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1 Some Background in Differential Geometry

Our goal is to develop the mathematics necessary to investigate minimal
surfaces in R3. Every point on a surface S ⊂ R3 can be designated by a
point, (x1, x2, x3) ∈ R3, but it can also be represented by two parameters.
Let D be an open set in R2. Then a surface, S ∈ R3, can be represented
by a function x : D → R3, where x(u, v) = (x1, x2, x3). Such a function or
mapping is called a parametrization.

Example 1.

1. For the torus, let

x(u, v) =
(
(a + b cos v) cos u, (a + b cos v) sin u, b sin v

)
,

where a, b are fixed, 0 < u < 2π, and 0 < v < 2π.

2. For Enneper’s surface, let

x(u, v) =

(
u− 1

3
u3 + uv2, v − 1

3
v3 + vu2, u2 − v2

)
,

where u, v are in a disk of radius r.

Torus Enneper’s surface
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Suppose x(u, v) is a parametrization of a surface S ∈ R3. If we fix v = v0

and let u vary, then x(u, v0) depends on one parameter and is hence a curve
called the u-parameter curve. Likewise, we can fix u = u0 and let v vary to
get the v-parameter curve x(u0, v). Tangent vectors for the u-parameter and
v-parameter curves are computed by differentiating the component functions
of x with respect to u and v, respectively. That is,

xu =

(
∂x1

∂u
,
∂x2

∂u
,
∂x3

∂u

)
, xv =

(
∂x1

∂v
,
∂x2

∂v
,
∂x3

∂v

)
.

Example 2. A torus can be parametrized by

x(u, v) =
(
(3 + 2 cos v) cos u, (3 + 2 cos v) sin u, 2 sin v

)
,

where 0 < u, v < 2π. For v0 = π
2
, the u-parameter curve is

x

(
u,

π

2

)
= (0, 3 + 2 cos u, 2 sin u).

For u0 = π
3
, the v-parameter curve is

x

(
π

3
, v

)
= (4 cos v, 2 sin v,

√
3).

Notice

xu(u, v) = (−2 sin u cos v,−2 sin u sin v, 2 cos u)

xv(u, v) = (−(3 + 2 cos u) sin v, (3 + 2 cos u) cos v, 0).

So

xu

(
π

3
,
π

2

)
= (0,−

√
3, 1)

xv

(
π

3
,
π

2

)
= (−4, 0, 0).

What do these quantities represent? The tangent vector to the u- and v-
parameter curves at the point x(π

3
, π

2
).

Whenever we have a parametrization of a surface, we will require that xu

and xv be linearly independent. Because of this, the span of xu and xv (i.e.,
the set of all vectors that can be written as a linear combination of xu, xv)
forms a plane called the tangent plane.

Definition 3. The tangent plane of a surface M at a point p is

TpM = {v
∣∣v is tangent to M at p}.
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Definition 4. The unit normal to a surface M at a point p = x(a, b) is

n(a, b) =
xu × xv∣∣xu × xv

∣∣
∣∣∣∣∣
(a,b)

.

Note that the unit normal, n, is perpendicular to the tangent plane at p.
Also, if the surface M is oriented, then there are two unit normals at each
point p ∈ M–an outward pointing normal and an inward pointing normal.
Any plane that contains this normal n will intersect the surface M in a curve,
c. For each curve c, we can compute it curvature which measures how fast
the curve pulls away from the tangent line at p. So let’s now review some
ideas about the curvature of a line.

Any curve in R3 can be parametrized by one variable, say c(t), where c :
(a, b) → R3. For example, c(t) = (cos t, sin t, t) for t ∈ R is a parametrization
of a helix.

c ’

Definition 5. A curve c is a unit speed curve if
∣∣c′(t)∣∣ = 1.

Any nonunit speed regular curve c can be reparametrized by arclength to
form a unit speed curve c(s). So we will assume that the curves we will be
discussing are unit speed curves c(s). This assumption means that we are
only interested in the geometric shape of a regular curve since reparametrizing
does not change the shape of a curve.

Given a curve c, we want to discuss its curvature (or bending). The
amount of bending of the curve is demonstrated by the measure of how
rapidly the curve pulls away from the tangent line at p. In other words, it
measures the rate of change of the angle θ that neighboring tangents make
with the tangent at p. Thus, we are interested in the rate of change of the
tangent vector (i.e., the value of the second derivative).

Definition 6. The curvature of c at s is
∣∣c′′(s)∣∣.

Example 7. What is the curvature of a circle at point p?
The location of p does not matter, because of the symmetry of the circle.

Recall that a circle of radius r can be parametrized by

c(t) = (r cos(bt), r sin(bt), 0).

Notice that this is not a unit speed curve since

c′(t) = (−rb sin(bt),−rb cos(bt), 0)

⇒ 1 =
∣∣c′(t)∣∣ = rb

⇒ b =
1

r
.
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So we reparametrized it into a unit speed curve by letting
s

r
= bt to get

c(s) =

(
r cos

s

r
, r sin

s

r
, 0

)
.

Then

c′(s) =

(
− sin

s

r
, cos

s

r
, 0

)
c′′(s) =

(
− 1

r
cos

s

r
,−1

r
sin

s

r
, 0

)
∣∣c′′(s)∣∣ =

1

r
.

That is, the curvature of a circle of radius r is
1

r
. Notice that if r is large

then the curvature is small, while if r is small the curvature is large.

Now let’s return to surfaces. Suppose we have a curve σ(s) on a surface
M . We can determine the unit tangent vector, w of σ at p ∈ M and the unit
normal, n of M at p ∈ M . Note that w× n forms a plane P that intersects
M creating a curve c(s).

Definition 8. The normal curvature in the w direction is

k(w) = c′′ · n.

Recall c′′ · n =
∣∣c′′∣∣∣∣n∣∣ cos θ. Hence c′′ · n is the projection of c′′ onto the

unit normal (hence, the name normal curvature).

As we rotate the plane through the normal n, we will get a set of curves
on the surface each of which has a value for its curvature. Let k1 and k2 be
the maximum and minimum curvature values at p, respectively.

Definition 9. The mean curvature (i.e., average curvature) of a surface M
at p is

H =
k1 + k2

2
.

It turns out that k1 and k2 come from two perpendicular tangent vectors.
The mean curvature depends upon the point p ∈ M . However, it can be
shown that H does not change if we choose any two perpendicular vectors
and use their curvature values to compute H at p.
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Examples

1. At any point on a sphere of radius a, all the curves c are circles of radius
a and hence have the same curvature value which can be computed to
be 1/a. So the mean curvature is 1/a.

2. For Enneper’s surface, the values for k1 and k2 vary at each point.
However, k2 = −k1 at each point and so the mean curvature equals 0
at each point. In such a case, the surface is called a minimal surface.

2 Minimal Surfaces

2.1 Basics

Definition 10. A minimal surface is a surface M with H = 0 at all p ∈ M .

Example 11. Some standard examples of minimal surfaces in R3 are: the
plane, Enneper’s surface, the catenoid, the helicoid, and Scherks doubly-
periodic surface. Pictures of some standard minimal surfaces:

Enneper’s surface catenoid
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helicoid Scherks doubly-periodic

Definition 10 is not practical for determining if a surface is minimal.
However, there is a nice formula using the coefficients of the first and second
fundamental forms for a surface.

Recall that c is a unit speed curve. Hence

1 =|c′|2 = c′ · c′

=(xu du + xv dv) · (xu du + xv dv)

=xu · xu du2 + 2xu · xv dudv + xv · xv dv2

=E du2 + 2F dudv + G dv2. (1)

The terms E = xu · xu, F = xu · xv, and G = xv · xv are known as the
coefficients of the first fundamental form. This describes how lengths on a
surface are distorted as compared to their usual measurements in R3.

Next, recall k(w) = c′′ ·n. Note that c′′ ·n = −c′ ·n′, because c′ ·n = 0 and
so (c′ ·n)′ = 0 which implies c′′ ·n+ c′ ·n′ = 0. Similarly, −xu ·nu = xuu ·n.
So

k(w) =− c′ · n′

=− (xu du + xv dv) · (nu du + nv dv)

=− xu · nu du2 − (xu · nv + xv · nu) dudv − xv · nv dv2

=xuu · n du2 + 2xuv · n dudv + xvv · n dv2

= e du2 + 2f dudv + g dv2.

The terms e = xuu ·n, f = xuv ·n, and g = xvv ·n are called the coefficients
of the second fundamental form.

Now we want to express the mean curvature H in terms of these coeffi-
cients of the first and second fundamental forms. In particular, we will show
that

H =
Eg + Ge− 2Ff

2(EG− F 2)
. (2)
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Proof. Let w1,w2 be any two perpendicular unit vectors. Let k1, k2 be their
normal curvatues using the curves c1, c2 with parameters u1(s), v1(s) and
u2(s), v2(s). Let’s denote p1 = du1 + idu2 and p2 = dv1 + idv2. Then

2H = k1 + k2 = e(du2
1 + du2

2) + 2f(du1dv1 + du2dv2) + g(dv2
1 + dv2

2)

= e(p1 p1) + f(p1 p2 + p1p2) + g(p2 p2).

We want to further simplify this so that it does not have p1 and p2. Recall
eq (1):

1 = E du2 + 2F dudv + G dv2.

Now consider

Ep2
1 + 2Fp1p2 + Gp2

2 = E
[
du2

1 − du2
2 + i2du1du2

]
+ 2F

[
du1dv1 − du2dv2 + i(du1dv2 + du2dv1)

]
+ G

[
dv2

1 − dv2
2 + i2dv1dv2

]
= 2i

[
Edu1du2 + F (du1dv2 + du2dv1) + Gdv1dv2

]
+

[
Edu2

1 + 2Fdu1dv1 + Gdv2
1

]
−

[
Edu2

2 + 2Fdu1dv2 + Gdv2
2

]
= 0 + 1− 1

= 0.

Thus,

p1 =
−2Fp2 ±

√
4F 2p2

2 − 4EGP 2
2

2E
=

(
− F

E
± i

√
EG− F 2

E

)
p2

p1 =

(
− F

E
∓ i

√
EG− F 2

E

)
p2.

And so

p1 p1 =

(
F 2

E2
+ EG− F 2E

)
p2 p2 =

G

E
p2 p2 (3)

p1 p2 + p1p2 = −2F

E
p2 p2. (4)

Now we have

2H = k1 + k2 = e(p1 p1) + f(p1 p2 + p1p2) + g(p2 p2)

=

[
e
G

E
+ f

(
−2F

E

)
+ g

]
p2 p2.

We just need to get rid of p2 p2. Again using eq (1), we have

Ep1 p1+F (p1 p2 + p1p2) + Gp2 p2

= E(du2
1 + du2

2) + 2F (du1dv1 + du2dv2) + G(dv2
1 + dv2

2)

= 1 + 1 = 2.
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Using eqs (3) and (4),we derive

2 = E

(
G

E
p2 p2

)
+ 2F

(
−2F

E
p2 p2

)
+ Gp2 p2

⇒ 2 =

[
2G− 2F 2

E

]
p2 p2

⇒ p2 p2 =
E

EG− F 2

Therefore,

H =
1

2

[
e
G

E
+ f

(
−2F

E

)
+ g

]
p2 p2 =

Eg + eG− 2Ff

2(EG− F 2)
.

We can use formula (2) to show that a surface with a specific parametriza-
tion is minimal.

Example 12. If a heavy flexible cable is suspended between two points at
the same height, then it takes the shape of a curve x = a cosh(z/a) called
a catenary (from the Latin word that means “chain”). A catenoid which is
a surface generated by rotating this catenary about the z-axis. How do we
parametrize this catenary? Let z = av. Then x = a cosh v(−∞ < v < ∞).
So r(v) = (a cosh v, av) in the xz-plane. Since the catenoid is formed by
rotating this curve, we get the following parametrization for a catenoid:

x(u, v) = (a cosh v cos u, a cosh v sin u, av).

Then

xu = (−a cosh v sin u, a cosh v cos u, 0)

xv = (a sinh v cos u, a sinh v sin u, a).

So

E =xu · xxu = a2 cosh2 v

F =xu · xv = 0

G =xv · xv = a2 cosh2 v

Next, we want to compute n =
xu × xv

|xu × xv|
. Now,

xu × xv = (a2 cosh v cos u, a2 cosh v sin u,−a2 cosh v sinh v),

and so
|xu × xv| = a2 cosh2 v.
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Hence

n =

(
cos u

cosh v
,

sin u

cosh v
,− sinh v

cosh v

)
.

and

xuu =(−a cosh v cos u,−a cosh v sin u, 0)

xuv =(−a sinh v sin u,−a sinh v cos u, 0)

xvv =(a cosh v cos u, a cosh v sin u, 0)

Then

e =n · xuu = −a

f =n · xuv = 0

g =n · xvv = a,

which implies

H =
1

2

eG− 2fF + Eg

EG− F 2
= 0.

And so the catenoid is a minimal surface.

Exercise 1. Prove that Enneper’s surface parametrized by

x(u, v) =

(
u− 1

3
u3 + uv2, v − 1

3
v3 + vu2, u2 − v2

)
.

is a minimal surface.

Exercise 2. Suppose a surface M is the graph of a function of two variables
(i.e., if we project the surface onto a domain in the x1x2-plane, then for
every point in that domain there is exactly one point of M over it). Then
x3 = f(x1, x2) for some function f . M can then be parametrized by

x(u, v) =
(
u, v, f(u, v)

)
,

where u×v is the domain formed by the projection of M onto the x1x2-plane.
Prove

M is a minimal graph ⇐⇒ fuu

(
1 + f 2

v

)
− 2fufvfuv + fvv

(
1 + f 2

u

)
= 0. (5)

Applying eq (5) is usually not easy, because f can be complicated. How-
ever, one case in which we can solve for f is when f can be separated into two
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functions each of which is dependent upon only one variable. In particular,
f(x, y) = g(x) + h(y). Then the minimal surface equation becomes:

g′′(x)[1 + (h′(y))2] + h′′(y)[1 + (g′(x))2] = 0.

This is a separable differential equation and hence can be solved fairly easily.
To do so, put all the x’s on one side and all the y’s on the other side to
obtain:

−1 + (g′(x))2

g′′(x)
=

1 + (h′(y))2

h′′(y)
. (6)

What does this mean? If we keep y fixed, the right side remains the same as
we vary x. Likewise, varying y has no effect on the left side of the equation.
The only way that this can occur is if both sides equal the same constant,
say c. So we have:

−1 + (g′(x))2

g′′(x)
= c =⇒ 1 + (g′(x))2 = −cg′′(x).

To solve this, let φ(x) = g′(x). Then dφ
dx

= g′′(x) and so

−
∫

dx = −c

∫
dφ

1 + φ2

=⇒ x = −c arctan φ + K

=⇒ φ = − tan

(
x + K

c

)
.

For convenience, let K = 0 and c = 1. Since φ = g′, we can integrate again
to get:

g(x) = ln[cos x].

Completing the same calculations for the y-side of eq(6) yields:

h(y) = − ln[cos y].

Hence

f(x, y) = g(x) + h(y) = ln

[
cos x

cos y

]
which is the equation for Scherks doubly periodic surface. Notice that
−π

2
< x, y < π

2
and so this surface is defined over a square with side lengths

π centered at the origin. By a theorem known as the Schwarz Reflection
Pronciple, we can fit pieces of Scherks doubly periodic surface together to
get a checkerboard domain.

2.2 Isothermal parameters

By requiring the parametrization of a minimal surface to be isothermal, we
can begin using complex analysis to help us better understand minimal sur-
faces.
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Definition 13. A parametrization x is isothermal if E = xu ·xu = xv ·xv = G
and F = xu · xv = 0.

This requirement is not a restriction because of the following theorem.

Theorem 14. Isothermal coordinates exist on any minimal surface in R3.

Proof. See Oprea, pp 73-75.

Theorem 15. If the parametrization x is isothermal, then

xuu + xvv = 2EHn.

Exercise 3 (A proof of Theorem 15). {xu,xv,n} forms a basis for R3.
Assume F = 0. Then the vector xuu can be expressed in terms of these bases
vectors. That is,

xuu = Γu
uuxu + Γv

uuxv + en,

where the Γ’s coefficients are called the Christoffel symbols (recall e = n·xuu).

1. Show that Γu
uu = Ev

2E
and Γv

uu = −Ev

2G
by taking the inner product of xuu

with appropriate vectors. In a similar manner, it can be shown that

xvv = −Gu

2E
xu +

Gv

2G
xv + gn.

2. Use the mean curvature equation (2) and the results from (1) to show
that if the parametrization x is isothermal, then

xuu + xvv = 2EHn.

Corollary 16. A surface M with an isothermal parametrization x(u, v) =(
x1(u, v), x2(u, v), x3(u, v)

)
is minimal ⇐⇒ x1, x2, x3 are harmonic.

Proof. (⇒) If M is minimal, then H = 0 and so by Theorem 15 xuu+xvv = 0,
and hence the coordinate functions are harmonic. (⇐) Suppose x1, x2, x3 are
harmonic. Then xuu + xvv = 0, and so by Theorem 15 2(xu · xu)Hn = 0.
But n 6= 0 and E = xu · xu 6= 0. Hence, H = 0 and M is minimal.

Exercise 4. Let x and y be isothermal parametrizations of minimal surfaces
such that their component functions are pairwise harmonic conjugates. In
such a case, x and y are called conjugate minimal surfaces.
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1. An isothermal parametrization for the catenoid and for the helicoid
are, respectively,

xc(u, v) =(a cosh v cos u, a cosh v sin u, av), and

xh(u, v) =(a sinh v cos u, a sinh v sin u, au).

Show that the helicoid and the catenoid are conjugate minimal surfaces.

2. Prove that given two conjugate minimal surfaces, x and y, all surfaces
of the one-parameter family

z = (cos t)x + (sin t)y (7)

have the same fundamental form: E =< xu,xu >=< yu,yu >, F = 0,
G =< xv,xv >=< yv,yv >.

3. Prove that all the surfaces in the one-parameter family (7) are minimal
for all t ∈ R.

Thus, any two conjugate minimal surfaces can be joined through a one-
parameter family of minimal surfaces, and the first fundamental form of this
family is independent of t.

3 Weierstrass Representation

The Weierstrass representation provides us a basic formula using functions
from complex analysis for creating minimal surfaces.

Suppose M is a minimal surface with an isothermal parametrization
x(u, v). Let z = u + iv. Formally, we can solve for u, v in terms of z, z
to get u = z+ z

2
and v = z− z

2i
. Then the parametrization of M can be

written as:
x(z, z) =

(
x1(z, z), x2(z, z), x3(z, z)

)
.

Exercise 5. The notion of analyticity requires that the function f(x, y) =
u(x, y) + iv(x, y) can be written in terms of z = x + iy alone, without using
z = x− iy. Then we have the complex differential operators

∂

∂z
=

1

2

(
∂

∂u
− i

∂

∂v

)
,

∂

∂ z
=

1

2

(
∂

∂u
+ i

∂

∂v

)
.

Show that f is analytic ⇐⇒ ∂f
∂ z

= 0.
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Exercise 6. Prove that

fuu + fvv = 4

(
∂

∂z

(
∂f

∂ z

))
. (8)

Theorem 17. Let M be a surface with parametrization x = (x1, x2, x3) and

let φ = (ϕ1, ϕ2, ϕ3), where ϕk = ∂xk

∂z
. Then x is isothermal ⇐⇒ φ2 = 0. If x

is isothermal, then M is minimal ⇐⇒ each ϕk is analytic.

Proof. Notice (xk
z)

2 = [1
2
(xk

u − ixk
v)]

2 = 1
4
((xk

u)
2 − (xk

v)
2 − 2ixk

ux
k
v). Therefore,

φ2 =(ϕ1)2 + (ϕ2)2 + (ϕ3)2

=
1

4

( 3∑
k=1

(xk
u)

2 −
3∑

k=1

(xk
v)

2 − 2i
3∑

k=1

xk
ux

k
v

)
=

1

4

(
|xu|2 − |xv|2 − 2ixu · xv)

=
1

4
(E −G− 2iF ).

Thus, x is isothermal ⇐⇒ E = G, F = 0 ⇐⇒ φ2 = 0.
Now suppose that x is isothermal. By Corollary 16, it suffices to show

that for each k, xk is harmonic ⇐⇒ ϕk is analytic. Using eq (8) this follows
because

xk
uu + xk

vv = 4

(
∂

∂ z

(
∂xk

∂z

))
= 4

(
∂

∂ z

(
ϕk

))
.

Note that if x is isothermnal

|φ|2 =|x1
z|2 + |x2

z|2 + |x3
z|2

=
1

4

( 3∑
k=1

(xk
u)

2 +
3∑

k=1

(xk
v)

2

)
=

1

4

(
|xu|2 + |xv|2

)
=

1

4
(E + G)

=
E

2
.

So if |φ|2 = 0, then M degenerates to a point.

By Theorem 17, we can write

xk(z z) = ck + 2 Re

∫
ϕkdz. (9)
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This is because

ϕkdz =
1

2
[(xk

u − ixk
v)(du + idv)] =

1

2
[xk

udu + xk
vdv + i(xk

udv − xk
vdu)],

ϕkdz =
1

2
[(xk

u + ixk
v)(du− idv)] =

1

2
[xk

udu + xk
vdv − i(xk

udv − xk
vdu)],

and so

dxk =
∂xk

∂z
dz +

∂xk

∂ z
d z

=ϕkdz + ϕkd z

=ϕkdz + ϕkdz

= 2 Re ϕkdz.

Summary: We can find a formula for constructing minimal surfaces by
determining analytic functions φk (k = 1, 2, 3) such that

φ2 = 0 and |φ|2 6= 0.

Consider

ϕ1 =p(1 + q2)

ϕ2 =− ip(1− q2)

ϕ3 =− 2ipq.

Then

φ2 =[p(1 + q2)]2 + [−ip(1− q2)]2 + [−2ipq]2

=[p2 + 2p2q2 + p2q4]− [p2 − 2p2q2 + p2q4]− [4p2q2]

=0,

and

|φ|2 =|p(1 + q2)|2 + | − ip(1− q2)|2 + | − 2ipq|2

=|p|2[(1 + q2)(1 + q2) + (1− q2)(1− q2) + 4q q]

=|p|2[2(1 + 2q q + q2 q2)

=4|p|2(1 + |q|2)|2 6= 0 (note: if p = 0, then ϕk = 0 for all k).

Theorem 18 (Weierstrass Representation I). Let p an analytic function
and q a meromorphic function in some domain Ω ∈ C, having the property
that at each point where q has a pole of order m, p has a zero of order at least
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2m. Then every regular minimal surface has a local isothermal parametric
representation of the form

X = (x1(z), x2(z), x3(z))

=
(

Re
{∫ z

0

p(1 + q2)dw
}

,

Re
{∫ z

0

−ip(1− q2)dw
}

,

Re
{∫ z

0

−2ipqdw
})

.

Example 19.

1. For p = 1, q = iz, we get

X =
(

Re
{

z − 1

3
z3

}
, Re

{
− i

(
z +

1

3
z3

)}
, Re

{
z2

})
which gives Enneper’s surface.

2. Using p = 1/(1− z4) and q = iz, the Weierstrass representation yields

X =

(
Re

{
i

2
log

(
z + i

z − i

)}
,

Re

{
− i

2
log

(
1 + z

1− z

)}
,

Re

{
1

2
log

(
1 + z2

1− z2

)})
and generates Scherk’s doubly-periodic surface. Keeping p the same
but changing q to q = z, we have

X =

(
Re

{
1

2
log

(
z + i

z − i

)}
,

Re

{
− 1

2
log

(
1 + z

1− z

)}
,

Re

{
− i

2
log

(
1 + z2

1− z2

)})
which forms Scherk’s singly-periodic surface.
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Scherk’s doubly-periodic surface Scherk’s singly-periodic surface

3. For p = 1, q = eiθ

z
, we get

X =
(

Re
{

z − e2iθ

z

}
, Re

{
− i

(
z +

e2iθ

z

)}
, Re

{
− 2ieiθ log z

})
which represents a family of minimal surfaces that vary from the heli-
coid when θ = 0 to the catenoid when θ = π/2.

(a) Helicoid (θ = 0) (b) Associated surface (θ = π
6
)
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(c)Associated surface (θ = π
4
) (d) Associated surface(θ = π

3
)

(e) Associated surface (θ = 5π
12

) (f) Catenoid (θ = π
2
)

Another benefit of the Weierstrass representation is that we can inves-
tigate properties of minimal surfaces by just using the coordinate functions
ϕk.

4 Minimal Surfaces and Harmonic Univalent

Mappings

We can use other representations for φ = (ϕ1, ϕ2, ϕ3) to form different Weier-
strass representations as long as φ2 = 0 and |φ| 6= 0. Since we are interested

17



in planar harmonic mappings, a natural choice is to consider

x1 = Re(h + g) = Re

∫
(h′ + g′) dz = 2 Re

∫
ϕ1 dz

x2 = Im(h− g) = Re

∫
−i(h′ − g′) dz = 2 Re

∫
ϕ2 dz

x3 =2 Re

∫
ϕ3 dz

and then solve for ϕ3.

0 = φ2 =
1

2

{
[h′ + g′]2 + [−i(h′ − g′)]2 + [ϕ3]2

}
=

1

2

{
(h′)2 + 2h′g′ + (g′)2 − (h′)2 + 2h′g′ − (g′)2 + (ϕ3)2

}
⇒ ϕ3 =

1

2

√
−4h′g′ = ih′

√
g′/h′

We need ϕ3 to be analytic and so we require the dilatation ω = g′/h′ to be
a perfect square.

Theorem 20 (Weierstrass Representation II). If a minimal graph {(u, v, F (u, v)) :
u + iv ∈ Ω} is parametrized by sense-preserving isothermal parameters z =
x + iy ∈ D, the projection onto its base plane defines a harmonic mapping
w = u + iv = f(z) of D onto Ω whose dilatation is the square of an analytic
function. Conversely, if f = h + g is a sense-preserving harmonic mapping
of D onto some domain Ω with dilatation ω = q2 for some function q analytic
in D, then the formulas

u = Re{h(z) + g(z)},
v = Im{h(z)− g(z)},

F (u, v) = 2 Im
{∫ z

0

√
g′(ζ)h′(ζ)dζ

}
define by isothermal parameters a minimal graph whose projection is f .

Example 21. Polynomial mapping and Enneper’s surface

Recall the polynomial harmonic univalent mappings

f(z) =z +
1

3
z3

= Re

(
z +

1

3
z3

)
= Im

(
z − 1

3
z3

)
.

18



Hence, h(z) = z and g(z) = 1/3z3 and

F (u, v) = 2 Im

∫ z

0

√
ζ2 dζ = Im z2.

This yields a parametrization of Enneper’s minimal surface:

X =

(
Re

{
z +

1

3
z3

}
, Im

{
z − 1

3
z3

}
, Im

{
z2

})

1.6

1.2

0.4

0.8
!0.4

!1.2

0.0

!2.0

2.0

2.0

1.6

0.8

1.2

0.0

!0.8

0.4

!1.6

!0.4!0.8!1.2!1.6!2.0

Projection of Enneper’s
Enneper’s Surface Minimal Surface

Theorem 20 allows to create minimal surfaces from planar harmonic map-
pings. One way to do this is to shear an analytic univalent function that is
convex in the horizontal direction and require that the dilatation is the square
of an analytic function.

Example 22. Let h(z)−g(z) =
1

2
log

(
1 + z

1− z

)
and ω = g′(z)/h′(z) = m2z2,

where |m| ≤ 1. Solving for h and g yields

h(z) =
1

2(1−m2)
log

(
1 + z

1− z

)
+

m

2(m2 − 1)
log

(
1 + mz

1−mz

)
g(z) =

m2

2(1−m2)
log

(
1 + z

1− z

)
+

m

2(m2 − 1)
log

(
1 + mz

1−mz

)
.

For every m such that |m| = 1, the image of D under f = h + g is
a parallelogram. Now consider the minimal surfaces constructed from this
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shearing. Note that

F (u, v) = Im

{
m

1−m2
log

(
1−m2z2

1− z2

)}
.

This forms a one-parameter family of slanted Scherk surfaces that range
from the canonical Scherk doubly periodic surface to the helicoid. In par-
ticular, for m = i the resulting minimal surface is Scherk’s doubly periodic
surface. With m = eiθ and letting θ decreases between π/2 and 0, we get
sheared transformations of Scherk’s doubly periodic surface. In the limit
θ = 0 we derive

X = (x1, x2, x3) =

(
1

2
sinh u cos v,

1

2
v,

1

2
sinh u sin v

)
,

which is an equation of a helicoid.

he Schwarz reflection principle allows one to create larger periodic mini-
mal surfaces by reflecting a known surface through lines and planes of sym-
metry. Because the projection of these minimal surfaces is a parallelogram,
we can apply the Schwarz reflection principle to combine one of these mini-
mal surfaces with copies of itself to form a checkerboard like conglomeration
of minimal surfaces.

–4
–2

0
2

4

–4
–3 –2

–1 0 1 2 3 4

–4
–2
0
2
4

–4

–3

–2

–1

0

1

2

3

4

–4 –3 –2 –1 0 1 2 3 4

(a) Five Pieces of Scherk’s (b) Projection of (a) onto
Surface (m = eiπ/2) C−plane
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–2

0
2

4

–4
–3 –2

–1 0 1 2 3 4

–4
–2
0
2
4

–4

–3

–2

–1

0

1

2

3

4

–4 –3 –2 –1 0 1 2 3 4

(c) Five Pieces of Scherk’s (d) Projection of (c) onto
Slanted Surface (m = eiπ/4) C−plane

–4
–2

0
2

4

–4
–3 –2

–1 0 1 2 3 4

–4
–2
0
2
4

–4

–3

–2

–1

0

1

2

3

4

–4 –3 –2 –1 0 1 2 3 4

(e) Five Pieces of Scherk’s (f) Projection of (e) onto
Slanted Surface (m = eiπ/6) C−plane

–4

–2

0

2

4

–4 –3 –2 –1 0 1 2 3 4

–4
–2
0
2
4

–4

–3

–2

–1

0

1

2

3

4

–4 –3 –2 –1 0 1 2 3 4

(g) Three Pieces of the (h) Projection of (g) onto
Helicoid (m = 1) C−plane
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Problems to Investigate 1.

1. Find known minimal surfaces that relate to planar harmonic mappings
that have dilatations that are perfect squares. Here are some examples:

(a) the polynomial map given by

f(z) = z +
1

3
z3

is the projection of Enneper’s surface. What minimal surfaces
correspond to other polynomial harmonic maps?

(b) the square map given by

f(z) = f(z)+ g(z) = Re

[
i

2
log

(
1− iz

1 + iz

)]
+i Im

[
1

2
log

(
1 + z

1− z

)]
is the projection of Scherk doubly-periodic surface. Generally, any
convex 2n-polygonal image in C is the projection of a Jenkins-
Serre minimal surface.

(c) the horizontal strip map

f1(z) = h1(z) + g1(z) = Re

[
z

1− z2

]
+ i Im

[
1

2
log

(
1 + z

1− z

)]
is the helicoid;

(d) the map

f2(z) = h2(z) + g2(z) = Re

[
1

2
log

(
1 + z

1− z

)]
+ i Im

[
z

1− z2

]
is the catenoid.

2

1

0

!3

3

3

2

0

1

!1

!2

!1!2!3 2

1

!2 0 3

3

2

0

1

!3

!1!3

!1

!2

Image of D under f1 (h) Image of D under f2
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Problem: What minimal surface do we get when we shear z/(1− z)2

using g′(z) = z2h′(z)?

2. Given a specific minimal surface, find the corresponding planar har-
monic mappings. For example, determine f = h + g that corresponds
with the twisted Scherk singly-periodic surface.

3. Recall that a minimal surface is defined as a surface M for which H =
k1+k2

2
= 0 at each point p ∈ M , where k1, k2 are the maximum and

minimum normal curvatures at p. Another curvature on a surface is
its Gaussian curvature defined by

K = k1k2.

Like the mean curvature, the Gaussian curvature can be written in
terms of the coefficients of the first and second fundamental forms. In
particular,

K =
eg − f 2

EG− F 2
. (10)

In the case we have an isothermal parametrization of a surface M , eq
(10) reduces to

K = − 1

λ2
∆(log λ),

where λ2 = E and ∆ = ∂2/∂u2 + ∂2/∂v2 is the Laplacian. This means
that the Gaussian curvature depends only on the coefficients of the
first fundamental form, and hence K does not change as a surface is
deformed as long as the change does not stretch the surface. This is
known as Gauss’ theorema egregium (i.e., ”beautiful theorem”).

It can be shown that if M is a minimal surface, then

K = − 4|q′|2

|p|2(1 + |q|2)4
= − |ω′|2

|h′g′|(1 + |ω|)4
,

where p, q are from the Weierstrass Representation I and h, g, ω = g′/h′

are from Weierstrass Representation II (and the corresponding planar
harmonic mapping). This allows us to estimate |K| by using function
theory. In particular, by the Schwarz-Pick lemma

|q′(z)|
1− |q(z)|2

≤ 1

1− |z|2
, ∀z ∈ D.

Thus, at the point of the surface above f(0) we have

|K| ≤ 4(1− |q(0)|2)2

|p(0)|2(1 + |q(0)|2)4
=

4(1− |ω(0)|)2

(|h′(0)|+ |g′(0)|)2(1 + |ω(0)|)2

≤ 4

(|h′(0)|+ |g′(0)|)2
≤ 4

|h′(0)|2 + |g′(0)|2
.
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Example 23. Assume that M is a minimal graph over a domain Ω
and that h(0) = 0 = g(0).

(a) in the case the minimal surface is over D, Heinz’ lemma proves
that |h′(0)|2 + |g′(0)|2 ≥ 27/(4π2). Hence, the Gaussian curvature
at the point over the origin satisfies

|K| ≤ 16π2

27
≈ 5.85

However, this result is not sharp, because Heinz’ result has equal-
ity for the planar harmonic map that sends D onto the regular
triangle, and this map has ω(z) = z which does not lift to a min-
imal surface since ω is not a perfect square. Since the harmonic
square mapping has dilatation z2, we have the following conjecture

Conjecture 1. If M is a minimal graph over D, then the Gaussian
curvature at the point over the origin satisfies

|K| ≤ π2

2
≈ 4.93

(b) In the case the minimal surface is over the infinite horizontal strip

Ω = {z ∈ C
∣∣∣∣| Im z| < π

4
}, then Hengartner and Schober showed

that the Gaussian curvature at the point over α = a + ib ∈ Ω
satisfies the sharp inequalities

|K|

{
≤ 4, if b = 0,

< 4 sec2(2b), if b 6= 0.

Problem: Using this approach, find estimates on the bound of K at
points for other minimal surfaces.

4. Krust Theorem in minimal surface theory states that if M is a minimal
graph over a convex domain, then all of the associated surfaces of M are
also minimal graphs. Using a convolution theorem by Clunie and Sheil-
Small, it is easy to show that these associated surfaces are over close-
to-convex domains. This suggests another avenue for further study–use
theorems from one of these fields about forming or combining maps to
get further results in the other field.
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