
CHAPTER 6

Circle Packing

Ken Stephenson (text and software)

Complex analysis is in many ways the ultimate in “continuous” mathematics. It
presents you with a smooth world: continuous variables, infinitely differentiable func-
tions, smooth surfaces, plus a complex arithmetic with its power series, line integrals,
and all sorts of handy formulas. In this chapter, however, we will develop a quite dif-
ferent view of the topic. Here the geometry behind analytic functions moves strongly
to the fore as we see how one might “discretize” complex analysis.

An analogy to keep in mind is that of a mountain stream. In normal experience we
treat the stream as a continuous medium and use continuous variables and functions
to understand it — pressure, velocity, vorticity — modeled, perhaps, by Navier-Stokes
and other PDE’s. Yet we know that the stream is in fact a collection of individual
water molecules, a “discrete” medium, if you will. The macro behavior, the waves,
eddies, and currents, emerge from the myriad local interactions among the discrete
water molecules. So one might ask: what purely local rules of interaction among these
molecules could lead to the observed global behavior?

In this chapter, we address this issue for continuous analytic functions. Circles will
be our molecules, and “packing” conditions will provide the local rules for their interac-
tion. Circle packings, configurations of myriad individual circles, each interacting only
with its neighbors, will manifest macro behavior that we will recognize as a version
of analyticity. Later in the chapter we will also see that our discrete objects converge
under appropriate refinement to the familiar continuous counterparts. In effect, then,
circle packing provides a quantum complex analysis, one that is classical in the limit.

This is a topic ideal for visualization and experimentation — in fact, it is accessible
only through the computer. You will therefore find yourself tethered to the software
more closely than in the earlier chapters, so don’t bypass those Try it out! signs.
Persevere and you may develop a new appreciation for complex analysis. We will jump
right in with a quick experiment from the genesis of the topic in s Cookies. Try it
out! .

6.1. First Impressions

Circle packings were introduced to analysis by Bill Thurston in a talk in 1985. The
context was the conformal mapping of bounded, simply connected, plane regions Ω

375

onto the unit disc D. The central result is the famous Riemann Mapping Theorem
stated in the Appendix, page 418. (Alternate statements are given in Theorem 3.33,
page 210, and Theorem 4.16, page 250). For us, the preferred statement is this: Given
Ω and designated points w0, w1 in Ω, there exists a unique one-to-one analytic mapping
F from D onto Ω so that F (0) = w0 and so that w1 lies on the image of the positive
real axis. Figure 6.1 therefore illustrates the Discrete Riemann Mapping Theorem.

Figure 6.1. A conformal map display, domain (left) and range (right)

Figure 6.1 shows the mapping window as displayed by our experimental testbench,
the software package CirclePack. Typical of our practice, the domain circle packing
will be on the left in such side-by-side displays, and the range packing will be on the
right. In this instance, the domain is D and the range is the given region Ω. The
“function” itself can be interpreted in various ways. Each circle on the left has a
corresponding circle on the right, so one can map circles to circles. Alternately, as
we will see later, one can map the triangles formed by the circles on the left to those
formed by the corresponding circles on the right. In any case, the two packings provide,
in essence, a map from D onto Ω, a “discrete conformal map”. We will see the details
shortly, but assuming you have run s Cookies and have this example before you on
the computer, try clicking the left mouse button on some circle in one packing: both it
and the corresponding circle of the other packing should be highlighted (likewise, for
faces, using the middle mouse button). Try it out!

376

About CirclePack: A few words are in order about CirclePack before we go on.
Figure 6.2 is a screenshot showing the context for these mapping images, with various
frames and panels for running the software. Unlike most of this book’s software,
CirclePack is a Java “application” rather than a Java “applet”: it requires access to the
file system for file manipulations, it is larger, more comprehensive (and reconfigurable),
and it avails itself of shared C/C++ libraries for computationally intense experiments.
It also has an important scripting feature: “script” files with prepared sequences of
commands are provided with the book to guide your experiments. These files have file
extension “.xmd” and are indicated in the text by s Names. To run an experiment,
then, you start CirclePack, from within it you load Name.xmd, then you click through
the prepared commands.

Figure 6.2. CirclePack in “domain/range” window mode

To recreate Figure 6.1, run the script s Cookies. This is a very structured exper-
iment, so move CirclePack through the commands by successively pressing the “NEXT”
button (or press “enter” when the mouse is in the canvas) until the experiment is com-
plete. Try it out! (If things become jumbled in CirclePack— and they sometimes
will! — it may be that you have outrun the computations: just click the “up” icon to

377

restart at the beginning of the script again, or if things have really gone sour, exit and
restart CirclePack.)

Even in the very passive experimental mode of s Cookies you can interact with
the images — moving, focusing, clicking circles and faces, and so forth, as we describe
later. However, it is hoped that as your experience and curiosity grow, you move
through the following additional stages to gain more experimental independence:

(1) The “Open Script” button will open the CirclePack script window. Here the
commands of the script are laid out linearly and are typically accompanied by text
explanations. If you didn’t understand what the experiment was purporting to
show, try reading along as you execute the commands. Figure 6.3 illustrates the
script window, with text, icons that encapsulate the commands, included files, etc.

Figure 6.3. A typical “script” for CirclePack

378

(2) In the Script you can open a command icon (by clicking its small “+” box) to
see the string of commands that it actually executes. For example.,

“infile path gamma.g;cookie;disp -w -c -cf b”

tells CirclePack to read the path “gamma.g” from the script’s data section, cookie-
cut the portion of the resident packing inside the path, then clear the canvas and
display the circles of the resulting packing, with the boundary circles “filled”. Mod-
ify these commands and you can change the action in the experiment. In many
of the scripts, hints are given about alterations you might try. In this first exper-
iment, for example, after overlaying Ω with a hexagonal circle packing, optional
commands ’i’ or ’d’ will increase or decrease, respectively, the sizes of the circles
in that overlay. After you have run through the experiment once, re-run it and try
these adjustments to see what happens.

(3) If you want to dig deeper, click the “Advanced” button to bring up CirclePack,s
main control frame, which gives you access to its full functionality. The program
actually holds up to three packings, has panels with messages, history, and rudi-
mentary error feedback, “Commands:” lines where you can issue explicit strings
of commands, and various “droppable” icons: you just drag one onto a packing
window and a prepared string of commands will be applied to that packing.

(4) For the truly ambitious, the Java code for CirclePack is freely available under
the GNU open source license. It includes a “PackExtender” class which allows
anyone (with enough work) to create specialized data structures and commands
having full access to the core functionality of CirclePack. Several existing PackEx-
tenders will be used in later experiments.

Figure 6.4 provides an annotated screen shot of CirclePack with various of its
screens and auxiliary panels. (Note that the screenshots are current as of publication,
but CirclePack may change over time.)

A final note on the scripts: bare-bones scripts are quite easy to write for yourself,
but following, reading, and modifying those of others can be a real challenge. The
prepared scripts are built for ease of use (believe it or not), so the commands are often
long and involved. For example, a simple “disp -w -c” will clear a screen and draw
the circles. However, “disp -w -cc20 i -ct5c180 b” will clear the screen then draw
the interior circles thicker and in blue, and the boundary circles filled with red. Don’t
let the complications bother you — go ahead and start your own scripts with simple
commands and small steps. When things go wrong, adjust the commands. As you learn
the CirclePack ropes, your scripts may become more involved, more sophisticated, but
also, more effective.

We are going to move now to the basic definitions and notations we will use in
our discrete analytic function theory. Although static images are helpful, there is
nothing like running experiments, even in automatic mode, to bring the topic to life.

379

Figure 6.4. CirclePack in Mapping window mode

The conformal mapping experiment we did above may help, and I certainly hope it
motivates the theory we will be investigating later. However, we have next a sequence
of experiments tailored to display/explain the basics of the theory.

6.2. Basics of Circle Packing

Definition 6.1. A circle packing is a configuration of circles with a prescribed
pattern of tangencies.

Figure 6.5 illustrates a few circle packings from the script s Menageries; run the
script to see these and others. Try it out! Among the things you might observe
as you tour our Menagerie: • The circles form mutually tangent triples and hence
have triangular interstices. • The packings can live in the euclidean plane, C, in the
hyperbolic plane, D (the unit disc in C), or on the Riemann sphere, C, represented
as the unit sphere at the origin in R3. • The “pattern” of tangencies shows up in the
carrier of the packing, the geometric triangles formed by connecting the centers of
tangent circles. • This pattern can be simply connected or multiply connected. • There
are interior circles, those completely surrounded by their neighbors, and boundary
circles, those on the edge of the configuration. • There are numerous manipulations,

380

Figure 6.5. A small menagerie of circle packings.

colors, and display options for displaying a circle packing and/or its carrier; these are
invaluable in highlighting the structures you need to study.

We will have to make formal definitions shortly, but I would suggest that you
first play around a little with the CirclePack Owl in s OwlPlays. You might just
run sequentially through the commands first, but then, by pressing the “Script”
button, you can open the Script Window and follow the descriptions associated with
the commands. There are suggestions along the way for free-form changes that you
can make to see how the packings react. Try it out!

Mathematics requires some formalities; annoying at times, they are essential if you
want to understand what’s going on and establish results that you and others can
depend on. Let me lay out the formal objects involved in circle packing. Follow along
in s Objectss, where these are illustrated explicitly in turn; read the descriptions in
the script as you proceed. In other words, Try it out!

• Complex, K: The “prescribed pattern” of tangencies for a circle packing is
represented as an abstract triangulation K of a topological surface (technically, a
simplicial 2-complex). This is a combinatorial object: K has vertices v, edges
〈v, w〉, and faces 〈v, u, w〉 formed by triples of vertices, but does not live in any

381

geometric setting. It may be finite or infinite, may or may not have boundary, may
be simply or multiply connected. We will always assume K is oriented. Namely,
in every face 〈v, u, w〉, the vertices are listed in positive (counterclockwise) order,
and these orientations are globally consistent, meaning that if faces f, g share a
directed edge e = 〈v, w〉, then e is positively oriented in one face and negatively
oriented in the other. The degree of a vertex v is the number of edges from v
(hence the number of neighboring vertices). As K is a “triangulation”, every
vertex will have finite degree.

Of course, I cannot “show” you an abstract complex, but s Objectss begins
with a random triangulation, one having no a priori connection with any circle
packing — it is a simple graph you might have sketched by hand and then entered
into some drawing program.

• Circle Packing, P : A circle packing for K is a configuration P = {cv}v∈K of
circles with these properties:

(1) There is a circle cv associate with every vertex v of K.

(2) If vertices v and u are neighbors (this is denoted v ∼ u and means that
〈v, u〉 is an edge of K), then the circles cv and cu are (externally) tangent to
one another.

(3) if 〈v, u, w〉 is an oriented face of K, then the circles cv, cu, cw form a triple
of mutually tangent circles which is positively (i.e., counterclockwise) ordered.

You will observe ins Objectss that the circles are indexed sequentially starting
at 1. There is an tool there that displays the flower of a selected vertex; namely,
the circle itself and the chain of neighboring petal circles. The script displays
other distinctions: Interior circles are those having closed flowers (their petals
wrap completely around them), while the boundary circles are those on the edge,
with flowers that don’t close up. Likewise, the boundary/interior edges and faces
are illustrated. A circle packing P is said to be univalent if its circles have
mutually disjoint interiors.

• Carrier, carr(P): The carrier of P refers to the union of geometry triangles
formed by connecting the centers of the triples of circles in P . In the script, the
carrier is displayed as the “complex”. P is locally univalent if for every interior
vertex v, the faces in carr(P) corresponding to the flower of v have mutually disjoint
interiors.

• Label, R: A label for K is a vector R = {rv}v∈K of putative radii, one for
each vertex of K. As you might imagine, it is the circle radii that are of central
importance in circle packing. These are maintained in CirclePack and can be found

382

using the “Info” button. (Note that radii and center data depend on which of the
three geometries you are working in.)

If you try to create a circle packing “by hand”, say manipulating circle objects
in some graphics program, you quickly learn how tightly choreographed their radii
must be. The computational heart of circle packing involves the computation of
compatible radii; the neutral term “label” is used in place of “radii”, because the
algorithms typically start with values which do NOT fit together and then apply
some iterative adjustments to approach a solution.

• Angle Sums, θR: Given a complex K and an associated label R, how might
you determine if circles with those radii would actually fit together in the pattern
prescribed by K? The key lies with angle sums. Consider an interior vertex v and
let {v1, v2, · · · , vk} be a list, in counterclockwise order, of its neighbors. Since the
list is closed, it is convenient in computations to write vk+1 = v1.

The faces containing v are 〈v, vj, vj+1〉, j = 1, 2, · · · , k. Suppose r, rj, rj+1 are the
associated labels taken from R. For each such face we could place circles cv, cj, cj+1

in the appropriate geometry to form a triple. The triangle formed by their centers
would have edge lengths which are the sums of radii, and we could appeal to the
Law of Cosines to compute the angle in this triangle at v. In euclidean geometry,
for instance, that angle would be

α(r; rj, rj+1) = arccos
[(r + rj)

2 + (r + rj+1)2 − (rj + rj+1)2

2(r + rj)(r + rj+1)

]
.

The sum of these angles at v in all the faces containing v is known as the angle
sum:

θR(v) =
∑

〈v,vj ,vj+1〉

α(r; rj, rj+1z).

The neighbors of v will wrap precisely around v if and only if θR(v) is an integral
multiple of 2π. This is illustrated concretely in s Objectss, but note that one
does not need to actually place any circles to compute an angle sum, as computa-
tions are done entirely with labels.

• Packing Label: A label R for K is known as a packing label if θR(v) is an
integral multiple of 2π for every interior vertex v. If P is a circle packing for K
(in one of our geometries), then the list R of its radii will necessarily be a packing
label. The converse is true for simply connected complexes K: if R is a packing
label for K, then one can lay out circles, using R for radii, to form a circle packing
P for K.

CirclePack is a platform for creating, manipulating, analyzing, and displaying circle
packings. Its computational core lies in computing packing labels, and although the
“packing” algorithms themselves are interesting and revealing mathematics, they are

383

not our target here. We will instead treat CirclePack as a blackbox computational
engine so that we can concentrate on the underlying geometry. (Recall that there are
several levels of usage for scripts; the more skill you develop, the more you’ll learn
from experiments: • click “NEXT” to simply watch the action; • press “Open Script”
to follow commands and associated descriptions; • modify the given script commands;
• add new commands to a script; and • create new scripts from scratch.)

6.3. Circle Packing Manipulations

We base our introduction to circle packing on a sequence of scripts revealing
both the objects of study and the principal manipulations of them available within
CirclePack.

1. s Patternss concentrates on combinatorics. Starting with an empty canvas,
a “seed 7” command creates the simplest type of packing, namely a single flower —
an interior circle surrounded by, in this case, seven petal circles. As you click through
the script the first time, disregard the occasional repackings that are needed. The
emphasis here is on building and adjusting the combinatorics. You will see how to add
generations of new neighbors, how to add/delete individual boundary circles, how to
cut open or zip up a string of boundary circles, how to “double” a packing across a
boundary segment, how to adjoin two packings, how to cookie out one packing from a
larger one, and how the process of “hex” refinement works. Try it out!

2. s Geometriess demonstrates that CirclePack operates in any of the three
standard geometries: euclidean, represented by the familiar complex plane C; hy-
perbolic, represented by the unit disc D ⊂ C with the Poincaré metric (density
|ds| = |dz|/(1−|z|2)); and spherical, represented by the Riemann sphere C, namely,
the unit sphere {(x, y, z) : x2 + y2 + z2 = 1} in R3. The geometries are said to have
zero, negative, or positive curvature, respectively.

The three geometries are nicely nested, D ⊂ C ⊂ C, with this last inclusion via
“stereographic” projection. Moreover, circles in one geometry are circles in the others
(though centers and radii depending on the geometry). The script illustrates changes in
geometry, displays circles and faces in each, and shows the effects of automorphisms.
The plane is the most comfortable setting for most of us. The sphere is also quite
familiar — after all, we live on a sphere — but in circle packing it is by far the most
challenging. Hyperbolic geometry is perhaps least familiar, but also in many ways
the richest. One detail to note in hyperbolic geometry is that we can have circles of
“infinite” radius. Namely, a horocycle in D is a circle which is internally tangent to
the unit circle. It can be treated in a natural way as a circle of infinite hyperbolic
radius whose center is at the point of tangency with the unit circle. Try it out!

3. s Layouts may help you understand the repacking/layout process; though we
treat both these as blackbox operations in general, one should see at least a little about

384

them. In the script, an embedding of an abstract complex K is displayed (without any
reference to circles). A randomly chosen label R is generated (R will be different
each time you run the script) and circles are drawn using the labels as radii. The
“repack” command adjusts the labels iteratively based on their current values and
the neighbor relationships encoded in K. (One option for repacking lets you see the
intermediate radii in stages.) Boundary radii (red circles) are fixed, interior radii (blue
circles) change to meet the packing condition, but in the display the centers are fixed.
Only when the radii are “right” (i.e., comprise a “packing” label), are we ready for
the “layout” command to move the circles to consistent locations. First, the two
circles for some edge are laid out to be tangent to one another; then the rest of the
circles can be placed unambiguously in succession. The original combinatorial pattern
is preserved, but now the locations for its vertices are determined by the circle centers.
We have a packing! Try it out!

4. s BdryControls illustrates manipulations critical to our later work: solutions
of boundary value problems for radii and boundary angle sums for a small euclidean
packing. The first section of the script emphasizes boundary angle sum manipulations.
With the cursor and key presses you can prescribe boundary angle sums of π, π/2, or
3π/2 at various boundary vertices; other boundary vertices have unrestrained angle
sums which necessarily adjust during repacking. A key observation is that while you
control some things, the packing pushes back on others — there is a mixture of flexi-
bility and rigidity. Here are some things to think about: Can you prescribe boundary
angle sums arbitrarily? Can you generate some problem situations? What happens if
you prescribe all but one of the boundary angle sums? In this case, can you compute
that remaining one? Can you prescribe angles to get the region to overlap itself? Some
of these issues will come up in Exercise 6.5.

It is interesting to contemplate the boundary situation in the other geometries
as well. The script allows you to investigate quadrilaterals in hyperbolic geometry;
the same controls work on boundary angle sums, for instance, but you will see that
the constraints of the geometry are different. Try it out! On the sphere, there
is little we or CirclePack can do. With no packing algorithm, we can’t generate or
manipulate boundary values. (If you study spherical geometry, you can show that
there are boundary constraints. For example, a spherical quadrilateral (if you could
build it) would have boundary angle sums exceeding 2π.)

5. s Type67s investigates connections between combinatorics and geometry using
constant-degree packings, those in which every circle has the same degree (the same
number of neighbors). The takehome message involves these associations: degree 6
circles, flat (zero curvature); degree 5 or less, positive curvature; degree 7 or more,
negative curvature.Try it out!

385

6. Maximal packings are particularly important to our work and are investigated
in three scripts. A maximal packing for a complex K is a univalent circle packing
whose carrier “fills” the underlying geometric space.

The theorem at the very foundation of circle packing is the Koebe-Andreev-Thurston
Theorem. (We say K is a sphere when we mean that it is a triangulation of a topo-
logical sphere.)

Theorem 6.2 (KAT). Let K be a sphere. Then there is univalent circle packing
PK for K living on the Riemann sphere, C. Moreover, PK is unique up to Möbius
transformations of the sphere (and inversions).

Note that we assume our complexes K and associated packings P have the same
orientation, so we will not allow inversions. Also, we say a circle packing for K is
essentially unique if it is unique up to conformal automorphisms of the underlying
space. In our terminology, then, the KAT Theorem states: Every complex K which
is a sphere has a maximal packing PK of the Riemann sphere, and PK is essesntially
unique.

If K is simply connected, but does not triangulate a sphere, then it necessarily
triangulates a topological disc. The central case, both in theory and computations, is
when K triangulates a closed topological disc (we will say that K is a closed disc.)
Specifically, the conditions are that K be finite, simply connected, and have one con-
nected boundary component (boundary edges and vertices).

Theorem 6.3. If K is a closed disc, then there is a univalent packing PK for K in
the hyperbolic plane having the property that all its boundary circles are horocycles.
Moreover, PK is unique up to Möbius transformations of D.

s MaxPackHyps explores this theorem. Since this is key to much of our later
work, I recommend that you go through this script first. You will see the practical
computations in action, but you might also glean the intuition behind the formal proof.
s MaxPackSphs should be run next. It illustrates that the KAT Theorem and

Theorem 6.3 are equivalent, each implies the other. Since packing computations can-
not (yet) be carried out in spherical geometry, the hyperbolic computations are a
prerequisite.

That leavess MaxPackEucls. If K is simply connected but neither a sphere nor a
closed disc, then it is necessarily infinite (possibly having boundary). This third script
investigates some infinite maximal packings. These are only suggestive, of course,
since one cannot actually compute with or display infinitely many circles. However,
the intuition is theoretically sound.

So, the suggested order is: s MaxPackHyps, s MaxPackSphs, s MaxPackEucls.
Try it out! Note that in practice, all simply connected complexes K are finite;
CirclePack has a single command ’max pack’ (or the dropable icon with the big maize
’M’) which will automatically compute a normalized maximal packing PK in the sphere

386

or the unit disc, as appropriate. (Maximal packings exist for non-simply connected
complexes, too. We will see triangulations of the torus in a later script.)

7. s Branchings illustrates one further source of control beyond the boundary
conditions we have studied so far: namely, branching. A circle cv is branched if
it is an interior circle whose neighbors wrap more than once around it. For “simple”
branching, the angle sum at v is 4π and the neighbors wrap twice around it. In general,
if the angle sum is 2πn, the neighbors wrap n times around and the circle is said to
have branch order n − 1. Investigate the local geometry at branch circles in this
script. Try it out!

8. s InputOutputs gives you a tour of CirclePack input/output operations. After
you work with CirclePack for a while, you may want to read/write packings, save/load
scripts, create PostScript images and *.jpg screendumps, etc. Try it out!

6.4. Discrete Function Theory

With experience from the previous scripts, the reader should be ready for the inves-
tigation of discrete analytic function theory. To see how CirclePack displays functions,
repeat s Cookies, which creates the discrete conformal mapping of Figure 6.1.

The script begins with a curve defining a Jordan region Ω. A regular hexagonal
packing Hε (i.e., all circles the same radius ε) overlays Ω in the convas on the right.
Using Ω like a cookie cutter, a packing P of Ω is cut from Hε. The associated complex
K has a maximal packing Q = PK in D, which CirclePack computes and displays in the
canvas on the left. We now have, more or less, the situation as pictured in Figure 6.1.
This is the typical way we will represent our functions f : Q −→ P in CirclePack:
“domain” on the left, “range” on the right. Here’s the official definition.

Definition 6.4. A discrete analytic function is a map f : Q −→ P between
circle packings Q and P which preserves tangency and orientation.

As a practical matter, our discrete analytic functions will always have domain and
range packings that share a common complex K (though, of course, K may vary from
one example to another). If v is a vertex of K with circle Cv in Q, then cv = f(Cv) is
the circle for v in P . If 〈v1, v2, v3〉 is a positively oriented face in K, then 〈Cv1 , Cv2 , Cv3〉
form a mutually tangent, positively oriented triple of circles in Q, and 〈cv1 , cv2 , cv3〉 form
a mutually tangent, positively oriented triple of circles in P .

Note that because of Theorem 6.3, we have already generated data for several
discrete analytic functions. In particular, every packing, P , having a simply connected
complexK is the range of a discrete analytic function: just build its associated maximal
packing PK , and viola, f : PK −→ P is a discrete analytic function. You might well ask
“What is the big deal about functions?” The function is not about the range (alone);
it’s about how the domain changes into the range — it’s about the mapping. Which
circles grow, which shrink? How does the boundary behave? Do the circles remain

387

disjoint, or do some come to overlap? How does the geometry change under f? Which
properties are preserved? which ones change?

Subsequent scripts will teach you how CirclePack can aid in generating mappings
and investigating their properties. In the domain/range mode, as in Figure 6.1, you can
click the left mouse button on a circle in one packing and both it and its counterpart in
the other packing will be highlighted. Check a few pairs of tangent circles in Q to see
that their counterparts are indeed tangent in P . Also observe that the circle centered
at 0 in Q corresponds to the circle of P which is also at 0: this is what we will mean
when we say f(0) = 0. Clicking the middle mouse button will highlight corresponding
faces of Q and P . CirclePack provides various buttons for refreshing, zooming, etc.;
I’ll leave it to you to experiment with the interface. Your goal is to be able to probe
the packings to discover properties of the mapping f .

6.4.1. Conformal Maps. The “cookie” method demonstrated in s Cookies is
a very practical way to create discrete conformal mappings, so called because they
parallel the conformal (i.e., one-to-one analytic) mappings of the classical theory.

There is a second approach which is modeled on the Schwarz-Christoffel methods
seen in Section 5.2. The aim is to find a conformal map of the upper half plane to the
region bounded by a given polygonal path Γ.

The classical formula is (67) (and there is a parallel version when the domain is
the disc). Having such a formula for f suggests a straightforward computation, but
that is not the case. The βj are known in advance from the corners of Γ, but the
“prevertices”, the xj in the formula, are the points mapping to those corners, and
those are NOT known. WHERE does the turning occur? That is the real challenge
with Schwarz-Christoffel. In the discrete version, one confronts this issue head on.
Figure 6.6 illustrates a polygonal packing: the boundary edges of the carrier define a
polygonal curve Γ. The problem, of course, is that you are given Γ and a complex K
first. See how it goes in the next exercise.

Exercise 6.5. First a little euclidean geometry. Given a polygonal path Γ, its
turning angles reside at the corners: when you travel in the positive (counterclock-
wise) direction along Γ and you come to a corner, the angle you turn through to
start the next edge is by convention taken as positive if you turn left, negative if you
turn right. Compute the algebraic total of all the turning angles for simple a closed
polygonal path.

In Schwarz-Christoffel notation, the jth turning angle is βjπ. We can obtain the
boundary angle sum θj at the corner by observing (see Figure 6.6) that θj = π − βjπ.
Conditions on the total of turning angles therefore give conditions on the total of all
boundary angle sums: this will constrain your experiments, so you should work this
out before jumping into the script.
s DiscreteSCs starts with a worked out example for Γ a square. It then chal-

lenges you with a slightly more complicated Γ. You will have to open and read the

388

Figure 6.6. Packing of a polygonal region

script to see how the machinery has been set up and how to manipulate the packing
with mouse and key presses. /dtn.

Exercise 6.6. The Riemann Mapping Theorem says that every simply connected
proper subdomain Ω of the plane is conformally equivalent to a particular “model”
simply connected domain, namely, the open unit disc. This has been extended to
certain multiply connected regions Ω. For instance, if Ω is a connected domain in the
plane bounded by some finite number n of disjoint Jordan curves, then it is called
n-connected. (A “Jordan” curve is a closed curve without self-intersections.) In this
case, there is a conformal mapping between Ω and a standard model multiply connected
domain. There are various possible “models”, but of particular recent interest are
are so-called “circle domains”. A circle domain C in the plane is one bounded by
a finite number of circles. Despite the several numerical methods for computing the
maps for simply connected domains — such as Schwarz-Christoffel — the multiply
connected cases are much tougher. The discrete version is quite elementary, however.
See s CircleDomainss. Try it out!

6.4.2. Basic Function Theory. Let’s look at scripts in which we construct and
study additional types of functions. We start with maps of the unit disc into itself

389

which are important in classical function theory and especially convenient for us since
we can work in hyperbolic geometry. s Schwarzs starts with a somewhat random,
rather small range packing P in D. Incrementally increasing the hyperbolic boundary
radii to infinity (in practice, 5 is sufficiently large!) and P morphs into its maximal
packing PK . The resulting map f : PK −→ P is a discrete analytic function of D into
itself. It is convenient to introduce some notation here.

Definition 6.7. Let f : Q −→ P be a discrete analytic function, where Q and P
are packings with common complex K. The associated ratio function f# : K −→ R
is defined by

(99) f#(v) =
radius(f(Cv))

radius(Cv)
, v ∈ K,

where Cv is the circle for v in Q and f(Cv) is the corresponding circle in P .

f#(v) is the “stretch factor” at the v, the amount that the associated circle is
stretched in going from Q to P . With this for notation, we can illustrate our first piece
of discrete function theory, the Discrete Schwarz Lemma.

Theorem 6.8 (Discrete Schwarz Lemma). Let f : PK −→ P be a discrete analytic
self-map of the unit disc with f(0) = 0. Then f#(0) ≤ 1. Moreover, equality holds if
and only if f is a rotation; that is, P = λPK for some complex λ with |λ| = 1.

Exercise 6.9. Run through s Schwarzs again, but more carefully. Try it out!
Can you see the Discrete Schwarz Lemma in action? The ratio function plays the role in
the discrete theory that the absolute value of the derivative, |F ′|, plays in the classical
theory, so the Discrete Schwarz Lemma precisely parallels its classical counterpart,
even up to the equality statement.

Exercise 6.10. There is a classical extension of the Schwarz Lemma known as the
Dieudonné-Schwarz Lemma. If F : D −→ D is analytic and F (0) = 0, then by the
Schwarz Lemma, |F ′(0)| ≤ 1. According to this extension, there is in fact a certain
universal constant C, 0 < C < 1 (i.e., independent of F) so that |F ′(z)| ≤ 1 whenever
|z| ≤ C. s Dieudonnes sets up experiments so you can try to estimate this constant:
You manipulate a range packing P in D; with color coding, CirclePack shows you the
circles in PK whose (euclidean) radii become smaller in P . How close can these circles
come to the origin in PK? I can give you a bit of help: C is larger than 1/2 but quite
a bit smaller than 1. Try it out! (The correct value can be found in the text at the
end of the script.)

The Discrete Schwarz Lemma is an example of a “monotonicity” result — if you
decrease the boundary radii of Q to those of P , then the radius of the circle at the
origin also goes down. Details are given in [6], but the basic ideas can be seen in the
following Exercise:

390

Exercise 6.11. Consider a mutually tangent triple of circles in euclidean geometry
as illustrated in Figure 6.7. Using the euclidean Law of Cosines, show that if the radius
of circle Cv is increased, then the angle α at Cv will decrease while the angles β, γ at
the other two circles will increase.

Figure 6.7. Monotonicity in euclidean triples

Exercise 6.12. Using the previous fact, prove the following:

Theorem 6.13 (Discrete Maximum Principle). Let f : Q −→ P be a discrete ana-
lytic function between euclidean packings Q and P , and suppose Q is locally univalent.
Then the ratio function f#(v) attains it maximum at some boundary vertex v.

Analogous results hold in hyperbolic geometry and are central to the computation
of packing radii. The failure of this monotonicity in spherical geometry may explain
the lack of a packing alogorithm there.

Exercise 6.14. Show with a computation in spherical geometry (using the Spheri-
cal Law of Cosines) that the monotonicity of 6.11 can fail in spherical geometry. What
appears to be the trigger for such failure? Try it out!

The analogy between f# and the classical |F ′| is not perfect. In particular, |F ′| is
zero at branch points of F , whereas f# will never be zero. Nevertheless, the fact that
discrete functions correctly realize the geometry underlying branching can be seen in
the following Exploration.

Exploration 6.15. An important class of classical analytic self-maps of the disc,
the finite Blaschke products, was introduced in Chapter 4. With the explicit prod-
uct formula shown in (4.6), a Blaschke product B : D −→ D has properties subject
to direct computation. For instance, each factor in the formula accounts for one zero

391

of B, and B extends to a continous map on the unit circle, ∂D, mapping ∂D n times
around itself, where n is the number of factors in B.

However, there is a more geometric characterization of finite Blaschke products:
they are precisely the proper analytic maps f of D onto itself. “Proper” means that
whenever {zj} is a sequence of points in D converging to the unit circle, |zj| → 1, then
the images, {f(zj)}, also converge to the unit circle, |f(zj)| → 1. By orientation, B
wraps the boundary around itself some number n times, and from this the argument
principle implies that B will have n − 1 branch points inside the disc. It is these
geometric properties which lead you to discrete finite Blaschke products, as you will
see in s Blaschkes. Try it out! You also get a closeup look at branch points — a
chance to demystify the local geometric behavior.

Analytic functions present this fascinating mixture of rigidity within flexibility
— I’m convinced that this explains why they have attracted such attention for two
centuries now. You get to manipulate some features, but then you have to live with
the consequences that conformal rigidity brings. This mixture is rather difficult to get
a handle on, but there are two particular notions mathematicians have invented that
give some insight: harmonic measure and extremal length.

6.4.3. Harmonic Measure. Let Ω be a Jordan region Ω in the plane (that is, one
bounded by a simple closed curve) and A a subset of it boundary, A ⊂ ∂Ω. There is a
unique harmonic function h defined on Ω which goes to 1 as z approaches a point of A
and goes to 0 as z approaches a point of ∂Ω\A. (We necessarily suppress finer details
about measurability and continuity here.) h is known as the harmonic measure
function and written as h(z) = ω(z, A,Ω,,.) (Notations like ω(z, A,Ω,,m)ay be new
to you: the denotes a function whose value depends on three things, the point z ∈ Ω,
the boundary arc A in ∂Ω, and the region Ω itself. Hold any of these fixed, and it’s a
function of the others.)

We also say that ω(z, A,Ω,,i)s the harmonic measure of A at z with respect
to Ω. This is called a “measure” because if you keep z and Ω fixed, then it is a
probability measure on the variable sets A. Observe that ω(z, A,Ω,∈, [)0, 1], with
ω(z, ∅,Ω,=, 0), ω(z, ∂Ω,Ω,=, 1), while if A1, A2 are disjoint in ∂Ω, then ω(z, A1 ∪
A2,Ω,=, ω(), z, A1,Ω,+)ω(z, A2,Ω,,.)

There are two especially nice properties of harmonic measure in the classical setting:

(1) It is easy to compute in certain simple situations: In particular, if Ω is the
unit disc D and z is taken as the origin, then ω(0, A,D,=,)arclength(A)/(2π), the
proportion of the unit circle that A occupies as seen from the origin.

(2) It is a conformal invariant; that is, it is invariant under conformal maps.
Put more explicitly, suppose F : Ω1 −→ Ω2 is a conformal map (i.e., a conformal
homeomorphism) between two domains. Under quite weak conditions, it is known
that F can be extended to map the boundary onto the boundary, F : ∂Ω1 → ∂Ω2.

392

Given A1 ⊂ ∂Ω1, define A2 to be its image A2 = F (A1) in ∂Ω2, and suppose
z1 ∈ Ω1 and z2 = F (z1) ∈ Ω2. Then ω(z1, A1,Ω1,=, ω(), z2, A2,Ω2,).

If you put these two properties together with the Riemann Mapping Theorem, one
can, in theory, find the harmonic measure function for any simply connected region.
How might this be useful? Here’s but one of numerous applications. Suppose a ho-
mogeneous, thin metal plate is cutout in the shape of Ω. Suppose a segment A of the
boundary is held at 100 degrees (centigrade), while the remainder of the boundary
is held at 0 degrees. After the plate has had time to reach thermal equilibrium (so
temperatures are no longer changing), what is the temperature at a point z in the
interior of the plate? It is evidently somewhere between 0 and 100, it would approach
100 as z comes closer to A, and 0 as z gets closer to other parts of the boundary. But
what is the temperature precisely at z? The answer is precisely 100 · ω(z, A,Ω,,.)

In s HarmMeasures we investigate the discrete analogy. I can share the definition
now, since it is motivated directly by property (1). Suppose K triangulates a closed
topological disc, A is a chain of edges in ∂K, and v ∈ K is an interior vertex of K.
Let PK be the maximal packing for K in D which has the circle for v centered at the
origin. Each edge e ∈ A corresponds to an arc αe ⊂ ∂D between the centers of the two
horocycles forming e.

Definition 6.16 (Discrete Harmonic Measure). Given K,A, and v as described,
the discrete harmonic measure of A at v with respect to K is

ω(v,A,K,=,
∑

)e∈Aarclength(αe)/(2π).

So, in fact, discrete harmonic measure is defined directly on K. The invariance
of property (2) above in the discrete setting is merely due to the definition. In the
script, however, you will see its geometric nature exhibited, much as you would see
the temperature distributed about a plate in the application noted above. A couple
of experiments are quite convincing that the same geometry is at work in both the
discrete and the classical settings: we discuss harmonic measure and exit probabili-
ties, comparing the classical and discrete versions for a region, and we illustrate the
extension of domain princple.

6.4.4. Extremal Length. Extremal length is a slightly more nuanced measure
of conformal “shape”. Start with the Jordan region Ω again, but this time suppose we
are given disjoint closed subarcs A and B of its boundary; the triple Q = {Ω;A,B} is
described as a “conformal quadrilateral”.

A classical theorem states that there exists a conformal mapping F : Ω −→ R,
where R is a euclidean rectangle, so that F extends continuously to the boundary and
so that the images F (A), F (B) are opposite ends of R. F is unique up to euclidean
similarities. (You might sense a similarity to a Schwarz-Christoffel situation, as in-
vestigated earlier, but this is quite different. The four boundary points mapping to
corners are specified, but the shape of the image rectangle is not set in advance.)

393

Figure 6.8 illustrates the analogous discrete result you will see in s ExtLengths.
By a rigid motion, image rectangles can be positioned as shown here, with the images
of A and B on the left and right, respectively. The aspect ratio of R will be defined
as its width over its height, Aspect(R) = W/H.

Figure 6.8. Packing for extremal length

Continuing our discussion of the classical setting, Aspect(R) is known as the ex-
tremal distance from A to B, relative to Ω, or the extremal length of the quadri-
lateral Q, denoted EL(Q). As with harmonic measure, there are two key properties:

(i). Extremal length is easy to compute in certain simple situations: For instance,
if Ω is a euclidean rectangle width W and height H, and A and B are its two ends,
then clearly EL({Ω, A,B}) = W/H.

(ii). Extremal length is a conformal invariant; that is, ifQ1 = {Ω1;A1, B1} and
Q2 = {Ω2;A2, B2} are conformal quadrilaterals and F : Q1 −→ Q2 is a conformal
mapping such that F (A1) = A2 and F (B1) = B2, then EL(Q1) =EL(Q2)

Also as with harmonic measure, there are physical interpretations. Suppose Ω is a
uniform conducting metal plate in the plane, the boundary segment A is attached to a
1 volt power supply, the boundary segment B is grounded, and the remaining segments
of the boundary are insulated. Then the current flow between A and B in amperes
will be proportional to EL({Ω, A,B}), the constant depending on the properties of the
metal.

Discrete analytic mappings to rectangles having designated boundary vertices as
corners are quite easy to compute by methods you have already seen in s RePacks:

394

you simply specify that all boundary vertices have angle sum π except for the four
which are to be the “corners”, and these you set to π/2. s ExtLengths illustrates
the construction of Figure 6.8 and explains how CirclePack reports the extremal length
when you have a rectangle. You are asked to modify the constructions to answer a
question about current flow. You might then test your intuition with an extremal
length analogue of the extension of domain principle we saw with harmonic functions.

One last script for this section, s MiscFtnTheorys, illustrates the range of mis-
cellaneous behaviors you might encounter with discrete analytic functions. These can
provide concrete insights you might carry back to the classical setting.

6.5. Function Construction

We have “hands-on” control of our discrete functions, but this is not like the
formula-driven and algebraic control available in the classical setting. In the discrete
world, we have limited ability to add or multiply functions, and essentially no way to
consider compositions of the type studied in Chapter ??. To build functions we require
something geometric to hook into. We have seen several examples already: to get
maximal packings in D, we send boundary radii to infinity; to build euclidean poly-
gons, we control their boundary angle sums; to create Blaschke products, we designate
branch circles. The next sequence of scripts give additional examples, some involving
techniques, others relying on special circumstances or outright tricks. There’s plenty
of room for creative thinking in this.

6.5.1. Discrete Exponentials. s Doyles challenges you to adjust parameters
in a family of fascinating circle packings known as Doyle spirals. With patience you
can build a range packing which clearly mimics the classical exponential function. Try
it out! Read the script for guidance, but then experiment on your own. The answer
is revealed at the end.

6.5.2. Discrete Rational Functions. A classical rational function is one of the
form F (z) = P (z)/Q(z), where P (z), Q(z) are complex polynomials (assumed to have
no common factors). Projecting stereographically to the sphere in both domain and
range, F may be considered as a map from the Riemann sphere to itself, F : C −→ C,
and that will be our view here. In particular, if P (z) = 0, then F (z) = 0, while if
Q(z) = 0, then F (z) = ∞. The behavior at ∞ in the domain depends on relative
degrees: if deg(P) >deg(Q), then F (∞) = ∞, if deg(P) <deg(Q), then F (∞) = 0,
and if deg(P) =deg(Q), F (∞) is a non-zero complex number.

The sphere is compact, and F : C −→ C is an open continuous map, so key
properties of rational maps are purely topological: F has a constant valence, N > 0;
that is, for every point p ∈ C, F−1(p) has N points (counting multiplicities at branch
points). The valence N satisfies N = max{deg(P), deg(Q)}. Moreover, there are
precisely 2(N − 1) branch points. (This counts multiplicities at branch points, which

395

may include branching at infinity.) As you build examples you should watch for these
properties directly.
s Rational1s (???? Poly) shows one technique for the construction of rational

maps, since polynomials P are themselves rational maps (take Q ≡ 1): the valence N
is just the degree of P . The discrete construction in s Rational1s illustrates these
“polynomial-like” rational maps. To get a taste for what should be “more typical”
rational maps s Rational2s gives a particular example that was constructed using
the special geometry of “Schwarz” triangles on the sphere. This is a beautiful example:
it is the discrete analogue of F (z) = z2(3z5− 1)/(z5 + 3), with valence 7 and 12 simple
branch points. Lovely as it is, it just highlights a major capability that is missing in
our discrete theory: we have no algorithm for computing packing labels directly in
spherical geometry.

6.5.3. Ratio Function Constructions. Recall that if f : Q −→ P is a discrete
analytic function, then the associated local scaling, the analogue of |F ′| for analytic
functions, is given by its ratio function f#. (See Definition 6.7.) In particular, if we
wish to build a discrete analogue f for some classical function F , we might begin from
this differential level, mimicking |F ′|.
s RatioBuilds builds a discrete analogue for the classical function F (z) = (1 +

z)2, which was illustrated in Chapter 4, Figure 4.2, using the applet ComplexTool.
Ratio function constructions also give an approach to entire functions. We illustrate

in s Erfs for a function central to statistics, the error function erf (z) defined by

erf (z) =
2√
π

∫ z

0

e−ζ
2

dζ.

When z is restricted to the real axis, z = x, then the derivative of erf (x) is the
Gaussian distribution, the famous “bell-shaped” curve. You may recall that this func-
tion has no closed for anti-derivative, which explains the integral representation for
erf (z).

The construction of the discrete error function illustrates several construction is-
sues. Let me highlight a few to prepare you.

(1) First, F , as an entire function, is defined on the whole complex plane. Dis-
crete entire functions would likewise be defined on infinite complexes, as the discrete
exponential we defined earlier on the regular hexagonal packing. Experiments and
computations, however, are restricted to finite complexes. Our approach relies on “ex-
haustion”: we mimick F using finite packings that take up successively larger, but
finite, portions of C.

(2) F has infinite valence: for every w ∈ C, F−1{w} has infinitely many points. In
fact, its “mapping” behavior is quite fascinating to watch. Early in the construction, it
may appear that we are omitting two points, w1, w2, much as the exponential omits the
image value 0. That, however, would contradict the Little Picard Theorem, which tells

396

us that a nonconstant entire function can omit at most one value in the complex plane.
Watch more stages in the construction and see how our growing function manages, in
fact, to cover everything. It turns out that though not omitted, w1 and w2 are what
is known as asymptotic values, that is, there are paths in the domain whose image
paths converge to w1 or w2. Can you find such paths in the CirclePack experiments?

(3) Does the sequence of packings of this construction ultimately converge to an
infinite circle packing? If so, it would answer in the negative one of the earliest questions
in circle packing:

Question 1. Are the regular hexagonal packings and the Doyle spirals the only
locally univalent hexagonal circle packings in the plane?

But is there, in fact, an infinite packing behind this construction? Each stage of
construction is finite, so this is a convergence issue, and it remains unresolved. The
script has both positive and negative indications.

6.5.4. Harmonic Mappings. Recall from Section 4.31 that harmonic mappings
H on the disc can be written in the form F (z) = H(z) +G(z) where H,G are analytic
in D. While the “addition” here is not a geometric feature that can be carried directly
by our circles, there is a discrete fact that captures the local behavior which we will
discuss in a moment. The upshot is that if one just jumps in with discrete functions,
the fundamental global phenomena appear to persist. In this section we start with the
mechanics, see some examples parallel to ones in Chapter 4, then set up some lines of
open experimentation for you.

Take a quick run through s HGBasicss. Try it out! The way CirclePack
operates, h and g will be discrete analytic functions on the disc, so, within each example
they will share a complex K and have its maximal packing PK as their common domain.
In fact, there will be no need to view PK , but ins HGintros h is taken as the identity
function, so PK itself appears in p0 as the range of h. The image of g appears in p1.
On execution of ’h g bar’, the sum h+ g is displayed in p2. CirclePack requires that
the range packings for h and g both be euclidean, and a key feature in s HGintros
is that their boundary radii are identical. The script starts with g also the identity,
so the initial f is pretty boring. However, if you press ’b’ on an interior circle of
h, you will that to become a branch circle for g. The image of f is immediately
more interesting. You can add additional branch points and see some of the behavior
described in Chapter 4. In particular, since the boundary radii are identical for h and
g, the complex dilatation function w(z) is a discrete finite Blaschke product.

Also in s HGintros we display, strictly for purposes of comparison, the addition
h + g (no conjugation bar on g now). The result f = h + g, which appears in p2,
will approximate the classical sum of these analytic functions. However, the radii
associated with f are simply the sums of radii from h and g, and when you display the
circles in p2 you see that they are not a packing label. In other words, in this algebraic
situation, the circles are no longer doing the work for you.

397

The next script, s HGexampless, illustrates a few additional examples related to
Chapter 4.

A last script, s HGtrialss, sets up various adjustments you can implement with
mouse and keys for more open-ended experiments. And, of course, you can also add
actions of your own devising. Certain keys will increase boundary radii of g, and this
introduces you to another feature: faces of f (in p2) are colored blue if f reverses
their orientation. We know from the classical theory, that this can happen only if
|G′|/|H ′| > 1 on some part of ∂D. In the discrete setting, absolute values of derivatives
are replaced by sharp functions; if you return to the definition of the sharp function
and recall that h, g share the same domain packing, you see that the discrete condition
becomes g#/h# > 1 on some vertices of ∂K. Therefore, by manipulating the relative
sizes of the boundary circles in p0 and p1, we affect the orientation of f = h+ g.

Exercise 6.17. Verify this bit of local geometry, which may account for the prop-
erties of these discrete harmonic functions. Consider euclidean triangles T and t with
vertices {Z1, Z2, Z3} and {z1, z2, z3}, respectively. Assume that each of these triples
is positively oriented. Now form a new triangle ∆ with vertices {w1, w2, w3}, where
wj = Zj + zj, j = 1, 2, 3. (The bar here denotes complex conjugation of zj.) The issue
is whether ∆ is necessarily positively oriented.

In general, the answer is ”no”, but here is a pretty fact that you should try to prove:
If T and t happen to be formed by mutually tangent triples of circles {C1, C2, C3} and
{c1, c2, c3}, and if radius(cj/radius(Cj) <= 1, j = 1, 2, 3, then ∆ is indeed positively
oriented. In other words, the classical boundary condition for preserving orientability
of H +G, namely |G′|/|H ′| < 1, carries over to the discrete case at the local face level.

Use your favorite computer math package to build examples. Show first that ∆
can indeed have reverse orientation in general. But even more is true: show that even
if you arrange that the side lengths of t are individually less than the corresponding
side lengths of T , ∆ may still end up with reverse orientation. Mysteriously, however,
when those side lengths are sums of radii, and the radii for t are individually less
than those for T , then ∆ remains positively oriented!

6.6. Convergence

We have introduced the basic local geometry of circle packings, moved on to defining
mappings between packings, and investigated the emergent global geometric properties.
The claim has been made — with convincing evidence, I hope — that these mappings
deserve the name “discrete” analytic functions. Can we, in fact, move beyond mere
parallels?

The answer is a resounding yes. Though granularity prevents discrete analytic
functions from actually being analytic functions, with a suitable refinement process
for improving resolution, they can be made to approximate analytic functions. Circle
packing got started with exactly this approximation issue with the celebrate Rodin
and Sullivan Theorem explained below. Let’s see it in action first.

398

s DiscreteRMTs picks up from our earlier script s Cookies. Recall that you
can build a range packing P by cookie cutting a region Ω from a regular hexagonal
packing. The maximal packing Q having the same combinatorics becomes the domain
in D. A standard CirclePack normalization puts the circle for the α vertex at the origin
in both Q and P , and a γ vertex on the imaginary axis in each. The map f : Q −→ P
is then a discrete conformal map.

At issue: How well do these discrete mappings approximate the classical conformal
mapping F : D −→ Ω guaranteed by the Riemann Mapping Theorem? In s Cookies
it was suggested that you try the optional ’i’ and ’d’ commands to increase or decrease
the radii of the hexagonal overlay. If you didn’t try them, you have another chance here
in s DiscreteRMTs. Making those circles smaller — hence using more of them —
is a key method for improving resolution. The effectiveness of such refinements is the
content of the foundational theorem by Burt Rodin and Dennis Sullivan, paraphrased
here.

Theorem 6.18 (Rodin and Sullivan, [5]). Let Ω be a bounded simply connected
domain in the plane and for each ε > 0 let fε be the discrete conformal mapping created
as in the script, based on a regular hexagonal packing with circles of radius ε. Let
F : D→ Ω be the classical conformal mapping with the same normalization. Then the
functions fε converge to F uniformly on compact subsets of D as ε→ 0. Moreover, the
ratio functions f# converge uniformly on compact to the modulus classical derivative,
|F ′|.

The script illustrates the quality of a particular discrete mapping in two ways.
One is rather self explanatory, imposing a spoke-and-wheel grid on the domain disc
and having the discrete analytic function carry that forward to Ω. This result is
compared in Figure 6.9 with the analogous result computed using Toby Driscoll’s
Schwarz-Christoffel software (citeDSCT). (These markings are related to the “flow”
lines employed in Chapter 3.)

A second test of quality is illustrated in s DiscreteRMTs via color-coding. Let
me briefly describe this. First, treat both Q and P as euclidean packings and pay
attention to their carriers. We can reimagine f : Q −→ P as a more familiar type of
function; namely, as a function f : carr(Q) −→ carr(P) mapping each face of carr(Q)
onto the corresponding face of carr(P), with the vertices (circle centers) mapped to
corresponding vertices. This can be accomplished nicely by defining f to be piecewise
affine, that is affine on each face of carr(Q). I will let the reader look into the defintion.
For our purposes it is enough to note that if T1 is a face of carr(Q), then f maps T1 to
the corresponding face t1 of carr(P) and has the form

f(x, y) = (ax+ by + x0, cx+ dy + y0), (x, y) ∈ T1,

for some real values a, b, c, d, x0, y0. Such a mapping is quasiconformal with dilata-
tion given by K = w +

√
w2 − 1, where w = (a2 + b2 + c2 + d2)/(2(ad − bc)). In

particular, K ≥ 1 and f is conformal (analytic) on T1 iff K = 1, that is, iff T1 and t1

399

Figure 6.9. Two conformal approximations: (a) circle packing, (b)
Schwarz-Christoffel

are similar triangles. In general, the size of K reflects the how close the mapping f is
to being analytic. The experiments in s DiscreteRMTs color code the faces of the
range packings. For each face, the further the dilatation of f on that face is from 1,
the more red its color, up to some cutoff, (e.g. K = 1.2); for dilatations larger than
the cutoff, the face is colored blue . In this scheme, the closer the color gets to white,
the closer the dilatation is to 1, that is, the closer the function is to being analtyic. In
the script commands have been set up to display grids and this color coding: run the
script with increasing refinements levels to see the affects on accuracy.

The convergence of discrete objects to their classical counterparts seen in the
Rodin/Sullivan theorem actually holds much more generally, indeed, in essentially
all the settings we have discussed in this chapter. First, a few cautionary words on
increasing the complexity: • Computational penalty: repacking and display times can
increase dramatically. • Roundoff errors: these can accumulate, interfering with lay-
out, display, and other operations. • Display crowding: objects and indices are harder
to see, harder to pick out with the mouse, and so forth, and display updates are slower.

Nevertheless, CirclePack can handle packings with hundreds of thousands of cir-
cles, so give these scripts a try. A few ill advised mouse clicks can push you into a
computational neverland — but of course, you can always kill CirclePack and start
over!

Exercise 6.19. s RandomRefines illustrates the use of random packings in place
of regular hexagonal packings. Again, you should create you own simply connected
region Ω, then apply the commands developed in the script to create and investigate the

400

discrete conformal mappings. Refinement is accomplished by increasing the number of
circles in the random packing.

Exercise 6.20. s MultiRefines illustrates maps between multiply connected
regions, as in s CircleDomainss. If you want to modify the region Ω, note that each
component of ∂Ω requires its own “PATH” file.

Exercise 6.21. Runs ErfRefines to pursue hex refined packings for the “error”
function we encountered in s Erfs (see [6, §14.4]). One method for judging how
closely the results mimic the classical erf (z) is to compare the images of the unit circle
under the discrete map and the classical map. Methods are given in the script to
display the former. However, you should use your favorite math package to generate
the latter; the script explains how to read and display a path given as a list of x, y
coordinates.

Exercise 6.22. This exercise sets a simple task: estimate the complex number
B(3i/4) for a classical finite Blaschke product B. However, all you know about B
is this: B(0) = 0, B(1) = 1, B has three zeros (counting multiplicies), and B has
branching (i.e., B′ vanishes) at z1 = (1 + i)/2 and z2 = −1/2. It is known that
appropriate discrete finite Blaschke products bn will converge uniformly on compact
subset of D to B (an extension of the Rodin/Sullivan theorem to branched packings).
s BlaschkeRefines allows you to create discrete functions bn (at various refinement
levels) based solely on this type of data. You will have to tailor the construction and
normalizations to match this particular B. Then you are asked to apply two methods
for estimating B(3i/4): (1) Use the values bn(3i/4) for the bn you constructed. (2)

Locate the zeros of the bn, use those to build a classical finite Blaschke product B̂ close

to B, then compute B̂(3i/4) in your favorite mathematics software. The point is that
classical Blaschke products are best constructed from their zeros, while their discrete
analogues are best constructed from their branch points.

Nearly every script from Sections 6.4 and 6.5 involves packings which are subject
to the types of refinements we’ve just discussed, and invariably the discrete objects
will converge under this refinement to their classical counterparts. The reader should
pick a topic and create a script which implements appropriate refinement: discrete
exponentials, discrete rational maps, discrete ratio function constructions, discrete
harmonic functions — each project will have its distinct character.

6.7. Wrapup

I hope the reader has enjoyed this chapter. Perhaps it has given you a new way to
look at and think about analytic functions. As discrete theories go, circle packing is
arguably unique in the breadth, depth, and fidelity with which it captures its subject.
The essential phenomena appear with even the simplest of packings, where you seem
to glimpse the heart of analyticity. As complexity increases, that fidelity only grows,

401

to the point that you can reliably investigate — perhaps even discover new phenomena
— in the classical theory. So it is a full-featured “quantum” theory, classical in the
limit, with experimental and visualization capabilities to boot.

This chapter may also have introduced you to a topic of interest in its own right.
There is a lot of room for growth in circle packing: packings on surfaces, packings
of random triangulations, graph embedding, and a growing list of applications. And
wherever circle packing goes, there, too, will be complex analysis!

6.8. Additional Exercises

Here are three additional exercises to stretch your understanding of circle packing.
The first challenge in each is simply understanding the mechanisms being illustrated
in the scripts. After that, however, you may see new directions for experiments, and
you are encouraged to set your own path of discovery.

Exercise 6.23. Seeing the connection between triangulations and circle packings
may have piqued your curiousity about more general triangulations. Whereas our
complexes K have been simply connected up to this point, the situation in s Toruss
is quite different: here K triangulates a torus. A torus is topologically equivalent to
the surface of an inner tube, so you would rightly guess that one cannot realize a circle
packing for K in the plane. Yet the script presents you with the “packing” P shown
on the left in Figure 6.10.

Figure 6.10. Circle Packing of a torus with color-coded side pairings

Interpretation of P rests on the color coded “side-pairings”: The 32 shaded circles
form the packing, but additional tangencies exist on the torus. Since we cannot realize
these in the plane, we create ghost circles (the unshaded ones on the left): the circles

402

centered along one colored edge are identified with corresponding circles along the other
edge sharing that color. You may be able to see the matchings in the image either
from the combinatorics or the radii, but the script should help you explore. The image
in the right of Figure 6.10 presents this in another fashion; here translated copies of
the packing tiling the plane.

Ultimately, however, it’s up to you to come to terms with this represention for
circle packings of tori. It may help to create your own triangulated torus and insert it
into the script data section in place of the current packing. Encoding of complexes is
described in the “Formats” tab of the Help Frame of CirclePack. Let me offer a specific
challenge: create a combinatorial torus K having just 7 vertices — the smallest number
possible for a proper triangulation (that is, one in which any two faces are disjoint,
share a single vertex, or share an edge and its end vertices). This may be a little harder
than you expect.

Exercise 6.24. An experimental capability of CirclePack that we touched on
briefly in s Patternss involves the “adjoin” operation for triangulations. Observe
that when two simply connected triangulations K1 and K2 have the same number of
boundary vertices, they can be pasted to one another along the full length of their
boundaries. The result is a new triangulation K of the sphere. A packing P for K in
C then provides simultaneous packings for K1 and K2 while also giving an embedding
for their common boundary curve, the so-called welding curve, on the sphere.

The basics are demonstrated with Owl in s OwlWeldings. Among other things,
interest lies in how the shape of the welding curve is determined by our choices in
attaching K1 and K2. There is a connection with conformality; suffice it to say that
it is related to a classical topic called conformal welding (see [9]). Learn about the
“double” and “adjoin” operations, and let the experiments begin.

Exercise 6.25. The CirclePack algorithms for computing circle packings work in
euclidean and hyperbolic geometry. Unfortunately, there is as yet no general algo-
rithm that works directly in spherical geometry, and the spherical packings in previous
scripts have been stereographic projections from the plane or disc. All is not lost, how-
ever. At least a smattering of examples can be created by hand using basic spherical
geometry in conjunction with combinatorial symmetries. Figure 6.11 illustrates an ex-
ample with the combinatorics of the soccer ball: (a) shows the maximal packing, while
(b) is a branched packing having the same combinatorics. Investigate this further in
s SoccerPacks. Try it out! .

Both packings in Figure 6.11 are constructed using the geometry of Schwarz tri-
angles. The univalent packing Q shows the symmetry of the regular dodecahedron:
12 symmetrically distributed circles each with five neighbors, the remaining 20 circles
each with 6 neighbors. (This packing can, in fact, be created by standard methods
in CirclePack; see s MaxPackSphs). The packing P shares the same combinatorics,
but the degree five circles are all branch circles, so P defines a 7-fold covering of the

403

Figure 6.11. Circle packings with soccer ball combinatorics

sphere. The map f : Q→ P is thus a discrete rational function with 12 simple branch
points and valence 7.

Both Q and P can be created using the spherical triangles of Figure 6.12, two of
several triangles known as “Schwarz” triangles. The Schwarz 〈2, 3, 5〉 triangle t (i.e.,
having angles π/2, π/3, and π/5) is pictured in Figure 6.12(a). A second triangle, the
〈2, 3, 5/2〉 Schwarz triangle T , is shown in (b) (at a different scale). Dashed lines on T
show how it is built from 7 copies of t. A Pattern of two circular arcs is imprinted on
t in (a) and the analogous pattern is imprinted on T in (b).

Figure 6.12. Schwarz triangles t and T

404

A Schwarz triangle can be reflected across any of its three edges to form a copy
of itself with reverse orientation. Repeated reflections will tile the sphere; in the case
of t this tiling involves 120 non-overlapping copies. Carrying the imprinted arcs along
during the reflection process gives us a univalent circle packing with 42 circles, our
maximal packing Q. The identical reflection process, but now starting with T , gives
120 copies which tile the sphere 7 layers deep and whose imprinted arcs give our packing
P . In any copy of T , it takes 10 reflections around the vertex with angle 2π/5 to close
up, and this accounts for the 12 branch points of P . The script s Soccers lets you
check one of these visually to see the 5 (huge) neighboring circles wrap twice around
it.

Schwarz triangles where first used to generate branched circle packings of the sphere
in [1] (see Appendix H of [6]). However, the example of Figure 6.13 and other equally
beautiful examples were created by Samantha Corveno, one of my REU (Research
Experience for Undergraduates) students.

Figure 6.13. A branched packing due to Samantha Corvino

There are a handful of additional Schwarz triangles, and other options for circular
markings, so the challenge to you is to create yet more examples. For each, you
will need to encode the combinatorics K for CirclePack, which can then generate the
associated maximal packing. However, CirclePack cannot find the radii and centers
for the branched packing. For this you will have to apply some spherical trigonometry,
record the results in a packing file and CirclePack will then display them. To get you
started, I’ve put another of Samantha’s examples with more details in s Tri432s.
Try it out!

405

Bibliography

1. Philip L. Bowers and Kenneth Stephenson, A branched Andreev-Thurston Theorem for circle pack-
ings of the sphere, Proc. London Math. Soc., 73 (1996), 185–215.

2. Charles R. Collins and Kenneth Stephenson, A circle packing algorithm, Computational Geometry:
Theory and Applications 25 (2003), 233–256.

3. Tobin A. Driscoll and Lloyd N. Trefethen, Schwarz-Christoffel Mapping, Camb. Univ. Press, New
York, 2002.

4. Tobin Driscoll, Schwarz-Christoffel Toolbox, for Matlab, http://www.math.udel.edu/∼driscoll/-
software/SC/

5. Burt Rodin and Dennis Sullivan, The convergence of circle packings to the Riemann mapping, J.
Differential Geometry 26 (1987), 349–360.

6. Kenneth Stephenson, Introduction to circle packing: the theory of discrete analytic functions,
Camb. Univ. Press, New York, 2005.

7. Kenneth Stephenson, Circle packing: A mathematical tale, Notices Amer. Math. Soc. 50 (2003),
no. 11, 1376–1388.

8. William Thurston, The finite Riemann mapping theorem, 1985, Invited talk, An International
Symposium at Purdue University in celebrations of de Branges’ proof of the Bieberbach conjecture,
March 1985 (unpublished).

9. G. Brock Williams, Discrete conformal welding, Indiana Univ. Math. J., 53 (2004), 765–804.

406

