authors of this book
would be delighted.

“It is not so very important for a person to learn facts. For that he
does not really need a college. He can learn them from books. The
value of an education in a liberal arts college is not learning of many
facts but the training of the mind to think something that cannot be
learned from textbooks.”–Albert Einstein (in Einstein: His Life and
Times by Frank)

This book contains six research topics. Each topic is presented in a self-contained
chapter that contains necessary background material, presentation of new material,
exercises, explorations, and problems suitable for student projects, and several com-
puter applets that allow the student to explore the topic. Also, each topic is a fairly
recent area of research, and there are a lot of new questions to investigate. Here is a
brief description of each of the chapters in this book:

(1) Complex Dynamics: This chapter investigates chaos and fractals as they
relate to dynamical systems which come from iterating complex valued functions, i.e.,
given an initial value z0 we consider the values z1 = f(z0), z2 = f(z1) = f(f(z0)),
z3 = f(z2) = f(f(f(z0))), . . . , and ask what kind of behavior we can have in this
sequence zn. Iteration in this sense arises in Newton’s method for approximating roots
of complicated functions, and so our chapter begins by asking such questions as: Which
initial values will “work” for Newton’s method (i.e., converge to a root)? If I change
my initial value z0 slightly, will I get similar or drastically different behavior? Often
these questions are pursued computationally, visually, and experimentally with the aid
of computer applets. We then extend our discussion by considering the iteration of
any complex analytic map, which leads to a pursuit of the mathematics behind the
famous Mandelbrot set, and much more.

(2) Soap films, Differential Geometry, and Minimal Surfaces: Minimal
surfaces in R3 are beautiful geometric objects that minimize surface area locally. Vi-
sually, they can be thought of as saddle surfaces – at each point, the surface bends
upward in one direction in the same amount as it bends downward in its perpendicular
direction. Minimal surfaces are related to soap films that result when a wire frame is
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dipped in soap solution. In this chapter, we present the necessary background from
differential geometry, a field of mathematics in which the ideas and techniques of cal-
culus are applied to geometric shapes, to give an introduction to minimal surfaces.
Then we use ideas from complex analysis to present a nice way to describe minimal
surfaces and to relate the geometry of the surface with this description. This allows us
to begin investigating some of the interesting properties that can be studied with the
help of the applets.

(3) Applications to Flow Problems: Two dimensional vector fields are used to
model and study a wide range of phenomena. Of particular interest are vector fields
that are both irrotational and incompressible. Such fields can be used to model the
velocity of an ideal fluid flowing in a region or the electric field in a region free of
charges. Modeling two dimensional fluid flow is a standard application of the theory of
conformal mappings in complex variables. This chapter takes a geometric and visual
approach to explore this standard body of work and then extends it to several more
applications. Fields of interest typically include various sources or sinks that generate
or remove fluid from the flow. Throughout the chapter, examples, theory, and exercises
are used to develop methods that allow fields to be modeled that are generated by
all types of sources and sinks in a variety of regions. Also, we have provided the
applet FlowTool that readily displays the streamlines for a field with various sources
and sinks. The applet permits real-time dynamical experimentation with the field.
Students with an interest in using technology to visualize mathematical objects will
find many opportunities to explore their ideas, though these are not explicit exercises.

(4) Anamorphosis, Mapping Problems, and Harmonic Univalent Func-
tions: Complex-valued analytic functions have many very nice properties that are not
necessarily possessed by differentiable real-valued functions. For example, if you can
differentiate such a complex-valued function one time, then you can differentiate it
infinitely many times. In addition, complex-valued analytic functions can always be
represented as a Taylor series, and they are conformal (that is, they preserve angles)
at points where f ′ 6= 0. Why does an analytic function have these properties? If
f = u + iv is an analytic function, then its real part u(x, y) and its imaginary part
v(x, y) each satisfy Laplace’s equation and thus are both harmonic. Also, u and v
satisfy the Cauchy-Riemann equations and are therefore harmonic conjugates of each
other. In this chapter we discuss some ideas and problems related to a collection of
univalent (i.e., one-to-one) complex-valued functions f = u+ iv, where u and v satisfy
Laplace’s equation but not necessarily the Cauchy-Riemann equations. This collection
of functions are known as harmonic univalent functions or mappings, and contain the
collection of analytic univalent functions as a subset.

(5) Mappings to Polygonal Domains: A rich source of problems in analysis is
determining when, and how, one can create a univalent (one-to-one) function from one
region onto another. In this chapter, we consider the problem of mapping the unit disk
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onto a polygonal domain by two different classes of functions. First for analytic func-
tions we give an overview of the well established Schwarz-Christoffel transformation.
This method leads to some very rich mathematics, the study of special functions, so
we give a brief primer of a few special functions. We then diverge from analytic func-
tion theory and consider the Poisson Integral Formula to find harmonic functions that
will serve as mapping functions onto polygonal domains. Proving that these harmonic
functions are univalent requires us to explore some less known theory of harmonic
functions and some relatively new techniques.

(6) Circle Packing: Circle packings are configurations of circles with prescribed
patterns of tangency. They exist in quite amazing and often visually stunning variety,
but what are they doing in a book on complex analysis? Well, the fact is that complex
analysis is at its heart a geometric topic. The reader will see this in the global geometry
on display throughout Chapters 1–5, but the foundation lies down at the local level
where, as the saying goes, “analytic functions map infinitesimal circles to infinitesimal
circles.” In Chapter 6 this geometry will come to life in the theory of discrete analytic
functions based on circle packing. Using the Java application CirclePack, we will create,
manipulate, and display maps between circle packings which are the discrete analogues
of familiar functions between plane domains, including some of those encountered
earlier in the book. Direct access to the underlying geometry gives new insight into
fundamental topics like harmonic measure, extremal length, and branching. Moreover,
we will see that our discrete functions not only mimic their classical counterparts, but
actually converge to them under refinement. In short, Chapter 6 is about quantum
complex analysis.
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