
APPENDIX A

Background

Notation Page
The following notation will be defined and employed throughout the text, and so

we collect it here for easy reference.

N = the natural numbers.
Q = the rational numbers.
R = the real numbers.
R = R ∪ {∞} = the extended real numbers.
R2 = {(x, y) : x, y ∈ R} = the Euclidean plane.
C = {x+ iy : x, y ∈ R; i =

√
−1} = the complex numbers.

Re(z) = the real part of z.
Im(z) = the imaginary part of z.
C = C ∪ {∞} = the extended Complex plane or Riemann Sphere.
C(a, r) = {z ∈ C : |z − a| = r}, Euclidean circle.
4(a, r) = {z ∈ C : |z − a| < r}, open Euclidean disk.
D = 4(0, 1) = the open unit disk centered at 0.
σ = the spherical metric on C.
4σ(a, r) = {z ∈ C : σ(z, a) < r}, open spherical disk.
Int(E)= interior of a set E in C.
E = closure(E) = closure of a set E in C.
∂E = boundary of a set E in C.
domain(f) = domain set of function f .
Res(f, z0) = the residue of f at z0.
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This appendix is intended to be a summary of some of the major topics and theo-
rems from a standard undergraduate complex analysis course. Since it is only a review
of the material, we do not prove all the results here, but rather direct readers looking
for more details to the main reference texts [1] and [3], and occasionally to the more
advanced text [2]. Additionally, a few advanced topics are also included here. These in-
clude the Riemann Mapping Theorem, the Open Mapping Theorem, and the Schwarz
Lemma. The extended notion of analyticity on the Riemann sphere C is addressed
separately in Appendix B.

A.1. Functions of a Complex Variable as Mappings

A complex valued function f defined on a set R ⊂ C is denoted f : R → C. We
often denote the domain set of f by domain(f), and without further mention use the
convention that we may express z = x+iy = (x, y) and f(z) = f(x, y) with the implicit
understanding that x = Re(z) and y = Im(z). Also, the set f(R) = {f(z) : z ∈ R} is
called the range of f . Lastly, if A ⊂ C, we denote the inverse image (or preimage) of
A under f by f−1(A) = {z ∈ R : f(z) ∈ A}.

A.1.1. Linear Functions. We can examine the linear mappings f(z) = az+b, for
constants a, b ∈ C, by first considering the simpler functions h(z) = az and g(z) = z+b.

Writing the variable z = reiθ and the parameter a = |a|eiα in polar form, we can
express the image point as h(z) = az = r|a|ei(θ+α). Hence, the function h maps the
point z to the point h(z), which geometrically can be interpreted as a stretching or
contraction of the modulus by |a| and a rotation about the origin by the angle α.

We can understand the action of the function g(z) = z + b geometrically as trans-
lating the point z by |b| units in the direction of the vector b.

Putting this together we see that the function f(z) = az + b is the composition
g(h(z)) which moves a point z by stretching or contracting by |a|, rotating by the angle
α, and then translating by the point (vector) b. See Figure A.1 for an example.

Translate by b = i.

Stretch by factor of |a| = 2.

Rotate by Arg(a) = π/4.

z

f(z)

Figure A.1. An illustration of the map f(z) = az + b for a = 2eiπ/4

and b = i.
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A.1.2. Power Functions. Consider the map f(z) = zn for fixed n ∈ N, where
N denotes the natural numbers. Expressing the variable z = reiθ in polar form, we
see that f(z) = (reiθ)n = rneinθ; that is, under the action of f the point z has its
modulus raised to the nth power and its argument multiplied by n. See Figure A.2 for
an illustrative example.

z 7→ z3

Figure A.2. An illustration of the map z 7→ z3.

A.1.2.1. Roots of unity. Fix a positive integer n. We call any of the n solutions
to the equation zn = 1 an nth root of unity, noting that each must be of the form
ωk = e2kπi/n for k = 0, . . . , n − 1. We also note that these nth roots of unity can be
expressed 1, ω1, ω

2
1, . . . , ω

n−1
1 and that these are equally spaced points on the unit circle

|z| = 1.

A.1.3. The Exponential Function. The definition of the exponential function
arises naturally out of Euler’s formula eiθ = cos θ + i sin θ.

Definition A.1. If z = x+ iy, then

ez = ex(cos y + i sin y).

The preceding definition has two important consequences:

(1) The exponential function maps C onto C\{0}.
(2) The exponential function is periodic of period 2πi.

A.1.4. The Logarithm Function. The essence of the logarithm function is in its
role in providing an inverse of the exponential function. However, since the exponential
function is not one-to-one, special consideration must be taken by first understanding
arg(z).

Definition A.2. For a complex number z 6= 0, the argument of z, denoted arg(z),
is the set of all θ ∈ R such that z = |z|eiθ. The principal value of the argument,
denoted Arg(z), is the unique such angle θ with −π < θ ≤ π.
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Definition A.3. The function log(z) is the multiple-valued function

log(reiθ) = ln(r) + iθ,

where ln(r) denotes the real-valued logarithm. Alternatively, we may define

log(z) = ln |z|+ i arg(z).

Since log(z) is multiple-valued (because arg(z) is multiple-valued), it is not really
a function in the traditional sense. To make it a function, we can use the principal
value of the argument, Arg(z).

Definition A.4. The principal value of the logarithm is the function defined by

w = Log(z) = ln |z|+ iArg(z).

It has domain set C\{0} and range −π < Im(w) ≤ π, but is not continuous at any
point of the negative real axis.

Important Technology Note: While mathematically we use Log(z) and Arg(z)
to denote the principal values of the logarithm and argument functions, the applet
ComplexTool uses log(z) and arg(z) to express these.

Remark A.5. While the principal branch of the logarithm is the one most widely
used, it is possible to define other branches of the logarithm function which are contin-
uous, for example, along the negative real axis. Note that any branch of the logarithm
must necessarily include 0 as a point of discontinuity. For more information, we refer
the reader to [1] and [3].

A.1.5. Trigonometric Functions. The trigonometric functions of a complex
number z are defined in terms of the exponential function.

Definition A.6. Given any complex number z, we define

sin z =
eiz − e−iz

2i
and cos z =

eiz + e−iz

2
.

One can show that the image of the infinite vertical strip −π/2 ≤ Re z ≤ π/2
under either of these maps is the entire plane. (Thus the trigonometric functions are
unbounded in C.)

A.2. Continuity and Analyticity in C

Definition A.7. Let R ⊂ C and consider a complex valued function f : R→ C.

(1) We say that f is continuous at z0 if limz→z0 f(z) = f(z0); i.e., for each ε > 0
there exists δ > 0 such that |f(z)−f(z0)| < ε whenever z ∈ R and |z−z0| < δ.
We say f is continuous on a set U ⊂ R if it is continuous at each point of U .

(2) Furthermore, f is called differentiable at z0 when its derivative f ′(z0) =

limz→z0
f(z)−f(z0)

z−z0 exists.
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(3) When such a function is differentiable at all points of an open set R, the
function f is said to be analytic on R. (Some authors refer to such a function
as holomorphic in R.)

A.2.1. Cauchy-Riemann Equations. When we write f(z) = f(x, y), we call
u(x, y) = Re f(x, y) and v(x, y) = Im f(x, y). Then f(x, y) = u(x, y) + iv(x, y) and
thus we may define the following partial derivatives

(100)
∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
and

∂f

∂y
=
∂u

∂y
+ i

∂v

∂y
.

We recall that when f is differentiable at z0, we have f ′(z0) = ∂f
∂x

(z0) = −i∂f
∂y

(z0),

which by equating real and imaginary parts yields the Cauchy-Riemann equations

(101)
∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

Theorem A.8. A function f(z) = u(x, y) + iv(x, y) is analytic in an open set R if
and only if the first partial derivatives ux, uy, vx, vy exist, are continuous, and satisfy
the Cauchy-Riemann equations in R. (See, e.g., [1], p. 63-66.)

Furthermore, by using the Cauchy-Riemann equations (101), one can show that
if f(z) = u(x, y) + iv(x, y) is analytic in an open set R, then each of the component
functions u and v is harmonic in R, that is, uxx + uyy = 0 and vxx + vyy = 0.

A.2.2. Conformal Mappings. Recall that a function f : R→ C is called univa-
lent if it is one-to-one; i.e., for any two points z1 6= z2 in R, we then have f(z1) 6= f(z2).
An analytic function is locally univalent in a small neighborhood of a point z0 if and
only if its derivative is non-zero at z0. A function that is both analytic and univalent
on an open set is said to be conformal on that set. Geometrically, conformal means
that the function is locally angle-preserving, preserving both the magnitude and sense
of the angle. You can get a feel for this by graphing any univalent analytic function
with the applet ComplexTool, using either a rectangular or circular grid, and zooming
in on points in the range to see the angle preservation.

A.3. Complex Integration

A complex integral is an expression of the form
∫
C
f(z) dz. This integral can be

evaluated for many kinds of functions (analytic or not) and any path (closed loop or
not). In many cases, the value of the integral does depend on the actual geometry
of the path, not just on the end points. It is important to note that the value of the
integral does not depend on the parameterization used to describe the path as long as
the different parameterizations trace out the path in the same direction. This will be
evident in the formula given below.
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A.3.1. Computing a Complex Integral. To compute a complex integral by
brute force requires some parameterization of the path C. We describe the path directly
in terms of z whenever possible. Here are some important examples of curves and how
they could be parameterized:

(1) A circle of radius R centered at a: z(t) = a+Reit, where 0 ≤ t ≤ 2π.
(2) The line segment from z1 to z2: z(t) = (1− t)z1 + tz2, where 0 ≤ t ≤ 1.

Once a parameterization is obtained, the formula for calculating the integral is

(102)

∫
C

f(z) dz =

∫ b

t=a

f(z(t))z′(t) dt.

A.3.2. Topology on the plane. 1

Definition A.9.

(1) A set is a domain if it is open and connected.
(2) A path C is a closed curve if its initial and terminal points coincide.
(3) A simple closed curve is a closed curve that does not cross itself.

A.3.3. Three Important Integral Theorems. The following results are central
to any study of complex analysis.

Theorem A.10 (Cauchy’s Theorem). Let f(z) be analytic everywhere on and
inside a simple closed curve γ. Then∫

γ

f(z) dz = 0.

Theorem A.11 (Cauchy’s Integral Formula). Let f(z) be analytic everywhere on
and inside a simple closed positively-oriented curve γ. Let a be a point inside γ. Then∫

γ

f(z)

z − a dz = 2π i f(a).

Theorem A.12 (Cauchy’s Generalized Integral Formula). Let f(z) be analytic
everywhere on and inside a simple closed positively-oriented curve γ. Let a be a point
inside γ. Then ∫

γ

f(z)

(z − a)n+1
dz =

2π i f (n)(a)

n!
.

1See Appendix B.3 for more detailed information regarding topology on both the plane and the
Riemann sphere.

412



A.3.4. Path Integrals. If C is not a simple closed curve, then none of the above
integral theorems can be used to calculate it. Fortunately it may not be necessary
to use brute-force either. Suppose that C is a path that goes from a point z1 to the
point z2. The main question is when does the value of the integral only depend on the
endpoints and not on the particular path between them? The answer is exactly when
f(z) is analytic on an appropriate region. In this case the integral can be calculated
by finding an anti-derivative and evaluating it at the endpoints. This is simply an
application of the Fundamental Theorem of Calculus.

Here is a more precise statement: If C1 and C2 are paths between the same end-
points, then

∫
C1
f(z) dz =

∫
C2
f(z) dz if f(z) is analytic everywhere on and in between

both paths.

A.4. Taylor Series and Laurent Series

Taylor series and Laurent series play crucial roles in our understanding of analytic
functions.

A.4.1. Taylor Series. The theory of Taylor series carries over directly from the
theory in real variables. However, it is even better as the following theorem shows:

Theorem A.13. Let f(z) be an analytic function in a domain D and let z0 ∈ D.
Then the following statements hold:

(1) f(z) can be represented by a convergent power series in the disk | z−z0| < R,
where R is the distance from z0 to the nearest singularity of f(z). In particular,
if f(z) is entire, then R =∞ and the series converges everywhere.

(2) The series representing f(z) is the Taylor series; hence

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n.

(3) The Taylor series is unique, in other words, any power series representing an
analytic function must in fact be the Taylor series of the function.

Note that power series can be added, subtracted, multiplied and divided. Caution:
multiplication and division are not performed term by term; rather you must treat each
series like a polynomial. Series can also be differentiated and integrated term-by-term
to obtain new series.

A.4.2. Laurent Series. If a complex function has a singularity at z = z0, then
it certainly does not have a Taylor expansion at that point. It may, however, have a
different sort of series expansion in a deleted neighborhood of the singularity called a
Laurent series.
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In general, a function f which is analytic throughout an annular domain R1 <
|z − z0| < R2 has a unique Laurent series representation

f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

bn
(z − z0)n

on that annular domain. It is allowed that we may have R1 = 0 or R2 = +∞, or both.
We note that just as in the case of Taylor series, there are formulas that give the

coefficients of the desired Laurent series. However, these coefficient formulas involve
complicated complex integrals and are of more theoretical than practical value.

One of the main values of the Laurent expansion stems from its use in complex
integration via residues. When f can be expressed by the Laurent series f(z) =∑∞

n=0 an(z − z0)n +
∑∞

n=1
bn

(z−z0)n
on a punctured disk with center z0, the residue of f

at z0 is Res(f, z0) = b1.

Theorem A.14 (Residue Theorem). Let γ be a simple closed positively-oriented
curve. If a function f is analytic inside and on γ except for a finite number of singular
points zk, for k = 1, . . . , n inside C, then

∫
γ
f(z) dz = 2πi

∑n
k=1 Res(f, zk).

A.4.3. Isolated Singularities. Given a function f which is analytic on a deleted
ε neighborhood of z0, we can express f by its Laurent series

f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

bn
(z − z0)n

on ∆(z, ε) \ {z0}. This situation gives us three different types of singularities classified
as follows.

Definition A.15 (Isolated singularities).

(i) When bn = 0 for every n = 1, 2, . . . , then f(z) is said to have a removable
singularity at z0. In such a case f(z) =

∑∞
n=0 an(z−z0)n, and so defining f(z0) =

a0 will make f analytic in the full neighborhood ∆(z, ε) (and thus we have removed
the singularity).

(ii) When only finitely many bn 6= 0, then there exists N such that bN 6= 0 and
bn = 0 for all n > N . In this case, we say f has a pole of order N at z0. We
may then express f in a factored form f(z) = (z − z0)−Nh(z) where h(z) =
bN + bN−1(z − z0) + . . . is analytic on ∆(z, ε) and h(z0) = bN 6= 0.

(iii) When infinitely many bn 6= 0, we say f has an essential singularity at z0.

Definition A.16. A function f is meromorphic in a domain D if it is analytic at
every point of D except possibly at poles.

A.5. Key Theorems

This section records several key results that will be used in the text.
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A.5.1. Maximum Modulus Theorem. We recall two key results relating to the
maximum modulus of an analytic function. See [1], p. 176-178.

Theorem A.17 (Maximum Modulus Theorem). If a function f is analytic and not
constant in a given domain D ⊂ C, then |f(z)| has no maximum value in D. That is,
there is no point z0 ∈ D such that |f(z)| ≤ |f(z0)| for all z ∈ D.

Corollary A.18 (Corollary to Maximum Modulus Theorem). Suppose that a
function f is continuous on a closed and bounded region R ⊂ C and that it is analytic
and not constant in the interior of R. Then, the maximum value of |f(z)| in R, which
is always reached, occurs somewhere on the boundary of R and never in the interior.

A.5.2. Argument Principle. The Argument Principle for analytic functions
gives a very nice way to count the number of zeros and poles inside a contour.

Theorem A.19 (Argument Principle). Let γ be a simple closed curve lying entirely
within a domain D ⊂ C. Suppose f is analytic in D except at a finite number of poles
inside γ and that f(z) 6= 0 on γ. Then

1

2πi

∮
γ

f ′(z)

f(z)
dz = N0 −Np,

where N0 is the total number of zeros of f inside γ and Np is the total number of poles
of f inside γ. In determining N0 and Np, zeros and poles are counted according to
their order or multiplicities.

A.5.3. Schwarz Lemma.

Theorem A.20 (Schwarz Lemma). Suppose f : D → D is analytic and f(0) = 0.
Then |f ′(0)| ≤ 1 and |f(z)| ≤ |z| for all z ∈ D. Furthermore, unless f is of the form
f(z) = eiθz for some θ ∈ R (i.e., f is a rotation), we must have strict inequalities in
both statements above.

A.6. More Advanced Results

A.6.1. Local Properties of Analytic Maps. The existence of power series rep-
resentations of analytic maps is a powerful tool for understanding their local, and some-
times global, behavior. Consider an analytic function f defined in a domain D ⊂ C.
For any z0 ∈ D, Theorem A.13 tells us that we may express

(103) f(z) = a0 + a1(z − z0) + a2(z − z0)2 + . . .

on any neighborhood ∆(z0, r) which is contained in D.
Suppose for the moment that f ′(z0) = a1 6= 0. Then for z very close to z0 we see

that the linear contribution a0 + a1(z − z0) dominates the rest of the series in (103).
Omitting the details, we can say that f(z) ≈ A1(z) = a0 + a1(z − z0) for z ∈ ∆(z0, ε)
when ε > 0 is very small. Since A1(z) is a linear map, with very well understood
properties, we can reasonably expect that f(z) will have the same properties as A1(z)
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when z ∈ ∆(z0, ε). In particular, for every w near a0 = f(z0), there is exactly one
value z1 near z0 which maps to w. This holds for A1, and it also holds for f . Thus we
say that f is locally one-to-one (also called locally univalent) at z0 when f ′(z0) 6= 0.
See Figure A.3.

∆(z0, ε)

z0 a0

∆(a0, |a1|ε)

A1

∗
∗
z1

w

Figure A.3. An illustration of the map A1(z) = a0+a1(z−z0) mapping
∆(z0, ε) onto ∆(a0, |a1|ε) in a one-to-one fashion.

Similarly, we can use approximations to understand the local behavior of f(z) when
a1 = 0, i.e., f ′(z0) = 0. In such a case, we know that (unless f is constant) we may
express f as

(104) f(z) = a0 + ak(z − z0)k + . . .

where ak is the first non-zero coefficient (other than possibly a0) in (103). Then for
z very close to z0, we see that the terms a0 + ak(z − z0)k dominate the rest of the
series in (104). Omitting the details, we can say that f(z) ≈ Ak(z) = a0 + ak(z − z0)k

for z ∈ ∆(z0, ε) when ε > 0 is very small. Since Ak(z) has very well understood
properties,2 we can reasonably expect that f(z) will have the same properties as Ak(z)
when z ∈ ∆(z0, ε). In particular, for every w near a0 = f(z0), there are exactly k
values z1, . . . , zk symmetrically arranged near z0 which maps to w. This holds for Ak,
and it also holds for f , though since we only have an approximation the k values may
not be exactly symmetrically arranged about z0. See Figure A.4. Thus we say that f
is locally k-to-one at z0 when f ′(z0) = f ′′(z0) = · · · = f (k−1)(z0) = 0, but f (k)(z0) 6= 0.
We also describe this situation by saying that z0 maps to f(z0) with degree (aka,
multiplicity or valency) k.

When z0 maps to f(z0) with multiplicity k, we can rewrite (104) as f(z) = a0 +
(z − z0)k[ak + ak+1(z − z0) + . . . ]. Noting that ak + ak+1(z − z0) + . . . determines an
analytic map on D, we have the following.

Lemma A.21. Let f be a function analytic at z0 with multiplicity k. Then there is
a map h which is analytic at z0 such that h(z0) 6= 0 and f(z) = f(z0) + (z − z0)kh(z).

2In particular, we note that Ak(z) is a composition h3 ◦ h2 ◦ h1 of the following simple maps h1(z) =
z − z0 (translation), h2(z) = zk (power function), and h3(z) = a0 + akz (linear function).
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w

∆(z0, ε)

z0 a0

Akz1

z2

zk
∗∗

∗

∗

∆(a0, |ak|εk)

Figure A.4. An illustration of the map Ak(z) = a0 + ak(z − z0)k for
k = 3 mapping ∆(z0, ε) onto ∆(a0, |ak|εk) in a k-to-one fashion.

In particular, if f(z0) = 0, i.e., f has a zero of order k at z0, then f has the form
f(z) = (z − z0)kh(z).

A.6.1.1. Open Mapping Theorem. A fact not usually introduced in a standard un-
dergraduate complex variables course is that analytic maps are open maps, which we
define more carefully below. Some chapters in this text reference this and other such
results, and so we present them here. The interested reader can find formal proofs in
more advanced texts such as [2], p. 344-348.

Consider a non-constant function f which is analytic at z0. The discussion above
shows that (whether or not f ′(z0) = 0) the image of a small neighborhood of z0 must
cover a small neighborhood of f(z0) = a0. This is enough to assert the following.

Theorem A.22 (Open Mapping Theorem). If f is a function on a domain D ⊂ C
which is analytic and non-constant, then the range f(D) is an open set.

Since open maps are those for which the image of an open set is always an open
set, non-constant analytic maps are open maps.

One application of this and the above theory is the following.

Theorem A.23 (Inverse Function Theorem). Suppose that D ⊂ C is a domain
and f : D → C is a univalent analytic map. Then its inverse function f−1 : f(D)→ D
is also analytic.

A nice use for the Inverse Function Theorem is that it shows that locally one-to-
one functions have local analytic inverse functions. More precisely, consider an analytic
map f defined on a domain Ω, where f need not necessarily be one-to-one on all of
Ω. If f ′(z0) 6= 0 for some z0 ∈ Ω, then we know from above that there is a small disk
D = ∆(z0, ε) on which f is one-to-one. Hence by the Inverse Function Theorem, we
see that there is a map g : f(D)→ D (the local inverse of f) defined on the open set
f(D) which is analytic and satisfies g ◦ f(z) = z for all z ∈ D.

A.6.1.2. Riemann Mapping Theorem. We close with a very important theorem in
complex analysis which states that all simply connected domains (other than the whole
plane) are conformally equivalent to the unit disk. More precisely we have the following,
whose proof can be found in [2], p. 420.
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Theorem A.24 (Riemann Mapping Theorem). Suppose that D is a simply con-
nected domain in the complex plane, D 6= C, and that z0 ∈ D. Then, there exists a
unique conformal mapping f of D onto the unit disk 4(0, 1) satisfying the conditions
f(z0) = 0 and f ′(z0) > 0.
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APPENDIX B

The Riemann Sphere

The main purpose of this appendix is to refresh some of the key ideas about the
concept of ∞ in complex analysis. In particular, we discuss the Riemann sphere via
stereographic projection, the induced spherical metric σ and corresponding topology, as
well as discuss how these notions tie in with the concepts of continuity and analyticity.
We do not re-prove all the results here or give a complete exposition of these topics;
our goal is to provide just enough background to allow the reader to fully grasp the
material in those chapters of this book which require it. More details can be found in
the reference texts [1], [3], and the more advanced text [2].

Complex arithmetic actually extends slightly beyond the complex plane. As points
z in C move arbitrarily far away from the origin we informally say that they go to
“infinity”. We can make that quite precise, while also giving you one answer to the
division-by-zero problem: we adjoin a point denoted∞ to C to get the Riemann sphere
(or extended complex plane), denoted here as C = C ∪ {∞}.

B.1. Stereographic Projection and Spherical Geometry

We model the Riemann sphere C by first identifying points in C with points in
the unit sphere S = {(x1, x2, x3) : x2

1 + x2
2 + x2

3 = 1} ⊂ R3 through what is called
stereographic projection. See Figure B.1. Label N = (0, 0, 1) the “north pole” on the
sphere S. Then for any given point z = x+ iy = (x, y, 0) in C, consider the line in R3,
between z and N .

Obviously, this line intersects S at precisely two points, namely N and a second
point we call Z = (x1, x2, x3). We then associate the points z and Z. Formally, we
define a map π : C → S given by π(z) = Z. Omitting the details (which can be
found in [2], p. 351), the precise formula for this map is Z = π(z) = π(x + iy) =(

2x
|z|2+1

, 2y
|z|2+1

, |z|
2−1

|z|2+1

)
. However, we note that we rarely make use of this formula since

it is the idea and the picture that provide the necessary understanding we require.
Note that the only point on S which is not associated with any complex number is

the north pole N and that this association between C and S \ {N} is bijective.1 We
would like to now decide what meaning there could be to associating a point to N .

Notice that if |z| is very large (i.e., z is very far from the origin), then the corre-
sponding point Z ∈ S is very close to N . It is then natural to say that any point that

1Recall that a map is bijective when it is both one-to-one and onto.
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Figure B.1. Stereographic projection.

is associated with N must be “infinitely” far from the origin. It is for this reason that
we adjoin∞ to C and extend the definition of π by defining π(∞) = N . We now have
an identification, i.e., a bijection, between all of C = C ∪ {∞} and all of S. Thus
when we speak of the Riemann sphere C we can think of it as the usual complex plane
together with the point ∞ being “infinitely” far from the origin, or we can think of it
as being the associated sphere S where ∞ is understood to be the north pole N . It
will be useful to think of C in both these ways; let us do so with some examples.

The origin in 0 ∈ C is identified with the “south pole” (0, 0,−1), unit disk D =
{z : |z| < 1} is identified with the “southern hemisphere”, the unit circle |z| = 1 is the
“equator”, and the real axis is wrapped around the sphere S to form a circle running
through the the south pole (0, 0,−1), the north pole N , and the points (1, 0, 0) and
(−1, 0, 0). Notice that as the real number x1 goes to −∞ and the real number x2 goes
to +∞, the corresponding points π(x1) and π(x2) on the sphere S come together at
the north pole N . So we see that in S there is only one ∞.

As an exercise you are asked to match up the curves in C with their projections
onto C given in Figure B.2.

B.2. The Spherical Metric σ

The standard way we measure the distance between two points z and w in C is by
|z −w|, the Euclidean metric on C. But can we come up with a natural way to define
the distance between points on C by using our understanding of the sphere model?
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Figure B.2. Various curves drawn in the plane and projected onto the
sphere, where ∞ is the marked point on top of the sphere C.

The answer is yes, we just need to use the natural spherical metric on S and transfer
that back to C. Here’s how.

The spherical distance between two points Z and W on S is defined to be the
arclength of the shortest path on the sphere S which connects Z and W , which is, of
course, the shorter arc of the great circle that runs through Z and W . We denote this
distance by d(Z,W ). For example, the distance between (1, 0, 0) and N = (0, 0, 1) is
the number π/2 since this is just 1/4 of the circumference of a great circle with radius
1.

We can now transfer this metric from S to C using the map π : C→ S by defining
the distance between two points z, w ∈ C to be σ(z, w) = d(Z,W ) = d(π(z), π(w)).
This simply amounts to projecting z and w onto the sphere S and then taking the
distance there. There does exist a formula for σ(z, w), but we omit it since it is not
important to our purposes. We will, however, note that this new metric (aka distance
function) on C does not treat ∞ as a special point. It simply plays the same role as
any other point on the Riemann Sphere. This idea can take some getting used to, so
let’s look at some examples.

We first would like to understand what a Spherical disk 4σ(a, r) = {z ∈ C :
σ(z, a) < r}, with center a ∈ C and radius r > 0 looks like. Let’s consider4σ(∞, π/2),
i.e., the set of all points z ∈ C such that σ(z,∞) < π/2. By picturing these points
on the sphere we see that the answer is the upper hemisphere, which we note can also
be expressed as C \ D, i.e., the points in C outside of the closed unit disk together
with ∞. In fact, denoting the Euclidean disk of radius r > 0 and center a ∈ C by
4(a, r) = {z ∈ C : |z − a| < r}, we have the following more general result. For any
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small ε > 0, there is some large number r > 0 such that

(105) ∆σ(∞, ε) = C \∆(0, r).

B.3. Topology in C and C

With the spherical metric in hand, we can now define the corresponding topological
concepts on C. We begin by defining the interior, closure, and boundary of a set E ⊂ C
as follows: The interior of E, denoted Int(E), is the set which contains all points
z ∈ E for which there exists r > 0 such that ∆σ(z, r) ⊂ E. The closure of E,
denoted E or closure(E), is the set which contains all points z ∈ C such that for any
r > 0 we have 4σ(z, r) ∩ E 6= ∅. The boundary of E, denoted ∂E, is the set which
contains all points z ∈ C such that for any r > 0 we have both ∆σ(z, r) ∩ E 6= ∅ and

∆σ(z, r) ∩ (C \ E) 6= ∅. Hence, ∂E = E ∩ C \ E and E = E ∪ ∂E.

Example B.1. Without needing to provide a formal proof, the readers should
convince themselves that Int(D) = D,D = {z ∈ C : |z| ≤ 1}, and ∂D is the unit circle
|z| = 1. In general, ∂4(a, r) = C(a, r), where we define C(a, r) = {z ∈ C : |z−a| = r},
i.e., the Euclidean circle of radius r > 0 and center a ∈ C.

Exercise B.2. Identify the interior, closure, and boundary of each of the following
subsets of C. No proof is required. Try it out!

(a) A = ∅,
(b) B = {z ∈ C : |z| ≤ 1},
(c) C = {z ∈ C : |z| = 1},
(d) D = C \ R,
(e) E = {x+ iy ∈ C : x, y ∈ Q}, where Q is the set of rational numbers in R,
(f) F = {1/n : n ∈ N},
(g) G = C.

Definition B.3 (Open sets).

(a) A set A ⊂ C is called open in C if Int(A) = A, i.e., if for each point z ∈ A, there
exist r > 0 such that 4σ(z, r) ⊂ A.

(b) A set A ⊂ C is called open in C if for each point z ∈ A, there exist r > 0 such
that 4(z, r) ⊂ A.

Definition B.4 (Closed sets).

(a) A set A ⊂ C is called closed in C if its complement C \ A is open in C.
(b) A set A ⊂ C is called closed in C if its complement C \ A is open in C.

Remark B.5. Often, this text will refer to open or closed sets without explicitly
referencing whether it is understood that these sets are open or closed in C or in C.
However, context will make it clear which is meant and so no confusion should arise.
It is also important to keep in mind the following two points that show that often, but
not always, these two notions are equivalent anyway.
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(1) A set A ⊂ C is open in C if and only if it is open in C.
(2) A bounded2 subset E of C is closed in C if and only if it is closed in C. Note

that the boundedness condition is crucial since, for example, the unbounded
set R is closed in C, but not closed in C.

The readers should take a moment to convince themselves that these two statements
are indeed true.

An open set A ⊂ C is called connected if given any two points z, w ∈ A there
exists a polygonal line3 in A which connects z to w. If U is an open set and z0 ∈ U ,
then the set U(z0) of all points z ∈ U such that there is a polygonal line in U which
connects z0 to z is called the component of U containing z0. Two facts regarding an
open set U are as follows

(1) An open set U equals the union of components, i.e., U = ∪z∈UU(z).
(2) Components U(z) and U(w) equal each other exactly when there is a polygonal

path in U which connects z to w.
The interested reader can read the details proving these facts in [2]; however, a less

formal understanding of these concepts will suffice for this text.
A domain is a non-empty open connected set in C. Note that the domain set of

a function need not be a domain in the sense just defined. A Jordan domain is any
simply connected domain in C, i.e., any domain D in C such that every simple
closed curve in D encloses only points in D. Informally, this means that D has no
“holes” in it. For example, the set D is a Jordan domain, but the set D \ {0} is not.

A neighborhood of a point z ∈ C is any open set which contains z. A deleted
neighborhood of a point z ∈ C is any set U \ {z} where U is a neighborhood of z.
When a neighborhood U is of the form ∆σ(z, ε) or ∆(z, ε) we often refer to this as an
ε-neighborhood of z.

B.3.1. Convergence in the Riemann Sphere. With the spherical metric σ on
C and the corresponding notion of ε-neighborhood, we can now define convergence of
sequences in C as follows.

Definition B.6. A sequence of points zn ∈ C is said to converge to z ∈ C when
σ(zn, z)→ 0, in which case we write zn → z.

Note that the statement zn → z when z ∈ C (i.e., z 6=∞) as given above, conforms
to our standard notion of convergence in C. The following proposition records this fact
and several more which relate the standard metric in C to the metric σ on C. The
reader should become comfortable with these statements, though it is not crucial to
be able to prove these with the rigor of an ε− δ argument.

2A set E is called bounded in C if there exists some R > 0 such that |z| ≤ R for all z ∈ E.
3A polygonal line is a union of a finite number of line segments joined end to end. In the context of
C, we allow a line segment to be any standard line segment in the plane C or any arc of a great circle
that passes through ∞ (as viewed as the north pole N on the sphere S).
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Proposition B.7. For points zn, z, and w in C, we have the following:

(1) σ(zn, z)→ 0 if and only if |zn − z| → 0,
(2) |z| > |w| if and only if σ(z,∞) < σ(w,∞),
(3) zn →∞ if and only if |zn| → +∞ if and only if σ(zn,∞)→ 0,
(4) zn → 0 if and only if |zn| → 0 if and only if 1/|zn| → +∞ if and only if

1/zn →∞.

We can use this proposition to solve the division by zero problem, but we must first
define continuity in the context of C.

B.4. Continuity in the Riemann Sphere

Let R ⊂ C and consider an extended complex valued function f : R → C. We
write limz→z0 f(z) = L and we say the function f approaches L as z approaches z0,
if for each ε > 0 there exists δ > 0 such that σ(f(z), L) < ε whenever z ∈ R and
0 < σ(z, z0) < δ. We say that f is continuous at z0 if limz→z0 f(z) = f(z0), i.e.,
for each ε > 0 there exists δ > 0 such that σ(f(z), f(z0)) < ε whenever z ∈ R and
σ(z, z0) < δ. We say f is continuous on a set U if it is continuous at each point of U .
Due to Proposition B.7, this notion of continuity conforms with our usual notion of
continuity in C (see Section A.2).

Example B.8 (The map 1/z and division by zero). Our definition of continuity
on C allows us to solve the division by zero problem by defining 1/0 = ∞. This
makes sense and is natural since it is this definition that makes the function z 7→ 1/z
continuous on C. We leave it to the reader to use Proposition B.7 to show this, and
in the process show that we also have 1/∞ = 0.

We also point out an important observation considering a rotation of the sphere
S = {(x1, x2, x3) : x2

1 + x2
2 + x2

3 = 1} ⊂ R3. Consider rotating the sphere S about the
x1 axis, which meets S at the points (1, 0, 0) and (−1, 0, 0), by 180◦ = π radians. This
is a map which takes each point of S to another point of S and so let us call this map f .
Identifying S with C as above, we see that f(∞) = 0, f(0) =∞, f(1) = 1, f(−1) = −1
and f(R) = R, where R denotes the extended real line R ∪ {∞}. The reader should
take some time to convince themself that f is exactly the map f(z) = 1/z. It is for
this reason that we often call f(z) = 1/z a rotation of the Riemann sphere C.

Some texts avoid the need to speak explicitly about the spherical metric while still
speaking about continuity of functions which are defined at ∞ or which take on the
value∞ at finite points z0 ∈ C. Since this approach is also valuable, we present it here.
The key is to use the simple rotation z 7→ 1/z of the Riemann sphere C in judicious
ways to “move” ∞ to 0 so that we can then use our standard notions of continuity
(and, as we shall see, analyticity) in C without needing to make explicit reference to
the spherical metric. This is how one may prove the following result.

Theorem B.9. Let z0, w0 ∈ C and let f(z) be a complex valued function defined
in a deleted neighborhood of z0. Then,

425



i) lim
z→z0

f(z) =∞ if and only if lim
z→z0

1

f(z)
= 0,

ii) lim
z→∞

f(z) = w0 if and only if lim
z→0

f

(
1

z

)
= w0,

iii) lim
z→∞

f(z) =∞ if and only if lim
z→0

1

f(1/z)
= 0.

By pre composing and/or post composing f with the map z 7→ 1/z, the above
theorem converts each statement on the left (involving∞) to the corresponding state-
ment on the right (which avoids a formal notion of ∞). By considering the topology
of the Riemann sphere C near ∞ and the continuity of the map z 7→ 1/z, the details
can easily be checked (and they can also be found on p. 51 of [1]).

The simplest and most useful class of maps which are continuous on all of C is the
class of rational maps.

Definition B.10. A quotient of two polynomials is called a rational function.

Let f(z) = P (z)
Q(z)

be a rational function in reduced form (i.e., polynomials P (z) and

Q(z) have no common factors). Although this formula for f is defined only for complex
values where Q is not zero, we can regard f (as a mapping into C) as being both defined
and continuous on all of C. In particular, if Q(a) = 0, then we set f(a) =∞, and we
also set f(∞) = limz→∞ f(z). We leave it to the reader to check that this gives f the
desired continuity properties; however, we do illustrate this in the following examples.

Example B.11. Let f(z) = z2 + 5i and g(z) = 3z2−5
z2+2z

. In line with the above
discussion, it is then understood that f(∞) = ∞, g(∞) = 3, g(−2) = ∞, and g(0) =
∞. By defining these maps in this way, we see that both f and g are continuous at
every point of C. Note that f(∞) = limz→∞ f(z) = ∞ since (using Theorem B.9)

limz→0
1

f(1/z)
= limz→0

1
(1/z)2+5i

= limz→0
z2

1+5iz2
= 0. We leave it to the reader to use

Theorem B.9 to check the continuity of g at the points −2, 0, and ∞.

Example B.12. The function f(z) = ez on C cannot be defined at ∞ to make
it continuous there. One way to see this is to note that limx→+∞ e

x = ∞, but
limx→−∞ e

x = 0, which implies that the limit limz→∞ e
z does not exist.

B.5. Analyticity in the Riemann Sphere

Just as the rotation z 7→ 1/z was used in Theorem B.9 to help us to understand
the notion of continuity in the Riemann sphere C, we can also use it to extend our
notion of analyticity on C.

Definition B.13 (Extended notion of analyticity in C).
Let f : domain(f)→ C, where domain(f) ⊂ C.

i) If f(z0) =∞ where z0 ∈ C, then we say that f is analytic at z0 exactly when 1
f(z)

is analytic at z0.
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ii) If f(∞) 6= ∞, then we say that f is analytic at ∞ exactly when f(1
z
) is analytic

at 0.
iii) If f(∞) = ∞, then we say that f is analytic at ∞ exactly when 1

f( 1
z

)
is analytic

at 0.

One way to summarize the above definition is to say that a map is analytic in this
extended sense if after “moving” each instance of ∞ to 0 (by pre composing and/or
post composing with the map z 7→ 1/z), we get a map which is analytic in the usual
sense.

Remark B.14. We note that a map f which is analytic at a point z0 ∈ C must
also be continuous there (as a mapping into C). Hence we can easily see that the map
f(z) = ez cannot be analytic at ∞ since there is no way to define f at ∞ in such a
way as to make it continuous there.

Exercise B.15. Show that z 7→ sin 1
z

is analytic at ∞, but that z 7→ sin z is not.

Remark B.16 (Poles are points of analyticity in the extended sense). When z0 ∈ C
is a pole of f of order k, then by Definition A.15, we know that we can express
f(z) = (z− z0)−kh(z) where h is analytic at z0 (in the usual sense of Section A.2) and
h(z0) 6= 0. Thus, 1

f(z)
= (z − z0)k/h(z) is analytic at z0, which means we can then

declare f to be analytic at z0 by Definition B.13(i), in that extended sense. Since the
word analytic is commonly used in this text in both the usual sense of Section A.2
and this extended sense, the reader must always be careful to use context to decide
in which sense it is being used. Since the context is usually quite clear, no confusion
should arise.

We note that a map f with an isolated singularity at z0 ∈ C (see Definition A.15)
is analytic in the usual sense in the case of a removable singularity and analytic in the
extended sense in the case of a pole. Thus, only when the singularity is essential can
the map not be regarded as analytic in either sense.

Example B.17. Let f(z) = 1
1+z2

. Since f(1
z
) = 1

1+( 1
z

)2
= z2

z2+1
is analytic at 0 (and

takes the value 0 at 0), we can say that f is analytic at ∞ (and f(∞) = 0). Similarly,
since 1/f(z) = 1 + z2 is analytic at ±i, the map f is is analytic at the poles ±i, a fact
we stated more generally in Remark B.16.

Example B.18. Let f(z) = 3z− 1
z

and note that f(∞) =∞. Since k(z) = 1
f( 1
z

)
=

1
3( 1
z

)−z = z
3−z2 is analytic at zero we pronounce f(z) to be analytic at ∞. Note that,

we have f ′(z) = 3 + 1
z2

and so f ′(∞) = 3. We also have k′(z) = 3+z2

(3−z2)2
yielding

k′(0) = 1/3 = 1/f ′(∞). The relationship between k′(0) and f ′(∞) is an important
and general property which we state as follows.

Lemma B.19. If f is analytic at ∞ with f(∞) =∞, then for k(z) = 1
f( 1
z

)
we have

k′(0) = 1/f ′(∞).
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Note, when f ′(∞) = ∞ we use the convention that 1/∞ = 0 (since the map 1/z
sends ∞ to 0).

Proof. Note that k is analytic at 0 (by the definition of f being analytic at ∞).
Also note that k(0) = 0 (since f(∞) =∞) and so we let N denote the multiplicity of
the zero of k at 0. There exists r > 0 such that k is analytic on ∆(0, r). Therefore,
the map f(z) = 1

k( 1
z

)
is analytic on {z ∈ C : |z| > 1/r}. Hence f may be represented

by a Laurent series f(z) =
∑∞

n=0 anz
n +

∑∞
n=1 bnz

−n on {z ∈ C : |z| > 1/r}. Since
1

k(z)
= f(1

z
) =

∑∞
n=0 anz

−n +
∑∞

n=1 bnz
n has a pole at 0 of order N , we must have

aN 6= 0 and an = 0 for all n > N . Hence we may now factor f(z) = zNh(z) where
h(z) = · · ·+ aN−1z

−1 + aN .
Calling g(z) = h(1/z) = aN + aN−1z + . . . , we can then express k(z) = 1

f( 1
z

)
=

1
z−Nh(1/z)

= zN

g(z)
. Thus k′(z) = NzN−1g(z)−g′(z)zN

[g(z)]2
and so

k′(0) =

{
1/aN when N = 1

0 when N > 1.

Note that h′(z) = · · · − aN−1z
−2 and so as z →∞ we have

f ′(z) = NzN−1h(z) + zNh′(z)→
{
aN when N = 1
∞ when N > 1.

Thus we have k′(0) = 1/f ′(∞) as promised. �
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